MATHEMATICAL FRAMEWORK FORMULATION AND IMPLEMENTATION FOR HYPERSPECTRAL AEROSPACE IMAGES PROCESSING

Authors

DOI:

https://doi.org/10.37943/15DLPO1951

Keywords:

hyperspectral images, pre-processing, compression algorithm, mathematical apparatus, discrete conversions, Haar wavelets, Daubechies wavelet, Walsh-Hadamard transformation, quality metric, machine learning, artificial intelligence

Abstract

This paper proposes a preprocessing algorithm for aerospace hyperspectral images based on a mathematical apparatus effectively applied in pre-compression transformation problems. In particular, several methods have been analyzed for hyperspectral image (signal) preprocessing from the point of view of digital signal processing algorithms. These mathematical methods are used for problems of filtering signals from noise of different natures and for compression and restoration of signals after their transmission through communication channels. The results of comparative analysis of preparatory processing of lossy compression algorithms based on wavelet analysis, discrete and orthogonal transforms are also given, demonstrating minimization of loss level of reconstructed decoded images. The performance of the proposed preprocessing algorithms with quality metrics is presented to evaluate the quality of the reconstructed hyperspectral aerospace images. The results of this study can be applied and used in the tasks of special processing of hyperspectral images, as well as fundamental knowledge of mathematical apparatuses of the proposed orthogonal preprocessing, considering the specificity of the data which is very important in obtaining images ready for compression for the subsequent identification of objects of the Earth's surface and using such mathematical transformations at the hyperspectral image preprocessing stage before compression provides efficient archiving of the obtained data, while reducing the communication channel load. Through the use of quality metrics of the reconstructed images, the preprocessing algorithm provides an understanding of the threshold of the peak signal-to-noise ratio value and the efficiency of its application to calculate and minimize the loss rate.

References

Wang, Z., Xiao, H., He, M., Wang, L., Xu, K., & Nian, Y. (2020). Spatial-Spectral Joint Compressed Sensing for Hyperspectral Images. IEEE Access, 8, 149661-149675. https://doi.org/10.1109/ACCESS.2020.3014350

Llaveria, D., Camps, A., Park, H., & Narayan, R. (2022). Ranking Methodology for Sequential Band Selection Combining Data Dispersion and Spectral Band Correlation. IEEE International Geoscience and Remote Sensing Symposium, 775-778. https://doi.org/10.1109/IGARSS46834.2022.9884380

Mijares i Verdú, S., Ballé, J., Laparra, V., Rapesta, J. B., Hernández-Cabronero, & Serra-Sagristá, M. J. (2022). Hyperspectral remote sensing data compression with neural networks. UT, USA: Data Compression Conference (DCC), 476-476. https://doi.org/10.1109/DCC52660.2022.00087.

Chen, Y. & Yuan, F. (2021). Research on Lossless Compression of Hyperspectral Images Based on Improved Deep Learning Algorithm. Chongqing, China: International Conference on Intelligent Computing, Automation and Systems (ICICAS), 111-116. https://doi.org/10.1109/ICICAS53977.2021.00029

Pestel-Schiller, U., Hu, K., Gritzner, D., & Ostermann, J. (2021). Determination of Relevant Hyperspectral Bands Using a Spectrally constrained CNN. Amsterdam, Netherlands: 11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), 1-5. https://doi.org/10.1109/WHISPERS52202.2021.9483986

Gandikota, D. M., Gladkova, T., Tran, K. A., Bapat, S., Richkus, J., & Arnold, D. J. (2022). AI Augmentation to Remote Sensing Imagery in Forestry Conservation & Restoration for Increased Responsive Capabilities. IEEE Applied Imagery Pattern Recognition Workshop (AIPR), 1-16. https://doi.org/10.1109/AIPR57179.2022.10092215

Ali, B.H.B.F., Prakash, R. (2021) Overview on Machine Learning in Image Compression Techniques IEEE International Virtual Conference on Innovations in Power and Advanced Computing Technologies, i-PACT 2021, 3rd https://doi.org/10.1109/i-PACT52855.2021.9696987

Sucharitha, B., & Anitha Sheela, K. (2022). Hyper Spectral Image compression using Higher Order Orthogonal Iteration Tucker decomposition. Kochi, India: 2022 IEEE 19th India Council International Conference (INDICON), 1-7. https://doi.org/10.1109/INDICON56171.2022.10040093

