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IMPACT OF LOSS FUNCTION ON SYNTHETIC BREAST ULTRASOUND IMAGE 

GENERATION 
 

Abstract: The BUSI (Breast Ultrasound Images) dataset is small and imbalanced, which 

limits the effective training of deep learning diagnostic models. Generative Adversarial Networks 

(GANs) offer a promising and increasingly popular solution for synthesizing realistic medical 

images to augment scarce training data and improve overall model generalization. This study 

investigates the impact of loss function selection in our previously published Deep Generative 

Adversarial Network with Wasserstein Gradient Penalty and Transfer Learning (DGAN-WP-TL). 

Two configurations were evaluated: one trained using Wasserstein GAN with Gradient Penalty 

(WGAN-GP) and another trained using Binary Cross-Entropy (BCE) loss. The experiments were 

conducted on the BUSI dataset with perceptual loss weights λ = 0.5, 3.0, 5.0, 7.0, and 10.0. Model 

performance was comprehensively assessed using Fréchet Inception Distance (FID), Kernel 

Inception Distance (KID), Learned Perceptual Image Patch Similarity (LPIPS), and Multi-Scale 

Structural Similarity Index (MS-SSIM). Results demonstrate that WGAN-GP consistently 

outperformed BCE across all λ values, generating images with higher fidelity, improved realism, 

and greater visual diversity. The superiority was most pronounced for λ = 3.0 and λ = 5.0, where 

WGAN-GP achieved the lowest KID and FID and the most balanced diversity–fidelity trade-off. 

The best-performing DGAN-WP-TL configuration (WGAN-GP, λ = 5.0) achieved KID = 0.14, 

FID = 179.42, LPIPS (fake–fake) = 0.49, and MS-SSIM (fake–fake) = 0.18. These results highlight 

the crucial role of loss function design in medical image synthesis. Overall, the study confirms that 

WGAN-GP provides superior image realism and variability, making it the preferred choice for 

high-quality, clinically relevant synthetic data generation, while BCE remains a lightweight and 

practical alternative for constrained computational environments. 

Keywords: BUSI dataset; DGAN-WP-TL; WGAN-GP; BCE loss; synthetic medical 

images; loss function analysis 

 

Introduction  

Breast cancer is one of the world's most prevalent cancers and the leading cause of death 

in females [1], [2]. Screening for breast cancer with ultrasound imaging is established because the 

modality is safe, inexpensive, and universally available, particularly in healthcare-impoverished 

communities [2]. Despite the clinically useful breast ultrasound data being available, the data are 

often sparse and unevenly distributed, with the malignant cases underrepresented. The imbalance 

in this type of data negatively affects the training of deep networks, which require large and varied 

datasets to be effective in terms of diagnostics [3]. 

Generative Adversarial Networks (GANs), first introduced by Goodfellow et al. [4], have 

established remarkable promise in the transcending of data scarcity via the creation of realistic 

synthetic images. GANs in medical imaging applications have been implemented in diverse 

modalities, including in magnetic resonance imaging (MRI) [5], computed tomography (CT) [6], 

histopathology [7], and ultrasound [8]. The synthetic data produced via GANs could be employed 

mailto:marya.rys1@mail.ru
https://orcid.org/0000-0001-5055-4149
mailto:solga0603@mail.ru
https://orcid.org/0000-0002-8681-4552


 

in mitigating the problem of class imbalance, augmenting the amount of training sets, and 

improving the generalizability of machine learning systems in medical applications [9]. 

The working of GANs is quite dependent on the choice of the loss function. The Binary 

Cross-Entropy (BCE) loss is employed in standard GANS, which evaluates the data distribution 

divergence of the synthesized and real data. Although widely used, the BCE loss is found to suffer 

from vanishing gradients and instability during training, often resulting in mode collapse as well 

as low diversity. The Wasserstein GAN (WGAN) with the application of the gradient penalty 

(WGAN-GP) was therefore introduced, claiming more stable optimization along with better-

quality samples [10]. Existing medical images research holds the view that techniques based on 

WGAN are capable of yielding more anatomically consistent images, along with better capture of 

minority pathological classes. 

