INFORMATION-LOGICAL MODEL OF EDUCATION OPTIMIZATION IN REMOTE MODE

Authors

DOI:

https://doi.org/10.37943/14ZEXL9869

Abstract

The educational optimization process is widely researched in the theoretical aspect. Analyzing existing sources made it possible to highlight the research issues: the need to create an optimizing distance studying model, in which work with weaker students becomes possible both within the educational process and in individual or group independent work. The study aims to develop an information-logical model for optimizing distance studying. This model should provide for the learning process organization in such a way as to strengthen the weaknesses of students, reveal their potential and focus on the comprehensive development of knowledge and skills. The task formalization is carried out using the Hungarian algorithm and Boolean variables. The main work limitation is the operation with integers. Discreteness manifests itself already at the modelling stages in many problems, for example, when working with Boolean variables. An example with the most straightforward information model construction using the logical functions "true/false" with the transition to a chain of matrices is given. It demonstrates the studying optimization algorithm and presents an expanded information-logical model. The presented model was preliminary tested in one of the academic groups of the S. Seifullin Kazakh Agro Technical Research University. Students' knowledge inspections were carried out at the approbation beginning. Then a student group working on a student project was divided into subgroups according to the algorithm. The knowledge inspection showed an 11.3% improvement in results at the work's end. Further research on this topic may consist of expanding the presented model's capabilities and developing appropriate modules for knowledge control and algorithmization of related tasks.

References

United Nations Development Programme (UNDP). (2020, January 1). COVID-19 and human development: Assessing the crisis, envisioning the recovery. Human Development Reports. http://hdr.undp.org/en/hdp-covid

Lihacheva A. N. (2017). Optimizaciya processa obucheniya kak sposob povysheniya ego effektivnosti v usloviyah sovremennoj obrazovatel'noj paradigmy [Optimization of the learning process as a way to improve its effectiveness in the modern educational paradigm]. Politematicheskij setevoj elektronnyj nauchnyj zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta, 130, 1209-1224. https://cyberleninka.ru/article/n/optimizatsiyaprotsessa-obucheniya-kak-sposob-povysheniya-ego-effektivnosti-v-usloviyah-sovremennoyobrazovatelnoy-paradigmy

Kovalchuk Z. Y. (2013). Kryterii optymizatsii navchannia u vyshchomu navchalnomu zakladi [The Criteria of studies optimization at a higher educational institution]. Naukovi zapysky. Seriia “Psykholohiia i pedahohika”, 1(23), 112-121.

https://journals.oa.edu.ua/Psychology/article/view/669/559

Dantzig G. B. (2014). The Nature of Mathematical Programming. Mathematical Programming

Glossary. https://glossary.informs.org/second.php?page=nature.html

Danilina, E. A. (2010). Optimizaciya processa obucheniya inostrannym yazykam v neyazykovom VUZe v sootvetstvii s novym gosudarstvennym obrazovatel'nym standartom [Optimizing the process of teaching foreign languages in non-language universities in accordance with the new state educational standard]. In Avtomobile- i traktorostroenie v Rossii: prioritety razvitiya i podgotovka kadrov (pp. 207-209). MGTU “MAMI”.

http://www.mami.ru/science/mami145/scientific/articles/s12/s1241.pdf

Grebenev, I. V., & CHuprunov, E. V. (2007). Teoriya obucheniya i modelirovanie uchebnogo processa [The theory of learning and modeling the learning process]. Vestnik Nizhegorodskogo universiteta im. N. I. Lobachevskogo, 1, 28-32. https://cyberleninka.ru/article/n/teoriyaobucheniya-i-modelirovanie-uchebnogo-protsessa

Sidorov S.V. (2015). Osnovnye modeli obrazovaniya [Basic models of education]. Sajt pedagoga-issledovatelya. http://si-sv.com/publ/osnovnye_modeli_obrazovanija/14-1-0-504

Belikov, V.A. (2010). Obrazovanie. Deyatelnost. Lichnost [Education. Activities. Personality] [Monograph]. Akademiya Estestvoznaniya. https://elibrary.ru/publisher_about.asp?pubsid=7276

Andreev A. L. (2005). Kompetentnostnaya paradigma v obrazovanii: opyt filosofskometodologicheskogo analiza [The competence paradigm in education: an experience of philosophical and methodological analysis]. Pedagogika, 4, 19-27.

https://portalus.ru/modules/shkola/rus_readme.php?subaction=showfull&id=1193748437&archive=1194448667&start_from=&ucat=&&ysclid=lgsdlvc2oq225334844

Suhovarov, I. V. (2013). Upravlenie znaniyami kak element obespecheniya konkurentnogo preimushchestva vuza [Knowledge management as an element of competitive advantage of the university]. Uchenye zapiski: Elektronnyj nauchnyj zhurnal Kurskogo gosudarstvennogo universiteta, 2(26), 123-129. https://cyberleninka.ru/article/n/upravlenie-znaniyami-kakelement-obespecheniya-konkurentnogo-preimuschestva-vuza

