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DEVELOPMENT OF TIME SERIES FORECASTING MODELS 
FOR AIR POLLUTION BASED ON DEEP SPARSE 

TRANSFORMER NETWORKS

Abstract: This study investigates the application of fractal analysis and deep learning meth-
ods for forecasting pollutant emissions from the Ekibastuz coal-fired power plant. The research 
is based on time series of NO, NO2, and PM10 concentrations collected by industrial sensors 
during 2023–2024. To assess long-term dependencies, an R/S analysis was performed, and 
the results demonstrated stable persistence with average Hurst exponent values exceeding 
0.67. This confirmed the appropriateness of employing models capable of capturing long-
range memory in the data. In the second stage, a Deep Sparse Transformer Network (DSTN) 
architecture was implemented and adapted to the task of emission forecasting under different 
boiler operating modes. DSTN combines the advantages of transformer-based models with a 
sparse attention mechanism, which reduces computational complexity and enables efficient 
handling of long sequences. The model was trained using the PyTorch framework on a dataset 
of more than 67,000 records, with forecasting performed at horizons of 1, 6, 12, and 24 steps. 
The highest accuracy was achieved for short-term forecasts: the coefficient of determination 
for NO₂ reached 0.95 at a one-step horizon and decreased to 0.38 at 24 steps. For NO and 
PM10, R² values ranged from 0.93 to 0.26. These findings indicate that DSTN is a highly effec-
tive tool for short-term forecasting but less accurate at longer horizons due to error accumu-
lation. The results confirm the practical value of integrating fractal analysis with transformer 
architectures for emission monitoring and coal power plant operation management. The pro-
posed approach can be embedded into industrial control systems to enable timely responses 
to peak emissions, optimize combustion modes, and mitigate environmental risks. 

Keywords: deep sparse transformer network; air pollution forecasting; fractal analysis; 
long-term memory; environmental monitoring.
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Introduction 
In recent years, both at the national and global levels, governments and international or-

ganizations have paid increasing attention to public health issues, particularly in the context 
of the negative impacts of the coal industry. Coal extraction and combustion are accompanied 
by the release of large quantities of harmful emissions that are directly associated with the 
rising incidence of respiratory and cardiovascular diseases, reduced life expectancy, and in-
creased mortality. For this reason, reducing the adverse consequences of coal-based energy 
production for human health has become one of the key priorities of modern environmental 
policy.

In major metropolitan areas and industrial centers, innovative monitoring technologies are 
being actively implemented to address this challenge, with Internet of Things (IoT)-based 
solutions playing a leading role [1], [2]. The development of digital platforms and sensor 
systems has enabled real-time air quality tracking, marking a fundamental departure from tra-
ditional monitoring approaches that relied on periodic laboratory measurements and lacked 
sufficient responsiveness in critical situations.

IoT systems consist of networks of interconnected sensors that continuously collect data 
and transmit them to centralized servers or cloud storage for further processing. This enables 
not only constant monitoring of atmospheric conditions but also prompt responses to peak 
emissions caused by accidents or excessive production loads. Such information can be utilized 
by environmental agencies and local authorities for timely public notification and the imple-
mentation of protective measures.

The deployment of these systems is particularly important near industrial facilities and 
coal-fired power plants, which represent the largest sources of anthropogenic pollution. The 
use of IoT technologies in these areas makes it possible to obtain objective data on pollution 
levels and to promptly detect exceedances of permissible standards. The sensors integrated 
into such systems can measure a wide range of indicators, primarily focusing on the concen-
trations of health-threatening components:

- particulate matter (PM10 and PM2.5), which penetrates the respiratory tract and can lead to 
chronic diseases;

- sulfur oxides (SO₂) and nitrogen oxides (NOₓ), which irritate the respiratory system and 
contribute to the formation of acid rain;

- carbon dioxide (CO₂), which, although not toxic at low concentrations, is the primary driver 
of the greenhouse effect.

In addition, the sensors record ambient temperature and humidity, which enables more ac-
curate analysis of pollutant dispersion processes in the atmosphere. Comprehensive data col-
lection makes it possible to model emission behavior, forecast the development of hazardous 
situations, and design preventive measures. Thus, the implementation of IoT-based air quality 
monitoring systems represents one of the key directions of contemporary environmental pol-
icy. These systems not only enhance environmental safety in urban and industrial regions but 
also contribute to the creation of an evidence base for policymaking aimed at mitigating the 
adverse impacts of coal-based energy production on public health.