Under breast ultrasound imaging, applications of the generative models were classification 

[11], [12], segmentation [13], [14], and image-to-image translation tasks [15]. Although the 

methodologies report progress, the experiments in most cases relied on architectural design or 

supervised scenarios, with limited efforts devoted to the role of loss functions in the quality of 

synthesized images. Especially, no systematic comparison in the breast ultrasound synthesis 

scenario is presented among the widely used BCE and WGAN-GP, despite their popularity. 

The gap motivates the present study. The objective is the study of the influence of the 

selection of the loss function on the quality and the diversity of the synthesized breast ultrasound 

images. Of particular interest is the comparison of the behavior of the DGAN-WP-TL [16] when 

initialized from the training data with the BCE loss and the WGAN-GP. The experiments are 

conducted on the BUSI dataset across a range of λ values (0.5, 3.0, 5.0, 7.0, 10.0), with evaluation 

using widely accepted metrics, including Fréchet Inception Distance (FID), Kernel Inception 

Distance (KID), Learned Perceptual Image Patch Similarity (LPIPS), Multi-Scale Structural 

Similarity Index (MS-SSIM) and Sliced Wasserstein Distance (SWD) with PCA and UMAP. 

Overall, the principal contributions of this paper are threefold: 

- We provide the first systematic comparison of BCE and WGAN-GP loss functions during 

the synthesis of breast ultrasound. 

- We analyze the λ scaling sensitivity of the generative ability under multiple evaluation 

metrics. 

- We find that WGAN-GP is always more diverse and faithful, while the training of the 

BCE is unstable but comparable in some settings. 

By detailing the function of loss function design, this work is beneficial in optimizing 

breast ultrasound imaging synthetic data generation pipelines as well as more broadly optimizing 

medical image analysis data augmentation techniques. 

 

Methods and Materials 

Data Materials 

In this study, we focused exclusively on the Breast Ultrasound Images (BUSI) dataset [17]. 

The dataset consists of grayscale ultrasound scans collected from female patients in a clinical 

setting, with expert annotations provided by radiologists. Each image is categorized into one of 

two classes: benign or malignant. 

The dataset contains 437 benign and 210 malignant tumor images. Lesions vary in size, 

shape, and background complexity, reflecting realistic diagnostic challenges. Importantly, the 

malignant class is significantly underrepresented, which is a common limitation in breast cancer 

imaging datasets. Such underrepresentation usually makes supervised learning-based algorithms 

biased against majority classes and insensitive in the detection of malignant tumors. 

Methodology 

The paper compares the impact of loss function selection in the context of GAN-based 

breast ultrasound image synthesis. We employ an architecture of DGAN-WP-TL proposed in [16], 

which consists of an ImageNet-pretrained, frozen VGG-19 backbone as the perceptual feature 



 

extractor [16, 18, 19]. Two architectures are compared with one another: one is trained using 

Binary Cross-Entropy (BCE) loss, while the other is trained using Wasserstein GAN with Gradient 

Penalty (WGAN-GP). Both of the setups are compared using multiple perceptual loss weights (λ 

= 0.5, 3.0, 5.0, 7.0, 10.0) in order to analyze their impact on the perceived image's fidelity, 

diversity, and structure consistency. 

Generator Architecture 

The generator is designed so that the 100-dimensional latent noise vector, sampled from 

the standard Gaussian distribution, is converted into a synthetic breast ultrasound image of size 

512×512 pixels. The network is founded on the progressive upsampling framework in which the 

spatial resolution is expanded step-wise through the sequence of transposed convolution layers. 

 The architecture begins with a single dense projection layer that restructures the input into 

an 8×8×512 feature map, providing the initial low-resolution representation. Next are five 

upsampling blocks that consist of transposed convolution (4×4 kernel size, stride 2, same padding), 

batch normalization, and LeakyReLU activation. The feature maps across the layers are upscaled 

sequentially into 16×16, 32×32, 64×64, 128×128, 256×256, and then finally back to 512×512. 

 The final layer outputs the transposed convolution, which changes the high-level feature 

representation into a one-channel grayscale image. The hyperbolic tangent (tanh) activation is used 

in order to scale the output values so the generated images end up in the correct domain for 

ultrasound data. 

