PERFORMANCE COMPARISON OF NEURAL NETWORKS IN GRAVITATIONAL LENSING DETECTION

Authors

DOI:

https://doi.org/10.37943/13PQRV7503

Keywords:

cosmology, gravitational field, Dark Matter, gravitational lensing, machine learning, image classification, fully connected neural networks, convolutional neural networks

Abstract

A gravitational lens is a distribution of matter, such as dark matter halos, galaxies, or quasars, between a distant light source and an observer that can bend the light from the source as the light travels toward the observer. Nowadays, it is slightly complicated to identify gravitational lenses without powerful computing devices and groups of scientists working together. In addition, future surveys will have orders of magnitude more data and more lenses to find. With up-to-date algorithms such as neural networks, detecting and classifying them for a single human being will be possible. The neural networks described in this paper make the first steps in that direction. The primary purpose of this work was to develop three different neural networks and determine which one could detect gravitational lensing more quickly and precisely. For training, testing, and validation we used a dataset of 2000 images. Half of these images were downloaded from Bologna Lens Factory, a database of simulated gravitational lenses based on galaxies lensed by galaxies (i.e., no clusters and no quasars). We simulated the second half of the images using Python-based code to simulate mock strong lensed galaxies. We used Python-based code to mock strong lensing with different source parameters. Next, we built three types of artificial neural networks and compared their efficiency. Firstly, we developed a fully convolutional neural network (CNN) and a fully connected neural network (FCNN). The third neural network was a combination of these two approaches. In this algorithm, the FCNN layer replaced the last layer of CNN. Next, we compared the learning rates of these algorithms and applied all neural networks to validation images. As a result of the study, we determined which of the developed neural networks fit better for searching gravitational lenses. 

Author Biographies

Dinara Kaibassova, Abylkas Saginov Karaganda Technical University

PhD, Acting Associate Professor of the Department of Information and Computing Systems

Asset Kabdiyev, Abylkas Saginov Karagandy Technical University

Master’s student of the Department of Information and Computing Systems

References

Sjur Refsdal. (1964). On the Possibility of Determining Hubble’s Parameter and the Masses of Galaxies from the Gravitational Lens Effect, Monthly Notices of the Royal Astronomical Society, 128(4), 307-310. https://doi.org/10.1093/mnras/128.4.307

Bisnovatyi-Kogan G.S., Tsupko O.Yu. (2015). Gravitational lensing in plasmic medium, Plasma Physics Reports, 41(7), 562-581.

Thomas E. Collett. (2015). The population of galaxy–galaxy strong lenses in forthcoming optical imaging surveys, Astrophysical Journal 811: 20. https://doi.org/10.1134/S1063780X15070016

Ellis Richard S. (2010). Gravitational lensing: a unique probe of dark matter and dark energy, Philosophical Transactions of the Royal Society, A.368, 970. https://doi.org/10.1098/rsta.2009.0209

Barnabè M., Czoske O., Koopmans L.V.E., Treu T. & Bolton A.S. (2011). Two-dimensional kinematics of SLACS lenses – III. Mass structure and dynamics of early-type lens galaxies beyond z ≃ 0.1, Monthly Notices of the Royal Astronomical Society, 415, 2215-2232. https://doi.org/10.1111/j.1365-2966.2011.18842.x

Barone-Nugent, R.L., et al. (2015). The impact of strong gravitational lensing on observed Lyman break galaxy numbers at 4≤ z≤ 8 in the GOODS and the XDF blank fields, Monthly Notices of the Royal Astronomical Society 450.2, 1224-1236. https://doi.org/10.1093/mnras/stv633

Collett, Thomas E. (2015). The population of galaxy–galaxy strong lenses in forthcoming optical imaging surveys, Astrophysical Journal 811.1, 20. https://doi.org/10.1088/0004-637X/811/1/20

Kuhlen, Michael, Charles R. Keeton, and Piero Madau. (2004). Gravitational lensing statistics in universes dominated by dark energy, Astrophysical Journal 601.1: 104. https://doi.org/10.1086/380303

Sonnenfeld, Alessandro, et al. (2013). The SL2S galaxy-scale lens sample. III. Lens models, surface photometry, and stellar masses for the final sample, Astrophysical Journal 777.2, 97. https://doi.org/10.1088/0004-637X/777/2/97

Laureijs, Rene, et al. (2011). Euclid definition study report, arXiv: 1110.3193: 8. https://doi.org/10.48550/arXiv.1110.3193

Braun, Robert & Bourke, T & Green, James & Keane, Evan & Wagg, Jeff. (2015). Advancing Astrophysics with the Square Kilometre Array, 174.