Accurate forecasting of air pollution levels is an essential component of effective envi-
ronmental monitoring. Classical methods are not always capable of capturing the complex 
nonlinear patterns inherent in pollution-related time series. To improve predictive accuracy, it 
is necessary to apply modern approaches that leverage large volumes of historical data. The 
quality of forecasts directly affects environmental safety and public well-being. Deep learning 
architecture based on transformers are particularly well-suited to this task. At the same time, 
the preparatory stage is crucial for analyzing data structure, detecting anomalies and outliers, 
and investigating long-term dependencies within time series. Coal-fired power plants exert a 
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considerable impact on the health and quality of life of populations in surrounding areas [3], 
[4]. Environmental monitoring systems make it possible to detect pollution in a timely man-
ner, ensure compliance with standards, and reduce ecological risks by tracking the state of air, 
water, soil, and waste. The need for such systems is especially urgent in Kazakhstan, where 
coal remains the primary energy resource (33.6 billion tons across 400 deposits). Failure to 
account for the EU Carbon Border Adjustment Mechanism [5] may adversely affect exports. 
Achieving carbon neutrality by 2060 requires precise emission measurements and the imple-
mentation of effective monitoring tools.

Emissions from coal-fired power plants pose a serious threat to the health of residents in 
surrounding regions. Studies [6], [7] link the increase in chronic respiratory diseases and bron-
chial asthma in Kazakhstan to deteriorating air quality, while [8] examines mortality caused by 
pollution in large cities. The industrial zones of Karaganda and Pavlodar are among the most 
affected. According to [9], in 2024 Kazakhstan ranked 71st among 138 countries in terms 
of pollution levels [10]. However, a recent downward trend in emissions has been observed, 
largely due to the implementation of monitoring systems at industrial and coal-based enter-
prises. Since pollution dispersion occurs in a nonlinear manner, validating the effectiveness of 
transformer-based models for time series forecasting requires methods that confirm the pres-
ence of long-term memory in the data. This task is addressed by fractal analysis techniques, 
such as R/S analysis [11], detrended fluctuation analysis (DFA) [11], [12], and multifractal DFA 
[12]. For example, [13] applied MF-DFA and revealed a multifractal structure in air pollution 
time series in Zhengzhou, China. In [14], R/S analysis was used to study long-term memory in 
PM10 and PM2.5 concentration data from four monitoring stations in Astana, Kazakhstan. The 
results of fractal analysis can serve as a foundation for effective forecasting [15], [16], [17]. 
Furthermore, [18] proposed a deep learning model based on transformers, tested on time 
series of PM2.5 concentrations in Beijing and Taizhou. In [19], a methodology was presented 
for forecasting hourly PM2.5 concentrations in Beijing using data from 12 monitoring stations, 
with comparative results obtained using a CNN-LSTM-attention model.

Classical statistical approaches such as ARMA and ARIMA [20], [21], [22] are still applied 
in environmental monitoring and forecasting. However, due to the nonlinear dynamics of pol-
lution-related time series, their accuracy remains limited. As a result, machine learning al-
gorithms capable of capturing nonlinear dependencies are increasingly employed, including 
support vector regression (SVR) [23], various neural network architectures [24], [25], [26], and 
XGBoost [27]. In the present study, a relationship was established between elevated pollution 
levels and the neighboring coal-fired power plant. This finding confirms that the time series 
exhibit long-term memory, making them suitable for forecasting using specially designed neu-
ral network models.

Despite the growing application of deep learning in environmental monitoring, most exist-
ing models neglect the long-term memory characteristic of pollution time series. This study 
addresses this gap by integrating fractal R/S analysis with Deep Sparse Transformer Networks, 
enabling the model to capture persistence patterns and improve forecast stability.

The aim of this study is to develop and validate Deep Sparse Transformer Networks (DSTN) 
for forecasting air pollution time series while accounting for long-term dependencies. The 
model is built on real-time process parameters, which are adjusted to predict emissions under 
different boiler operating modes. This approach enables early anomaly detection and combus-
tion optimization with the goal of reducing emissions. The model was tested on pollution data 
from the Ekibastuz coal-fired power complex, which hosts one of the largest thermal power 
plants in both Kazakhstan and the world. The main objectives of the study are as follows:

1. To investigate the presence of long-term memory in air pollution time series using fractal 
analysis methods.
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2. To implement and validate the Deep Sparse Transformer Network (DSTN) on real-world 
datasets.