Discriminator and Perceptual Backbone 

The discriminator is trained to recognize the realism of synthesized breast ultrasound 

images with the added advantage of perceptual supervision from a pretrained network. The input 

to the discriminator is the grayscale image of size 512×512, repeated across three channels so that 

it aligns with the ImageNet-pretrained VGG19 backbone. The VGG19 network is shortened at the 

block2_pool step so that mid-level semantic and textural characteristics, which are informative 

enough for the analysis of ultrasound images, are retained.  

Simultaneously, the original input is processed in a custom convolutional pathway. The 

pathway is composed of multiple convolutional layers with increasingly deeper filters (128–512), 

separated with LeakyReLU activation in order to maintain non-linear representations of features. 

Two residual blocks are included to refine the learning structure and mitigate vanishing gradients. 

The two 3×3 convolutions in each residual block with skip connection are followed by LeakyReLU 

activation, allowing the network to learn both low-level texture information and high-order 

dependencies. 

The features extracted from the frozen VGG19 branch are flattened and combined with the 

output of the custom pathway. Such a combination allows the discriminator to combine domain-

agnostic perceptual embeddings with domain-related texture information. The combined features 

pass into the dense output layer, which outputs one scalar score that measures the input image's 

probability as real or fake. 

Training Protocol 

The models were trained for 500 epochs using the Adam optimizer with a learning rate of 

1 × 10⁻⁵, β₁ = 0.5, and a decay factor of 0.995 per epoch (minimum learning rate set to 1 × 10⁻⁷). 

The generator was updated once for every five discriminator updates (n_critic = 5), following 

standard practice in adversarial training. The batch size was set to two due to GPU RAM 

constraints. 

Two training configurations were compared that differed only in the adversarial loss 

function. The discriminator was optimized with the Wasserstein loss with gradient penalty 

(WGAN-GP) in the first condition. For the purpose of the study of the effect of the regularization 

strength, the individual models were trained with the values of the coefficients of the gradient 

penalties λ as 0.5, 3.0, 5.0, 7.0, and 10.0. The discriminator was trained with the Binary Cross-

Entropy (BCE) loss in the second configuration. The values of λ in this scenario were employed 



 

only as the weights within the perceptual loss term because no gradient penalty was used in the 

training with BCE. 

All experiments were conducted on a single NVIDIA GeForce RTX 3060 GPU with 12 

GB of VRAM. The experiments were implemented in TensorFlow 2.11 with Python 3.8, using 

ImageNet-pretrained VGG19 weights as a fixed perceptual feature extractor. 

 

Evaluation Metrics 

To comprehensively evaluate the quality and diversity of the generated breast ultrasound 

images, we employed a set of complementary metrics. These measures capture both fidelity to real 

data and intra-class variability within synthetic samples, which are critical when generating 

underrepresented malignant cases in the BUSI dataset. 

Fréchet Inception Distance (FID). FID quantifies the similarity between the distributions 

of real and generated images in a deep feature space. It is computed from the mean (μ) and 

covariance (Σ) of feature embeddings [20], as shown in Eq. (1): 

 

𝐹𝐼𝐷 =  ‖𝜇𝑟 − 𝜇𝑔‖
2

2
+ 𝑇𝑟 (∑𝑟 + ∑𝑔 − 2(∑𝑟∑𝑔)

1/2
)       (1) 

 

where 𝜇𝑟 , 𝜇𝑔 are the means and ∑𝑟 , ∑𝑔  are the covariances of real and generated features. 

𝑇𝑟 denotes the trace of a matrix, i.e., the sum of its diagonal elements. In the FID formula, the 

trace operation reduces the covariance difference term to a scalar, making the overall distance 

computable as a single number. 

Lower FID values indicate closer alignment to real data and improved fidelity. 

