OPTIMIZING QUANTUM ALGORITHMS FOR SOLVING THE POISSON EQUATION

Authors

DOI:

https://doi.org/10.37943/18REAT9767

Keywords:

partial differential equation, poisson equation, quantum computing, variational quantum eigensolver, optimization

Abstract

Contemporary quantum computers open up novel possibilities for tackling intricate problems, encompassing quantum system modeling and solving partial differential equations (PDEs). This paper explores the optimization of quantum algorithms aimed at resolving PDEs, presenting a significant challenge within the realm of computational science. The work delves into the application of the Variational Quantum Eigensolver (VQE) for addressing equations such as Poisson's equation. It employs a Hamiltonian constructed using a modified Feynman-Kitaev formalism for a VQE, which represents a quantum system and encapsulates information pertaining to the classical system. By optimizing the parameters of the quantum circuit that implements this Hamiltonian, it becomes feasible to achieve minimization, which corresponds to the solution of the original classical system. The modification optimizes quantum circuits by minimizing the cost function associated with the VQE. The efficacy of this approach is demonstrated through the illustrative example of solving the Poisson equation. The prospects for its application to the integration of more generalized PDEs are discussed in detail. This study provides an in-depth analysis of the potential advantages of quantum algorithms in the domain of numerical solutions for the Poisson equation and emphasizes the significance of continued research in this direction. By leveraging quantum computing capabilities, the development of more efficient methodologies for solving these equations is possible, which could significantly transform current computational practices. The findings of this work underscore not only the practical advantages but also the transformative potential of quantum computing in addressing complex PDEs. Moreover, the results obtained highlight the critical need for ongoing research to refine these techniques and extend their applicability to a broader class of PDEs, ultimately paving the way for advancements in various scientific and engineering domains.

Author Biographies

Aksultan Mukhanbet, Al-Farabi Kazakh National University, Kazakhstan

Master of Technical Science, Researcher, Department of Computer Science

Nurtugan Azatbekuly , LTD DigitAlem, Kazakhstan

Master's student, Junior Researcher, Department of Computer Science

Beimbet Daribayev, Al-Farabi Kazakh National University, Kazakhstan

PhD, Head, Department of Computer Science

References

Tosti Balducci, G., Chen, B., Möller, M., Gerritsma, M., & De Breuker, R. (2022). Review and perspectives in quantum computing for partial differential equations in structural mechanics. In Frontiers in Mechanical Engineering, 8. Frontiers Media SA. https://doi.org/10.3389/fmech.2022.914241

Saha, K. K., Robson, W., Howington, C., Suh, I.-S., Wang, Z., & Nabrzyski, J. (2022). Advancing Algorithm to Scale and Accurately Solve Quantum Poisson Equation on Near-term Quantum Hardware (Version 2). arXiv. https://doi.org/10.48550/ARXIV.2210.16668

Wang, S., Wang, Z., Li, W., Fan, L., Wei, Z., & Gu, Y. (2020). Quantum fast Poisson solver: the algorithm and complete and modular circuit design. In Quantum Information Processing, 19(6). Springer Science and Business Media LLC. https://doi.org/10.1007/s11128-020-02669-7

Leong, F. Y., Koh, D. E., Ewe, W.-B., & Kong, J. F. (2023). Variational quantum simulation of partial differential equations: applications in colloidal transport. In International Journal of Numerical Methods for Heat & Fluid Flow, 33(11), 3669–3690. Emerald. https://doi.org/10.1108/hff-05-2023-0265

Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S. C., Endo, S., Fujii, K., McClean, J. R., Mitarai, K., Yuan, X., Cincio, L., & Coles, P. J. (2021). Variational quantum algorithms. In Nature Reviews Physics, 3(9), 625–644. Springer Science and Business Media LLC. https://doi.org/10.1038/s42254-021-00348-9

Cao, Y., Papageorgiou, A., Petras, I., Traub, J., & Kais, S. (2013). Quantum algorithm and circuit design solving the Poisson equation. In New Journal of Physics 15(1), 013021. IOP Publishing. https://doi.org/10.1088/1367-2630/15/1/013021

Liu, H.-L., Wu, Y.-S., Wan, L.-C., Pan, S.-J., Qin, S.-J., Gao, F., & Wen, Q.-Y. (2021). Variational quantum algorithm for the Poisson equation. In Physical Review A, 104(2). American Physical Society (APS). https://doi.org/10.1103/physreva.104.022418

Sato, Y., Kondo, R., Koide, S., Takamatsu, H., & Imoto, N. (2021). Variational quantum algorithm based on the minimum potential energy for solving the Poisson equation. In Physical Review A, 104(5). American Physical Society (APS). https://doi.org/10.1103/physreva.104.052409