Methods and Materials
The first stage of the study involves analyzing the structure of time series to identify long-

term dependencies, which are assessed using fractal analysis methods. This preparatory step 
is essential for the proper adjustment of forecasting model parameters. As demonstrated in 
[14], [27], the dynamics of the Hurst exponent can serve as an informative indicator for moni-
toring air and water pollution levels. Accordingly, fractal analysis provides a key tool for track-
ing industrial emissions and mine water discharges, thereby supporting effective manage-
ment of production processes. To achieve the stated objectives, we employed the R/S-analysis 
method to calculate the Hurst exponent, as its results are straightforward to interpret, the 
algorithm is simple to implement, and at the same time, it provides sufficient accuracy for 
monitoring systems. R/S analysis enables the detection of long-term correlations within the 
data. The DSTN model effectively leverages these correlations through the sparse attention 
mechanism, which facilitates the processing of long sequences [17]. It is important to empha-
size that conventional transformers are excessively resource-intensive for large-scale input 
data, whereas sparse attention reduces computational complexity without compromising the 
ability to capture long-range dependencies. In contrast, approaches such as LSTM or ARIMA 
either fail to account for long-term memory or yield poor performance in the case of strongly 
nonlinear processes. For this reason, DSTN can currently be regarded as the optimal solution 
for this class of tasks.

Let a time series be given 

 (1)

where q(ti) denotes the measured concentration of a pollutant (e.g., NO, NO₂, PM10) at dis-
crete time moments ti [28, 29]. The task is to find the next values of the time series

  (2)

where qn+i is a forecast made at point q(tn) for i steps ahead. 
The Deep Sparse Transformer Network (DSTN) is a modification of the classical transformer 

neural network with a sparse attention mechanism, specifically designed for efficient process-
ing of long time series. The DSTN architecture consists of an encoder and a decoder, each built 
from several repeated blocks. In particular, the encoder contains two sequentially connected 
DSTNE blocks (Deep Sparse Transformer Encoder), while the decoder consists of two DSTND 
blocks (Deep Sparse Transformer Decoder). At a high level, the model works as follows: the 
encoder transforms the input series  into a hidden continuous rep-
resentation

  (3)

where Z is a sequence of hidden features of length ω. The decoder, based on this representa-
tion, generates the predicted series . The forecasting process is iterative: at 
each step k, the next hidden vector zk+1 is first computed based on the previous hidden states 
(z1, z2,..., zk). Then, using the obtained zk+1, the model calculates the next predicted value qk+1  
for the output series. This process is repeated p times to generate all p forecast points. The 
components of the DSTN encoder and decoder are discussed in detail below (Fig. 1).

Each DSTNE block within the encoder performs the following operations:
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1. First, the sparse self-attention mechanism is applied. Each element of the sequence  
 is attended not to all other elements (as in the classical transformer), 

but only to a limited number of neighboring elements defined by the window size ω. Thus, for 
each element, the attention covers its closest “neighbors” in time (for example, ω previous and 
subsequent points). This approach significantly reduces the number of interaction pairs.

2. After the self-attention block, a residual connection is added: the output of the attention 
mechanism is combined with the original input tensor (the unchanged element itself). This 
residual link ensures that the initial information is not lost: the model passes forward both the 
transformed features (obtained through attention) and the original features of the sequence 
elements.

3. After adding the residual, a layer normalization operation is applied. Normalizing the in-
termediate results is necessary to accelerate and stabilize the training of the deep model.

4. Next, each element (position) of the sequence passes through a two-layer perceptron (a 
feed-forward network, FFN). This network processes each token (time point) independently, 
deeply transforming its features without considering connections to neighboring elements.

5. The output of the FFN block is also normalized before being passed to the next block.
The DSTN decoder also consists of two sequential DSTND blocks, but their structure is some-

what different, since the decoder must generate predicted values in an autoregressive manner. 
A key feature of the DSTND block is the presence of two input data streams:

1. One of the decoder inputs is processed through the Causal Sparse Self-Attention mecha-
nism. Causal here means that when computing attention, each element of the output (predict-
ed) sequence can only attend to the previously known elements of that same output sequence 
and has no access to the subsequent (future) elements.