Kernel Inception Distance (KID). KID measures the squared Maximum Mean Discrepancy 

(MMD) between real and generated features using a polynomial kernel [21], as defined in Eq. (2): 

 

𝐾𝐼𝐷(𝑥, 𝑦) =  𝑀𝑀𝐷2(𝜑(𝑥), 𝜑(𝑦))           (2) 

 

The expanded MMD² definition is provided in Eq. (3): 

 

𝑀𝑀𝐷2(𝑋, 𝑌) =  
1

𝑚(𝑚−1)
∑ 𝑘(𝑥𝑖, 𝑥𝑗) +𝑖≠𝑗

1

𝑛(𝑛−1)
∑ 𝑘(𝑦𝑖 , 𝑦𝑗) −

2

𝑚𝑛
∑ ∑ 𝑘(𝑥𝑖, 𝑥𝑦)𝑛
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𝑚
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where 𝑘(𝑥𝑖, 𝑥𝑗) is a polynomial kernel and 𝜑(𝑥), 𝜑(𝑦)are feature embeddings of real and 

generated images. 

Lower KID values indicate closer alignment with real data. Unlike FID, KID provides an 

unbiased estimator and is particularly reliable in small datasets such as BUSI. 

Learned Perceptual Image Patch Similarity (LPIPS). LPIPS captures perceptual similarity 

by comparing distances between image patches in a pretrained feature space. Two modes of 

evaluation were applied [22]: 

- Real–fake LPIPS: measures fidelity using perceptual similarity metric from real and 

synthesized samples. Lower values indicate better perceptual similarity. 

- Fake–fake LPIPS: measures diversity by assessing variability among generated samples. 

Higher scores indicate greater intra-class variability and reduced risk of mode collapse. 

The metric is formally defined in Eq. (4): 

 

𝐿𝑃𝐼𝑃𝑆(𝑥, 𝑦) =  ∑
1

𝐻𝑙𝑊𝑙
∑ ‖𝓌𝑙 ⊙ (𝑓𝑙(𝑥) − 𝑓𝑙(𝑦))‖2

ℎ,𝓌𝑙     (4) 

 

where 𝑓𝑙(𝑥)) are deep features at layer 𝑙, 𝓌𝑙 are learned weights, and 𝐻𝑙𝑊𝑙  are spatial 

dimensions. 



 

Multi-Scale Structural Similarity Index (MS-SSIM). MS-SSIM evaluates structural 

similarity across multiple spatial resolutions by jointly considering luminance, contrast, and 

structure terms. Similar to LPIPS, two evaluation modes were applied [23]: 

- Real–fake MS-SSIM: assesses structural fidelity between real and generated samples. 

Lower values suggest reduced structural consistency, while higher values indicate stronger 

alignment. 

- Fake–fake MS-SSIM: evaluates structural diversity among generated images. Lower 

values reflect higher diversity, whereas higher values suggest mode collapse. 

The metric is mathematically defined in Eq. (5): 

 

𝑀𝑆 − 𝑆𝑆𝐼𝑀(𝑥, 𝑦) = ∏ [𝑙𝑗(𝑥, 𝑦)]
𝛼𝑗

∙𝑀
𝑗=1 [𝑐𝑗(𝑥, 𝑦)]

𝛽𝑗
∙ [𝑠𝑗(𝑥, 𝑦)]

𝛾𝑗
       (5) 

 

where 𝑙𝑗(𝑥, 𝑦), 𝑐𝑗(𝑥, 𝑦), 𝑠𝑗(𝑥, 𝑦) are the luminance, contrast, and structure comparisons at 

scale 𝑗, while 𝛼𝑗, 𝛽𝑗, 𝛾𝑗 are their respective weights. 

Sliced Wasserstein Distance (SWD) with PCA and UMAP. As a supplement to the 

distributional and perceptual measures, we applied the Sliced Wasserstein Distance (SWD) in the 

spaces that were extracted using Principal Component Analysis (PCA) and Uniform Manifold 

Approximation and Projection (UMAP) [24]. 

- PCA-SWD evaluates alignment in the context of a linear feature space, where 

distributions are aligned along the principal components. Though efficient, the PCA 

can under-estimate structured, non-linear artifacts [25]. 

- UMAP-SWD provides a non-linear mapping that preserves both local neighborhoods 

and globally topological structures, with the end product being a more realistic 

representation of the underlying manifolds of the data. This makes UMAP-SWD a 

better generative aligner in medical imaging [26]. 