Kapah, L., Weizman, N., Bykhovsky, D., & August, I. Y. (2022). Hyper-Spectral Image Compression By Joint Spatial Spectral Dimension Reduction Using Thresholded Principal Component Analysis. Rome, Italy: 2022 12th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), 1-5. https://doi.org/10.1109/WHISPERS56178.2022.9955095

Chandra, H., & Bajpai, S. (2022). Listless Block Cube Tree Coding for Low Resource Hyperspectral Image Compression Sensors. Aligarh, India: 2022 5th International Conference on Multimedia, Signal Processing and Communication Technologies (IMPACT), 1-5. https://doi.org/10.1109/IMPACT55510.2022.10029076

Ahanonu, E., Marcellin, M. W., & Bilgin, A. (2019). Clustering Regression Wavelet Analysis for Lossless Compression of Hyperspectral Imagery. Snowbird, UT, USA: 2019 Data Compression Conference (DCC), 551-551. https://doi.org/10.1109/DCC.2019.00063

Mei, S., Khan, B. M., Zhang, Y., & Du, Q. (2018). Low-Complexity Hyperspectral Image Compression Using Folded PCA and JPEG2000. Valencia, Spain: IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, 4756-4759. https://doi.org/10.1109/IGARSS.2018.8519455

Wang, Z. (2021). Entropy Analysis for Clustering Based Lossless Compression of Remotely Sensed Image. Orlando, FL, USA: 2021 IEEE International Conference on Big Data (Big Data), 4220-4223. https://doi.org/10.1109/BigData52589.2021.9671694

Chandra, H., & Bajpai, S. (2023). 3D-Block Partitioning Embedded Coding for Hyperspectral Image Sensors. Aligarh, India: 2023 International Conference on Power, Instrumentation, Energy and Control (PIECON), 1-5. https://doi.org/10.1109/PIECON56912.2023.10085841

Sarinova, A. J., & Isin, M. E. (2016). Coding and decoding of hyperspectral aerospace images using wavelet transforms. Modern knowledge-intensive technologies. Regional application. №4 (48). cyberleninka.ru/article/n/kodirovanie-i-dekodirovanie-giperspektralnyh-aerokosmicheskih-izobrazheniy-s-primeneniem-veyvlet-preobrazovaniy

Dunayev, P., Bekbayeva, A., Mekhtiyev, A., & Sarsikeyev, Y. (2022). Development of compression algorithms for hyperspectral aerospace images based on discrete orthogonal transformations. Eastern-European Journal of Enterprise Technologiesthis link is disabled, 1(2-115), 22–30. http://journals.uran.ua/eejet/article/view/251404/250664

Sarinova, A. (2021). Development of compression algorithms for hyperspectral aerospace images based on discrete orthogonal transformations. E3S Web of Conferences, 333, 01011. http://dx.doi.org/10.1051/e3sconf/202133301011

Sarinova, A. & Zamyatin, A. (2020) Hyperspectral regression lossless compression algorithm of aerospace images. E3S Web of Conferences, 149, 02003. https://doi.org/10.1051/e3sconf/202014902003

Sarinova, A., Lisnevskyi, R., Biloshchytskyi, A., & Akizhanova, A. (2022). The Lossless Compression Algorithm of Hyperspectral Aerospace Images with Correlation and Bands Grouping. Nur-Sultan: SIST 2022 - 2022 International Conference on Smart Information Systems and Technologies, Proceedings. https://doi.org/10.1109/SIST54437.2022.9945821

Sarinova, A., Neftissov, A., & Bronin, S. (2022). Regression Approach to Lossles Compression Algorithm for Hyperspectral Images. Nur-Sultan: SIST 2022 - 2022 International Conference on Smart Information Systems and Technologies, Proceedings. https://doi.org/10.1109/SIST54437.2022.9945817

Downloads

Published

2023-09-30

How to Cite

Sarinova, A., Neftissov, A. . . ., Rzayeva, L., Kirichenko , L. ., Kusdavletov, S. ., & Kazambayev, I. . (2023). MATHEMATICAL FRAMEWORK FORMULATION AND IMPLEMENTATION FOR HYPERSPECTRAL AEROSPACE IMAGES PROCESSING. Scientific Journal of Astana IT University, 15(15), 111–124. https://doi.org/10.37943/15DLPO1951

Issue

Section

Information Technologies
betpas
pendik escort anadolu yakasi escort bostanci escort kadikoy escort kartal escort kurtkoy escort umraniye escort
kucukcekmece escort bahcelievler escort istanbul escort esenyurt escort istanbul escort istanbul escort besiktas escort beylikduzu escort avcilar escort mersin escort