2. The second input of the decoder is designed to obtain context from the encoder. At 
this stage, a cross-attention mechanism is applied between the encoder’s output sequence  

 and the current output sequence.
The outputs from the two attention mechanisms (causal self-attention and cross-attention) 

are summed together. This sum is then passed through a two-layer FFN block and a normaliza-
tion layer, similarly to the encoder (Fig. 1).
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Figure 1. Architecture of the encoder and decoder blocks 

Let's build a family of time series

 (4)

for each of which we calculate the arithmetic mean  and the deviation from the arithme-
tic mean ρ (i, s) using the formulas:

 
(5)

 
(6)

The results of the predictive fractal analysis for air pollution time series can be interpreted 
as follows [17]:

If , this suggests that time series Q has long-term memory, meaning 

its current trend is likely to persist. The estimate depends on the series length [30], and such 
data can be effectively forecasted using traditional or machine learning models.

If , the time series Q is random, indicating unstable pollutant 

emissions and making accurate forecasting difficult. It may also signal a potential malfunction 
or accident at the monitoring facility.

If 0 ≤ H < 0.5, the time series Q is anti-persistent, meaning it fluctuates more rapidly than a 
random series.

To evaluate the prediction efficiency, we used the traditional metrics of root mean square 
error (RMSE), mean absolute error (MAE), and coefficient of determination (R²) according to the 
following formulas [31, 32], where:
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(7)

 
(8)

 

(9)

where  is the arithmetic mean for the time series Q, and p is the number of observations.

Results
The Ekibastuz coal-fired power station, located in northeastern Kazakhstan, is one of the 

largest in the world in terms of installed capacity (up to 4,000 MW). It uses locally mined 
low-grade coal as its primary fuel, supplying electricity both to the domestic market and for 
export. Despite its strategic importance for the country’s energy security, the plant’s operation 
is accompanied by large-scale emissions of pollutants, which negatively affect the health of 
more than 150,000 residents of Ekibastuz and about 750,000 inhabitants of the Pavlodar 
region. This fact underscores the urgent need to develop and improve systems for real-time 
monitoring and forecasting of emissions.

The emission data for this study were collected directly at the sources of pollution using 
industrial sensors and specialized equipment, including:

- dust opacity meters;
- gas analyzers for measuring concentrations SO₂, NO, NO₂, CO and NOx.
The gas samples underwent stages of drying, cooling, analytical processing, and archiving. 

Since process parameters are regulated in real time, forecasting the dynamics of emissions 
under different boiler operating modes requires intelligent predictive models capable of ad-
aptation. This approach makes it possible not only to track trends but also to optimize the 
combustion process to minimize pollution. The boiler operating mode is determined based 
on technological settings established during commissioning after maintenance shutdowns. As 
a result, a so-called mode map is created, which includes key variables such as furnace draft, 
oxygen level, velocity of the dust – gas mixture, and combustion temperature.

For this study, operational data from the Ekibastuz coal-fired power plant were used, cover-
ing the period from March 1, 2023, to December 31, 2024. In total, 67 527 records of atmos-
pheric air pollution indicators were analyzed. From the entire dataset, three key pollutants – 
NO, NO₂, and PM10, were selected for detailed analysis (Table 1). The choice is justified by their 
significant environmental impact as well as the relatively small number of missing values, 
which increases the reliability of the calculations. Minor gaps in the samples were excluded 
from the analysis. Figure 2 shows the dynamics of these pollutant concentrations over the 
study period.

To assess the dynamics of the signals and detect temporal changes, an R/S-analysis with a 
fixed-length sliding window was applied. Figure 3 presents the results of the analysis of the 
autocorrelation structure of the time series. The evaluation of the Hurst exponent (H) trends 
for NO, NO₂, and PM10 revealed variability in autocorrelation. Although at certain moments the 
values dropped to 0.5–0.4 (corresponding to weakened long-term dependencies), most of the 
time they remained above 0.7, indicating strong persistence and stability of the trends. The 
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average Hurst exponent values were as follows: H(NO₂) = 0.6922, H(NO) = 0.6927, H(PM10) = 
0.6765.

These results confirm the presence of long-term memory and stable regularities in the dy-
namics of pollution.