The SWD is computed as defined in Eq. (6):  

 

𝑆𝑊𝐷(𝑃, 𝑄) =  
1

𝐾
∑ 𝑊1(𝑃 ∙ 𝜃𝑘, 𝑄 ∙ 𝜃𝑘  )𝐾

𝑘=1      (6) 

 

where 𝑃, 𝑄 are real and generated distributions, 𝜃𝑘  are random projection directions, and 

𝑊1 is the 1-Wasserstein (Earth Mover’s) distance between the one-dimensional projected 

distributions. 

Lower SWD values indicate closer alignment between real and synthetic data distributions. 

All the metrics were computed only on the malignant component of the BUSI dataset in 

order to achieve consistency in the class distribution. Testing was performed separately on the 

WGAN-GP loss and the BCE loss learned models across different perceptual loss weights (λ = 

0.5, 3.0, 5.0, 7.0, 10.0). This setup enabled a detailed analysis of how the choice of adversarial loss 

function influences both the fidelity and diversity of synthetic breast ultrasound images. 

 

Results 

The role of the loss function during the synthesis of synthetic breast ultrasound images 

from the BUSI dataset is discussed in this paper. The discriminator and the generator in all 

experiments both employ the same structure with VGG19 as the invariant perceptual backbone. 

Two loss settings were compared: 

- WGAN-GP loss with the gradient penalty, well-known for stabilizing adversarial 

training. 

- BCE loss, the initial GAN formulation, that directly optimizes the discriminator 

classification objective. 

 The two networks shared the same hyperparameters, with λ ∈ {0.5, 3.0, 5.0, 7.0, 10.0} 

controlling the perceptual loss weight. The relatively small size of the dataset meant that KID is 



 

the primary measure of generation quality, with FID, LPIPS (real–fake and fake–fake), and MS-

SSIM (real–fake and fake–fake) as supplementary measures. 

Quantitative Results 

Given the relatively small dataset size, we emphasize KID as the primary metric, since it 

is an unbiased estimator and more reliable than FID in low-sample regimes. 

Table 1 and Table 2 present the comparative results between WGAN-GP loss and BCE 

loss across different λ values. The WGAN-GP yielded smaller KID and FID scores, which meant 

better convergence with the actual data distribution. Compared to this, the application of BCE loss 

produced more sharpened images with smaller LPIPS (real–fake), but also showed reduced 

diversity (higher MS-SSIM fake–fake), with tendencies towards mode collapse. 

The top-performing WGAN-GP model at λ = 5.0 had the best trade-off of fidelity and 

diversity with the smallest KID and similar perceptual scores. The top-scoring BCE-based model 

was at λ = 3.0, although with fake–fake scores reflecting lower variability in the synthesized 

samples. 

 

Table 1 – Evaluation Metrics for λ = 0.5, 3.0, 5.0, 7.0, 10.0 at 500 epochs of WGAN-GP loss 

λ KID ↓ FID↓ LPIPS 

real-fake↓ 

LPIPS 

fake-fake↑  

MS-SSIM 

real-fake↓  

MS-SSIM 

fake-fake↑  

0.5 0.24±0.02 251.57 0.54±0.06 0.44±0.06 0.19±0.11 0.17±0.13 

3.0 0.17±0.01 193.91 0.51±0.06 0.47±0.06 0.17±0.11 0.18±0.12 

5.0 0.14±0.01 179.42 0.51±0.05 0.49±0.06 0.18±0.12 0.18±0.13 

7.0 0.18±0.02 202.07 0.51±0.06 0.48±0.06 0.19±0.12 0.19±0.13 

10.0 0.17±0.01 198.64 0.53±0.06 0.50±0.07 0.19±0.12 0.19±0.15 

 

Table 2 – Evaluation Metrics for λ = 0.5, 3.0, 5.0, 7.0, 10.0 at 500 epochs of BCE loss 

λ KID ↓ FID↓ LPIPS 

real-fake↓ 

LPIPS 

fake-fake↑  

MS-SSIM 

real-fake↓  

MS-SSIM 

fake-fake↑  

0.5 0.25±0.01 243.68 0.51±0.05 0.39±0.05 0.18±0.11 0.25±0.20 

3.0 0.24±0.01 236.55 0.50±0.06 0.35±0.05 0.15±0.10 0.20±0.19 

5.0 0.27±0.02 255.94 0.51±0.05 0.40±0.06 0.15±0.09 0.22±0.20 

7.0 0.31±0.02 277.78 0.52±0.05 0.40±0.05 0.16±0.11 0.23±0.19 

10.0 0.32±0.02 277.05 0.51±0.06 0.38±0.05 0.15±0.10 0.20±0.19 

 

Fig. 1 offers an in-depth insight into the progression of KID and FID over the training 

iterations for both WGAN-GP and BCE loss setups. 