Girard, J., & Girard, J. (2015). Defining knowledge management: Toward an applied compendium. Online Journal of Applied Knowledge Management, 3(1), 1-20. http://www.iiakm.org/ojakm/articles/2015/volume3_1/OJAKM_Volume3_1pp1-20.pdf

Balmisse, G., Meingan, D., & Passerini, K. (2007). Technology trends in knowledge management tools. International Journal of Knowledge Management (IJKM), 3(2), 118-131.

https://doi.org/10.4018/jkm.2007040106

McKellar, H. (2006, March 1). KMWorld 100 companies that matter in knowledge management. KMWorld magazine.

https://www.kmworld.com/Articles/Editorial/Features/KMWorld-100-Companies-ThatMatter-in-Knowledge-Management-15156.aspx?pageNum=2

Andrusenko, T. B., & Strizhak, A. E. (2007). Upravlenie uchebnym processom na osnove tezaurusov [Managing the learning process based on thesauri]. HR-Portal. https://hrportal.ru/article/upravlenie-znaniyami-v-uchebnom-processe-na-osnove-tezaurusov

Strizhak, A. E. (2014). Ontologicheskie aspekty transdisciplinarnoj integracii informacionnyh resursov [Ontological aspects of transdisciplinary integration of information resources]. Otkrytye informacionnye i komp'yuternye integrirovannye tekhnologii, 65, 211-223. http://nbuv.gov.ua/UJRN/vikt_2014_65_24

Nadutenko, M., Prykhodniuk, V., Shyrokov, V., & Stryzhak, O. (2022, March). OntologyDriven Lexicographic Systems. In Arai, K. (eds), Advances in Information and Communication - Proceedings of the 2022 Future of Information and Communication Conference (FICC) (pp. 204-215). Springer. https://doi.org/10.1007/978-3-030-98012-2_16

Engström, E., Petersen, K., Ali, N. B., & Bjarnason, E. (2017). SERP-test: a taxonomy for supporting industry–academia communication. Software Quality Journal, 25, 1269-1305. https://doi.org/10.1007/s11219-016-9322-x

Genesereth, M., & Chaudhri, V. K. (2020). Introduction to logic programming. Synthesis Lectures on Artificial Intelligence and Machine Learning, 14(1), 1-219.

Morais, H., Kádár, P., Faria, P., Vale, Z. A., & Khodr, H. M. (2010). Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming. Renewable Energy, 35(1), 151-156. https://doi.org/10.1016/j.renene.2009.02.031

Bredereck, R., Kaczmarczyk, A., Knop, D., & Niedermeier, R. (2019, June). High-multiplicity fair allocation: Lenstra empowered by n-fold integer programming. In Proceedings of the 2019 ACM Conference on Economics and Computation (pp. 505-523). Association for Computing Machinery. https://doi.org/10.1145/3328526.3329649

Khumaidi, A., Purwanto, Y. A., Sukoco, H., & Wijaya, S. H. (2022). Using fuzzy logic to increase accuracy in mango maturity index classification: Approach for developing a portable near-infrared spectroscopy device. Sensors, 22(24), article number 9704. https://doi.org/10.3390/s22249704

Abdallah, M., Iovene, V., Zanitti, G., & Wassermann, D. (2022). Meta-analysis of the functional neuroimaging literature with probabilistic logic programming. Scientific Reports,12(1), article number 19431. https://doi.org/10.1038/s41598-022-21801-4

Martello, S. (2010). Jenő Egerváry: from the origins of the Hungarian algorithm to satellite communication. Central European Journal of Operations Research, 18, 47-58.

https://doi.org/10.1007/s10100-009-0125-z

Locherer, M., Hausamann, D., & Schüttler, T. (2012, July). Practical science education in remote sensing at the DLR_School_Lab Oberpfaffenhofen. In 2012 IEEE International Geoscience and Remote Sensing Symposium (pp. 7389-7392). IEEE.

https://doi.org/10.1109/IGARSS.2012.6351922

Downloads

Published

2023-06-30

How to Cite

Zunimova, G., Soltan, G., Likhacheuski, D., & Issayeva, N. (2023). INFORMATION-LOGICAL MODEL OF EDUCATION OPTIMIZATION IN REMOTE MODE. Scientific Journal of Astana IT University, 14(14), 57–70. https://doi.org/10.37943/14ZEXL9869

Issue

Section

Information Technologies
betpas
pendik escort anadolu yakasi escort bostanci escort kadikoy escort kartal escort kurtkoy escort umraniye escort
maltepe escort ataşehir escort ataşehir escort ümraniye escort pendik escort kurtköy escort anadolu yakası escort üsküdar escort şerifali escort kartal escort gebze escort kadıköy escort bostancı escort göztepe escort kadıköy escort bostancı escort üsküdar escort ataşehir escort maltepe escort kurtköy escort anadolu yakası escort ataşehir escort beylikdüzü escort