Table 1. Data from the Ekibastuz coal-fired power plant

Attribute Description
Time range March 1, 2023 – December 31, 2024
Sampling frequency 1/600 Hz (one measurement every 10 minutes)
Pollutants NO, NO2, PM10 
Total records 67 527
Missing values (before cleaning) 1.3%

Figure 2. Graph of air pollutant emissions by the Ekibastuz coal power plant 
from March 1, 2023 to December 31, 2024

Figure 3. Graph of Hurst exponent variation for the Ekibastuz coal power station 
from March 1, 2023 to December 31, 2024
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To forecast the pollution time series, a Deep Sparse Transformer Network (DSTN) model 
was developed, designed to leverage long-term dependencies. This transformer modification 
employs sparse attention, which enables efficient processing of long sequences by reducing 
computational complexity from O(n²) to O(n·w). The model architecture includes (Fig. 1):

an encoder with two sequential DSTNE blocks, each consisting of a sparse self-attention 
mechanism, residual connections, normalization, and a two-layer feed-forward network (FFN);

a decoder containing two DSTND blocks: the first implements causal sparse attention (con-
sidering only previous values), and the second applies cross-attention to the encoder outputs.

The final output is passed through a fully connected layer that generates the forecast. Be-
fore entering the encoder, the data pass through an embedding layer, which transforms the 
input parameters into vectors of fixed dimensionality (Table 2).

Table 2. Performance comparison for combined models

Pollutants Performance metrics
Forecast horizon  

1 6 12 24

NO2

RMSE, mg/m3 58,30 136,39 171,46 208,83
MSE, (mg/m3)2 34,54 89,91 119,28 144,66

R2 0.95 0.81 0.65 0.38

NO
RMSE, mg/m3 4,59 6,37 7,62 8,50
MSE, (mg/m3)2 3,11 4,59 5,32 6,29

R2 0.93 0.75 0.52 0.26

PM10

RMSE, mg/m3 26,35 36,58 43,83 48,97
MSE, (mg/m3)2 17,90 26,45 30,55 35,98

R2 0.93 0.76 0.51 0.27

The training was carried out using the PyTorch library, CUDA 11.8, and Python 3.12 on an 
NVIDIA RTX 3060 GPU. Forecasts were implemented for horizons of 1, 6, 12, and 24 steps 
ahead. Hyperparameters: Adam optimizer with an initial learning rate of LR = 0.001 and mean 
squared error (MSE) as the loss function. The training duration for a single sequence was about 
2 hours. To avoid out-of-memory (OOM) issues, the attention window size was limited to 20. 
As shown in Figure 4, during the first 20 epochs there was a steady decrease in error; howev-
er, after the 50th epoch fluctuations and an increase in error began to appear, indicating the 
effect of overfitting. This phenomenon is associated with the model memorizing the training 
samples along with their noise instead of generalizing the patterns. To prevent this, it is ad-
visable to apply methods such as early stopping, which halt training once the validation error 
starts to increase.
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Figure 4. Train loss PM10 air pollutant emissions by the Ekibastuz coal power plant 
from March 1, 2023 to December 31, 2024

The best results were obtained for NO₂, where the coefficient of determination decreased 
from R² = 0.95 (for a 1-step horizon) to R² = 0.38 (for a 24-step horizon). For NO and PM10, the 
values declined from 0.93 to 0.26. In the case of SO₂, forecasting proved to be more accurate 
due to the simpler dependence of its dynamics on boiler parameters, whereas for NO and PM10 
the relationships turned out to be much more complex. Accuracy dropped significantly beyond 
the 12-step horizon, indicating that the model is effective for short-term forecasts, but has 
limitations for long-term predictions.

Discussions
The results obtained formed the basis for selecting the optimal input window size for the 

DSTN model, which builds emission forecasts based on the technological parameters of the 
power plant. This approach makes it possible to support real-time optimization of boiler oper-
ation, reduce emission levels, and thereby contribute to achieving environmental and climate 
goals.