 Fig. 1(a) displays the KID trends, in which WGAN-GP consistently achieves smaller 

values within λ configurations, indicating more stable convergence towards the genuine 

information distribution. The BCE styles get better as time passes, but always remain bigger, 

particularly at λ = 0.5 as well as λ = 10.0. 

 Fig. 1(b) compares FID dynamics, with WGAN-GP again outperforming BCE in terms of 

quicker convergence and significantly lower values at 500 epochs. The gap between WGAN-GP 

and BCE is most significant in mid-to-later training (300–500 epochs), reflecting the regularization 

effect of the gradient penalty. 

Comparison with StyleGAN2 and StyleGAN3 Baseline 

To further validate the effectiveness of our proposed method, we compared DGAN-WP-

TL at λ = 5.0 and DGAN-BCE-TL at λ = 3.0 against state-of-the-art baselines StyleGAN2 and 

StyleGAN3 (Table 3) [16, 27, 28]. 

StyleGAN3 achieved the lowest KID (0.09) and FID (177.99), confirming its strength in 

distributional alignment. However, this performance came at the cost of reduced diversity. In 

particular, StyleGAN3 exhibited lower LPIPS fake–fake (0.46) and higher MS-SSIM fake–fake 

(0.23) compared to DGAN-WP-TL, indicating less variability among generated samples. By 



 

contrast, DGAN-WP-TL at λ = 5.0 maintained strong generative quality (KID = 0.14, FID = 

179.42) while outperforming StyleGAN3 in perceptual similarity and structural diversity (LPIPS 

fake–fake = 0.49, MS-SSIM fake–fake = 0.18). 

StyleGAN2, in turn, lagged behind all models across metrics, showing higher KID and FID 

along with extremely poor diversity (MS-SSIM fake–fake = 0.87). The DGAN-BCE-TL variant 

produced competitive LPIPS real–fake values (0.50), but its higher KID (0.24) and FID (236.55) 

confirmed weaker distributional alignment. 

Overall, while StyleGAN3 remains a powerful baseline in terms of distributional fidelity, 

DGAN-WP-TL at λ = 5.0 provides a superior balance between realism and diversity, yielding 

more structurally varied and perceptually convincing synthetic ultrasound images. 

 

 
Figure 1 – Evolution of KID and FID across training epochs for WGAN-GP and BCE losses at different λ values on the BUSI dataset 

 

 

Table 3 – Comparative evaluation of DGAN-WP-TL, DGAN-BCE-TL, StyleGAN2, and 

StyleGAN3 on the BUSI dataset 

Model KID ↓ FID↓ LPIPS 

real-fake↓ 

LPIPS 

fake-fake↑  

MS-SSIM 

real-fake↓  

MS-SSIM 

fake-fake↓ 

DGAN-WP-

TL at λ =5.0 
0.14±0.01 179.42 0.51±0.05 0.49±0.06 0.18±0.12 0.18±0.13 

DGAN-BCE-

TL at λ =3.0 

0.24±0.01 236.55 0.50±0.06 0.35±0.05 0.15±0.10 0.20±0.19 

StyleGAN2 0.42±0.01 383.4863 0.78±0.05 0.10±0.09 0.21±0.07 0.87±0.11 

StyleGAN3 0.09±0.01 177.99 0.51±0.07 0.46±0.08 0.20±0.12 0.23±0.14 

 

Qualitative Results 

To complement the quantitative analysis, we inspected visual realism, anatomical 

plausibility, and distributional alignment of the generated images. 

