FUZZY MODEL FOR TIME SERIES FORECASTING

Authors

DOI:

https://doi.org/10.37943/13EOTU7482

Keywords:

network traffic, time series, fuzzy logic, data analysis, forecasting

Abstract

In 2007, in Kazakhstan, there was a transition of TDM (Time Division Multiplexing) circuit-switched technologies to IP (Internet Protocol) packet technology, which created a modern infrastructure for the ICT (information communication technologies) sphere. The advent of the IoT (Internet of Things) concept has led to the growth of a functioning network at a faster rate. It is currently developing in the direction of a cognitive infocommunication network. Its evolutionary development is characterized by a change in the volume of transmitted information, types of its presentation, methods of transmission and storage, the number of sources and consumers, distribution among users, and requirements for timeliness and reliability (quality) [1]. Types of traffic and their structure are changing; therefore, data processing becomes more complicated. For this reason, the tasks of analyzing and predicting network traffic remain relevant. In this work, the prediction of the measured traffic on a real network is performed. The series under study shows the totality of packets transmitted over the backbone network for each second. Forecasting of a one-dimensional time series is carried out on the basis of fuzzy logic methods. This class of models is well suited for modeling nonlinear systems and time series forecasting. The use of fuzzy sets is based on the ability of fuzzy models to approximate functions, as well as on the readability of rules using linguistic variables. The results of the software algorithm of fuzzy inference models were obtained using the Python environment. Membership functions and predictive graphs were built, and their evaluation was carried out. The numerical values of the root mean square error (MSE) are calculated. As a result, it was found that the Cheng fuzzy prediction model has higher forecast accuracy than the Chen forecasting method.

Author Biographies

Zhanar Ibraeva, International Information Technology University

Master, Senior Lecturer, Department of Radioengineering, Electronics, and Telecommunications

Gulnara Bektemyssova, International Information Technology University

Candidate of Technical Sciences, Associate Professor of the Department of Computer Engineering

Abd Rahim Ahmad, College of Computer Science and IT (CCSIT), Universiti Tenaga Nasional (UNITEN), Malaysia

PhD, Associate Professor, Department of Systems and Networking

References

Serikov, T., Zhetpisbayeva, A., Mirzakulova, S., Zhetpisbayev, K., Ibrayeva, Z., Tolegenova, A., ... & Zhumazhanov, B. (2021). Application of the NARX neural network for predicting a one dimensional time series. Eastern-European Journal of Enterprise Technologies, 5(4), 113. https://doi.org/10.15587/1729-4061.2021.242442

Bektemyssova, G., Ahmad, A. R., Mirzakulova, S., & Ibraeva, Z. (2022). TIME SERIES FORECASTING BY THE ARIMA METHOD. Scientific Journal of Astana IT University, 14-23. https://doi.org/10.37943/HFCH4395

Al-Saati, N.H., Omran, I.I., Salman, A.A., Al-Saati, Z., & Hashim, K.S. (2021). Statistical modeling of monthly streamflow using time series and artificial neural network models: Hindiya Barrage as a case study. Water Practice and Technology, 16(2), 681-691. https://doi.org/10.2166/wpt.2021.012

Chen, S. M. (2002). Forecasting enrollments based on high-order fuzzy time series. Cybernetics and Systems, 33(1), 1-16. https://doi.org/10.1080/019697202753306479

Afanaseva, T.V., Namestnikov, A.M., Perfileva, I.G., & Romanov, A.A. (2014). Prognozirovanie vremennykh ryadov: nechetkie modeli [Forecasting time series: fuzzy models]. Ulyanovsk, UlGTU Publ. http://lib.ulstu.ru/venec/disk/2015/192.pdf

Yu, H. K. (2005). Weighted fuzzy time series models for TAIEX forecasting. Physica A: Statistical Mechanics and its Applications, 349(3-4), 609-624. https://doi.org/10.1016/j.physa.2004.11.006

Manenti, F., Rossi, F., Goryunov, A.G., Dyadik, V.F., Kozin, K.A., Nadezhdin, I.S., & Mikhalevich, S.S. (2015). Fuzzy adaptive control system of a non-stationary plant with closed-loop passive identifier. Resource-Efficient Technologies, 1(1), 10-18. https://doi.org/10.1016/j.reffit.2015.07.001

El-Bardini, M., & El-Nagar, A. M. (2014). Interval type-2 fuzzy PID controller for uncertain nonlinear inverted pendulum system. ISA transactions, 53(3), 732-743. https://doi.org/10.1016/j.isatra.2014.02.007

F. Manenti. (2011). Considerations on nonlinear model predictive control techniques. Comput. Chem. Eng, 35(11), 2491–2509. https://doi.org/10.1016/j.compchemeng.2011.04.009

Dalvandi, A., Gurusamy, M., & Chua, K. C. (2015). Power-efficient resource-guaranteed VM placement and routing for time-aware data center applications. Computer Networks, 88, 249-268. https://doi.org/10.1016/j.comnet.2015.06.017

Tu, R., & Wang, L. (2014). Real-time coseismic wave retrieving by integrated Kalman filter with observations of GPS, Glonass and strong-motion sensor. Advances in Space Research, 53(1), 130-137. https://doi.org/10.1016/j.asr.2013.10.01

Downloads

Published

2023-03-30

How to Cite

Ibraeva, Z., Bektemyssova, G., & Ahmad, A. R. (2023). FUZZY MODEL FOR TIME SERIES FORECASTING. Scientific Journal of Astana IT University, 13(13), 93–102. https://doi.org/10.37943/13EOTU7482

Issue

Section

Information Technologies
betpas
pendik escort anadolu yakasi escort bostanci escort kadikoy escort kartal escort kurtkoy escort umraniye escort
maltepe escort ataşehir escort ataşehir escort ümraniye escort pendik escort kurtköy escort anadolu yakası escort üsküdar escort şerifali escort kartal escort gebze escort kadıköy escort bostancı escort göztepe escort kadıköy escort bostancı escort üsküdar escort ataşehir escort maltepe escort kurtköy escort anadolu yakası escort ataşehir escort beylikdüzü escort