Metcalf, R.B., Meneghetti, M.A.S.S.I.M.O., Avestruz, C., Bellagamba, F., Bom, C.R., Bertin, E., ... & Vernardos, G. (2019). The strong gravitational lens finding challenge. Astronomy & Astrophysics, A119, 625. https://doi.org/10.1051/0004-6361/201832797

Petrillo, C.E., Tortora, Chatterjee, S., Vernardos, G., Koopmans, L.V.E., Verdoes Kleijn, G., ... & McFarland, J. (2017). Finding strong gravitational lenses in the kilo degree survey with convolutional neural networks. Monthly Notices of the Royal Astronomical Society, 472(1), 1129-1150. https://doi.org/10.1093/mnras/stx2052

de Jong, J.T., Verdoes Kleijn, G.A., Kuijken, K.H., & Valentijn, E.A. (2013). The kilo-degree survey. Experimental Astronomy, 35(1), 25-44. https://doi.org/10.1007/s10686-012-9306-1

Lanusse, F., Ma, Q., Li, N., Collett, T., Li, C., Ravanbakhsh, S., ... & Póczos, B. (2018). CMU DeepLens: deep learning for automatic image-based galaxy–galaxy strong lens finding. Monthly Notices of the Royal Astronomical Society, 473(3), 3895-3906. https://doi.org/10.1093/mnras/stx1665

Jacobs, C., Glazebrook, K., Collett, T., More, A., & McCarthy, C. (2017). Finding strong lenses in CFHTLS using convolutional neural networks. Monthly Notices of the Royal Astronomical Society, 471(1), 167-181. https://doi.org/10.1093/mnras/stx1492

Jaeger-Erben, M., Rückert-John, J., & Schäfer, M. (2017). Soziale Innovationen für nachhaltigen Konsum: Wissenschaftliche Perspektiven, Strategien der Förderung und gelebte Praxis. In Soziale Innovationen für nachhaltigen Konsum (pp. 9-21). Springer VS, Wiesbaden. https://doi.org/10.1007/978-3-658-16545-1_1

Hezaveh, Y.D., Levasseur, L. P., & Marshall, P. J. (2017). Fast automated analysis of strong gravitational lenses with convolutional neural networks. Nature, 548(7669), 555-557. https://doi.org/10.1038/nature23463

Levasseur, L.P., Hezaveh, Y.D., & Wechsler, R.H. (2017). Uncertainties in parameters estimated with neural networks: Application to strong gravitational lensing. The Astrophysical Journal Letters, 850(1), L7. https://doi.org/10.3847/2041-8213/aa9704

Davies, A., Serjeant, S., & Bromley, J.M. (2019). Using convolutional neural networks to identify gravitational lenses in astronomical images. Monthly Notices of the Royal Astronomical Society, 487(4), 5263-5271. https://doi.org/10.1093/mnras/stz1288

Wilde, J., Serjeant, S., Bromley, J. M., Dickinson, H., Koopmans, L.V., & Metcalf, R.B. (2022). Detecting gravitational lenses using machine learning: exploring interpretability and sensitivity to rare lensing configurations. Monthly Notices of the Royal Astronomical Society, 512(3), 3464-3479. https://doi.org/10.1093/mnras/stac562

Overzier, R., Lemson, G., Angulo, R.E., Bertin, E., Blaizot, J., Henriques, B.M.B., ... & White, S.D.M. (2013). The millennium run observatory: first light. Monthly Notices of the Royal Astronomical Society, 428(1), 778-803. https://doi.org/10.1093/mnras/sts076

Glenn, J., Bradford, C.M., Rosolowsky, E., Amini, R., Alatalo, K., Armus, L., ... & Zmuidzinas, J. (2021). Galaxy evolution probe. Journal of Astronomical Telescopes, Instruments, and Systems, 7(3), 034004- 034004. https://doi.org/10.1117/1.JATIS.7.3.034004

Petkova, M., Metcalf, R.B., & Giocoli, C. (2014). glamer–ii. multiple-plane gravitational lensing. Monthly Notices of the Royal Astronomical Society, 445(2), 1954-1966. https://doi.org/10.1093/mnras/stu1860

Downloads

Published

2023-03-30

How to Cite

Kabdiyev, A., & Kabdiyev, A. (2023). PERFORMANCE COMPARISON OF NEURAL NETWORKS IN GRAVITATIONAL LENSING DETECTION. Scientific Journal of Astana IT University, 13(13), 5–15. https://doi.org/10.37943/13PQRV7503

Issue

Section

Information Technologies
betpas
pendik escort anadolu yakasi escort bostanci escort kadikoy escort kartal escort kurtkoy escort umraniye escort
maltepe escort ataşehir escort ataşehir escort ümraniye escort pendik escort kurtköy escort anadolu yakası escort üsküdar escort şerifali escort kartal escort gebze escort kadıköy escort bostancı escort göztepe escort kadıköy escort bostancı escort üsküdar escort ataşehir escort maltepe escort kurtköy escort anadolu yakası escort ataşehir escort beylikdüzü escort