Real BUSI images are shown alongside samples from each model in Fig. 2. DGAN-WP-

TL (λ=5.0) produces images with realistic speckle patterns, lesion heterogeneity, and continuous 

tissue layers that closely resemble real scans. DGAN-BCE-TL (λ=3.0) often looks sharp but 

exhibits reduced variety across samples (repeated textures and lesion shapes). StyleGAN2 tends 

to generate over-smoothed images with weak tumor boundaries and limited anatomical detail. 

StyleGAN3 consistently introduces artifacts—horizontal banding/striping, haloing near borders, 

and locally distorted textures—visible across nearly all examples. These artifacts explain why 

StyleGAN3 can achieve strong distributional scores while still being perceptually less reliable for 

clinical use. 



 

 
Figure 2 - Real BUSI images compared to generated samples from DGAN-WP-TL (λ=5.0), DGAN-BCE-TL (λ=3.0), StyleGAN2, and 

StyleGAN3.  

 

We project real and synthetic images into a feature space and visualize with PCA and 

UMAP (Fig. 3). DGAN-WP-TL shows the closest overlap with real data (Fig. 3a–b), indicating 

good coverage of the target manifold. DGAN-BCE-TL forms a tighter, more compact cluster (Fig. 

3c–d), suggesting reduced diversity. StyleGAN2 clusters far from real data (Fig. 3e–f), reflecting 

poor alignment. StyleGAN3 partially overlaps but with an elongated, anisotropic spread (Fig. 3g–

h), consistent with the artifacts seen in Fig. 2. The Sliced Wasserstein Distance (SWD) printed on 

the plots supports this: UMAP-SWD is lowest for DGAN-WP-TL (≈1.09) vs. StyleGAN3 (≈1.32), 

indicating better alignment on a non-linear embedding of the data manifold. PCA-SWD slightly 

favors StyleGAN3 (≈3.30 vs. ≈5.58), but PCA’s linearity can under-penalize structured artifacts. 

The bar chart in Fig. 4 summarizes SWD across models for both PCA and UMAP. It 

confirms the embedding analysis: DGAN-WP-TL yields the best (lowest) UMAP-SWD among all 

models, with StyleGAN3 second, DGAN-BCE-TL next, and StyleGAN2 worst. Though at times 

favoring StyleGAN3, being distorted as a linear projection and often underestimating structured 

but non-linearly inseparable artifacts, PCA is defective. However, better reflecting the intrinsic 

manifold with preservation of local neighborhoods as well as large-scale topology, UMAP 

captures the manifolds more accurately. Thus, UMAP-SWD is the more reliable measure of the 

type's generative alignment in this scenario. Considering qualitative artifacts (Fig. 2) together with 

the non-linear embedding advantage (Fig. 3 and 4), DGAN-WP-TL (λ=5.0) offers the most 



 

credible trade-off—high perceptual realism and structural diversity without the systematic artifacts 

observed in StyleGAN3. 

. 

 
Figure 3 – PCA and UMAP visualizations of real and synthetic image distributions across models. (a) PCA – Real vs. DGAN-WP-TL 

(λ=5.0); (b) UMAP – Real vs. DGAN-WP-TL (λ=5.0); (c) PCA – Real vs. DGAN-BCE-TL (λ=3.0); (d) UMAP – Real vs. DGAN-BCE-TL 

(λ=3.0); (e) PCA – Real vs. StyleGAN2; (f) UMAP – Real vs. StyleGAN2; (g) PCA – Real vs. StyleGAN3; (h) UMAP – Real vs. StyleGAN3. 

 



 

 
Figure 4 – Bar plots of Sliced Wasserstein Distance (SWD) across models using PCA and UMAP embeddings. 

 

Discussion 

The impact of the choice of loss function on DGAN-WP-TL's generation of synthetic breast 

ultrasound images from the BUSI database were investigated, as described in the paper. 

Systematically comparing WGAN-GP and BCE loss functions and baselines against StyleGAN2 

and StyleGAN3, we offer a distributional alignment-perceptual realism-structural diversity trade-

off study. 