Daribayev, B., Mukhanbet, A., & Imankulov, T. (2023). Implementation of the HHL Algorithm for Solving the Poisson Equation on Quantum Simulators. In Applied Sciences, 13, (20), 11491. MDPI AG. https://doi.org/10.3390/app132011491

Li, H.-M., Wang, Z.-X., & Fei, S.-M. (2023). Variational quantum algorithms for Poisson equations based on the decomposition of sparse Hamiltonians. In Physical Review A, 108(3). American Physical Society (APS). https://doi.org/10.1103/physreva.108.032418

Ali, M., & Kabel, M. (2023). Performance Study of Variational Quantum Algorithms for Solving the Poisson Equation on a Quantum Computer. In Physical Review Applied, 20 (1). American Physical Society (APS). https://doi.org/10.1103/physrevapplied.20.014054

Bonet-Monroig, X., Wang, H., Vermetten, D., Senjean, B., Moussa, C., Bäck, T., Dunjko, V., & O’Brien, T. E. (2023). Performance comparison of optimization methods on variational quantum algorithms. In Physical Review A, 107(3). American Physical Society (APS). https://doi.org/10.1103/physreva.107.032407

Cui, G., Wang, Z., Wang, S., Shi, S., Shang, R., Li, W., Wei, Z., & Gu, Y. (2021). Optimization and Noise Analysis of the Quantum Algorithm for Solving One-Dimensional Poisson Equation. arXiv. https://doi.org/10.48550/ARXIV.2108.12203

Soloviev, V. P., Larrañaga, P., & Bielza, C. (2022). Quantum parametric circuit optimization with estimation of distribution algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference Companion. GECCO ’22: Genetic and Evolutionary Computation Conference. ACM. https://doi.org/10.1145/3520304.3533963

Ravi, G. S., Smith, K. N., Gokhale, P., Mari, A., Earnest, N., Javadi-Abhari, A., & Chong, F. T. (2021). VAQEM: A Variational Approach to Quantum Error Mitigation (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2112.05821

Khan, A., Clark, B. K., & Tubman, N. M. (2023). Pre-optimizing variational quantum eigensolvers with tensor networks (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2310.12965

de Keijzer, R. J. P. T., Colussi, V. E., Škorić, B., & Kokkelmans, S. J. J. M. F. (2022). Optimization of the variational quantum eigensolver for quantum chemistry applications. In AVS Quantum Science, 4(1). American Vacuum Society. https://doi.org/10.1116/5.0076435

Nicoli, K., Anders, C. J., Funcke, L., Hartung, T., Jansen, K., Kühn, S., Müller, K.-R., Stornati, P., Kessel, P., & Nakajima, S. (2023). Physics-Informed Bayesian Optimization of Variational Quantum Circuits. In Advances in Neural Information Processing Systems 36 (NeurIPS 2023) Main Conference Track.

Endo, K., Sato, Y., Raymond, R., Wada, K., Yamamoto, N., & Watanabe, H. C. (2023). Optimal Parameter Configurations for Sequential Optimization of Variational Quantum Eigensolver. arXiv. https://doi.org/10.48550/ARXIV.2303.07082

Hahm, J., Kim, H., & Park, Y. J. (2023). Improvement in Variational Quantum Algorithms by Measurement Simplification (Version 1). arXiv. https://doi.org/10.48550/ARXIV.2312.06176

Tilly, J., Chen, H., Cao, S., Picozzi, D., Setia, K., Li, Y., Grant, E., Wossnig, L., Rungger, I., Booth, G. H., & Tennyson, J. (2022). The Variational Quantum Eigensolver: A review of methods and best practices. In Physics Reports, 986, 1–128. Elsevier BV. https://doi.org/10.1016/j.physrep.2022.08.003

Gottesman, D., Kitaev, A. Yu., Shen, A. H., & Vyalyi, M. N. (2003). Classical and Quantum Computation. In The American Mathematical Monthly, 110(10), 969. JSTOR. https://doi.org/10.2307/3647986

Downloads

Published

2024-06-30

How to Cite

Mukhanbet, A., Azatbekuly , N., & Daribayev, B. (2024). OPTIMIZING QUANTUM ALGORITHMS FOR SOLVING THE POISSON EQUATION. Scientific Journal of Astana IT University, 18, 55–65. https://doi.org/10.37943/18REAT9767

Issue

Section

Information Technologies
betpas
pendik escort anadolu yakasi escort bostanci escort kadikoy escort kartal escort kurtkoy escort umraniye escort
maltepe escort ataşehir escort ataşehir escort ümraniye escort pendik escort kurtköy escort anadolu yakası escort üsküdar escort şerifali escort kartal escort gebze escort kadıköy escort bostancı escort göztepe escort kadıköy escort bostancı escort üsküdar escort ataşehir escort maltepe escort kurtköy escort anadolu yakası escort ataşehir escort beylikdüzü escort