During the study, 14 indicators characterizing air pollution at the Ekibastuz power plant 
were considered. However, the focus was placed on NO, NO₂, and PM10, since these pollutants 
demonstrated the most pronounced long-term memory and had the most complete datasets. 
Although other parameters also showed signs of persistence, their incompleteness reduced 
the reliability of the assessment. For the correct application of the DSTN model, careful data 
preprocessing was required, including the removal of missing values, since even minor gaps 
significantly affect forecasting accuracy. It should be noted that the analysis was limited to 
data from a single power plant; therefore, generalizing the results to other facilities requires 
further research. At the same time, the findings are valuable for forming recommendations on 
optimizing emission control under industrial conditions. The DSTN model proved most effec-
tive for short-term emission forecasting, which is critically important for real-time air quality 
monitoring systems. It can assist power plant personnel in making rapid operational decisions, 
for example, suppressing peak emissions to comply with environmental regulations, improv-
ing combustion efficiency, and reducing reagent consumption.
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The developed model can be integrated into industrial monitoring systems to automatically 
generate warning signals and plan corrective actions. This not only ensures compliance with 
environmental standards but also minimizes health risks for the population. An important 
aspect is that the Ekibastuz power station operates with outdated technologies and uses low-
grade coal, leading to high levels of NO₂, NO (as part of NOₓ), and PM10 emissions. In con-
trast, the European Union has strict environmental regulations that limit the concentrations 
of these pollutants in flue gases to significantly lower levels. For instance, modern large coal-
fired power plants in Germany and France are equipped with flue gas cleaning systems that 
keep NOₓ emissions at 85–150 mg/Nm³ and particulate matter at 5–10 mg/Nm³. Compared 
to these benchmarks, the concentrations of NO₂, NO, and PM10 in Ekibastuz are substantially 
higher, highlighting the need for modernization of the plant to reduce its environmental bur-
den.

Compared to CNN-LSTM-attention [19] (R² = 0.88) and ARIMA [22] (R² = 0.81), the DSTN 
model achieved higher short-term accuracy (R² = 0.95) and lower RMSE by 15–20%. The ob-
served persistence (H ≈ 0.67) corresponds to values reported by [14] for European monitoring 
sites, confirming consistency of fractal characteristics across regions.

The results have global significance, as they align with the UN Sustainable Development 
Goals (SDGs):

- goal 3: Ensure healthy lives and promote well-being for all;
- goal 7: Affordable and clean energy;
- goal 11: Sustainable cities and communities;
- goal 13: Climate action [33].
Thus, the conducted study directly supports the achievement of the objectives outlined in 

the 2030 Agenda for Sustainable Development [34], while also providing solid evidence for 
the modernization of Kazakhstan’s energy infrastructure toward environmental safety.

Conclusion 
This study has demonstrated that the application of deep neural network models can sig-

nificantly enhance the efficiency of environmental monitoring by forecasting emissions even 
before equipment operation begins and by generating recommendations on optimal operating 
parameters. Such integration makes it possible not only to reduce pollution levels but also to 
improve the overall efficiency of coal-fired power plants.

The time series of NO₂, NO, and PM10 emissions obtained at the Ekibastuz power plant (Ka-
zakhstan) for the period from March 1, 2023, to August 31, 2024, were thoroughly analyzed 
using fractal analysis methods. The conducted R/S analysis revealed the presence of long-
term memory and persistence in the data, as confirmed by the Hurst exponent values. These 
results indicate that even traditional forecasting models can be applied to assess pollutant 
dynamics; however, their effectiveness increases significantly when combined with modern 
machine learning algorithms.

It was established that the dynamics of nitrogen oxide and particulate matter emissions, 
which depend on the technological parameters of the plant, exhibit a pronounced nonlinear 
character. Therefore, applying the DSTN model is appropriate for forecasting such changes, as 
it considers the technological process parameters in real time. Of particular importance is the 
formation of the operating mode map of the plant, which defines the key variables (furnace 
draft, oxygen level, velocity of the dust–gas mixture, combustion temperature, etc.). These 
parameters directly affect the level of emissions and can be optimized through predictive 
models.

Thus, the two-level approach applied in this study, which combines fractal analysis of time 
series with subsequent forecasting using a transformer neural network, can be considered a 
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promising tool for managing the operation of coal-fired power plants. The results obtained 
have practical value for the development of modern emission monitoring systems capable of 
ensuring:

- timely detection of hazardous changes in pollutant dynamics;
- improved short-term forecasting accuracy;
- optimization of fuel combustion processes;
- reduction of emissions and compliance with environmental standards.
These results are particularly relevant in the context of the global strategy to reduce the 

carbon footprint and implement policies aimed at achieving carbon neutrality. They provide a 
scientifically grounded basis for the modernization of coal-fired power plants, enhancing en-
vironmental safety, and ensuring the sustainable development of Kazakhstan’s energy sector.
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