WGAN-GP loss, particularly for λ = 5.0, yields optimal fidelity and diversity tradeoff were 

observe. Whilst in certain instances, BCE loss produced images that looked sharper, higher 

resulting MS-SSIM fake–fake values demonstrated lower variability, in agreement with partial 

mode collapse. It then follows that BCE loss continues to be less suited for producing medical 

data, where diversity in lesion morphology is central to allowing for robust downstream diagnostic 

models. 

Comparisons to StyleGAN baselines indicate a significant gap exists between numerical 

metric measurements of alignment and perceptual plausibility. StyleGAN3 had the lowest FID and 

KID, in agreement with its superior modelling of global distributional stats. Qualitative assessment 

presented, however, persistent structured artifacts, e.g., banding and local distortions, making it 

clinically unreliable. DGAN-WP-TL, in contrast, though with slightly higher FID/KID, had more 

anatomically plausible images and higher diversity-sensitive scores (MS-SSIM and LPIPS). These 

again prove that distributional measures may not capture the perceptual and diagnostic sufficiency 

of computer-generated medical images. 

Embedding-based comparison, via PCA and UMAP, also supports this conclusion. While 

PCA-SWD tended to favour StyleGAN3 at times, linear PCA underrepresented structured 

artifacts. UMAP, which maintains non-linear manifolds and neighbourhood topology, on the other 

hand, disclosed DGAN-WP-TL as the closest to real BUSI data. Such a conclusion again 

highlights the importance of judging generative models not only via traditional scores but also via 

manifold-informed methods that are much better reflective of clinical plausibility. 

More broadly, the present contribution again highlights the key role of loss function 

formulation in obtaining a realism-diversity balance in medical image generation. Higher-order 

gradient-penalized adversarial losses such as WGAN-GP provide stable optimization and higher 

distributional realism compared to BCE, in particular in the small and imbalanced-dataset regime. 

Conversely, sole reliance on global distributional metrics (KID/FID) may overestimate a specific 

model's clinical utility, in favour of the use of perceptual and embedding-based assessments. 

 

 

 

 



 

Conclusion 

This work systematically examined how the choice of adversarial loss influences synthetic 

breast ultrasound image generation on the BUSI dataset. Using a fixed DGAN-WP-TL architecture 

with a VGG19 perceptual backbone, we compared WGAN-GP and BCE objectives across λ ∈ 

{0.5, 3.0, 5.0, 7.0, 10.0} and evaluated realism and diversity with KID, FID, LPIPS (real–

fake/fake–fake), MS-SSIM (real–fake/fake–fake), and manifold alignment (PCA/UMAP with 

SWD). 

Across settings, WGAN-GP at λ = 5.0 delivered the most favourable trade-off: low 

KID/FID, high perceptual fidelity, and more substantial diversity (higher LPIPS f–f, lower MS-

SSIM f–f) than BCE. Although StyleGAN3 achieved the highest KID/FID, qualitative studies and 

embedding analysis revealed continued structural artifacts and a comparably narrower spread, 

suggesting that distributional scores themselves may overestimate in-the-wild utility. BCE 

intermittently resulted in clear images but had lower variability and less stable training. Taken 

together, these findings show that WGAN-GP is the preferable objective for clinically credible 

BUSI synthesis, balancing fidelity with lesion-level diversity that is critical for downstream 

diagnostic robustness. 

Our results have two practical implications. Firstly, loss design provides a primary knob 

for training stability and class/lesion diversity preservation in small-scale imbalanced medical data 

sets where architectural adjustments are not sufficient. Secondly, we suggest a distributional 

metric-level assessment alongside diversity-auditory and manifold-sensitive analyses, rather than 

relying solely on global scores, to prevent models with salient artifacts from being 

disproportionately favoured. 

Limitations and future work. This study focused on a single dataset (BUSI), one perceptual 

backbone (VGG19), and offline metrics rather than reader studies. Future work will (i) validate on 

multi-center ultrasound cohorts and additional modalities, (ii) explore conditional and 

segmentation-guided synthesis to better control lesion attributes, (iii) quantify impact on 

downstream classifiers and detection models, and (iv) incorporate privacy-preserving training and 

clinical expert evaluation. These steps will further clarify how synthetic ultrasound can be safely 

and effectively integrated into real-world workflows. 
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