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Abstract: The BUSI (Breast Ultrasound Images) dataset is small and imbalanced, which
limits the effective training of deep learning diagnostic models. Generative Adversarial Networks
(GANSs) offer a promising and increasingly popular solution for synthesizing realistic medical
images to augment scarce training data and improve overall model generalization. This study
investigates the impact of loss function selection in our previously published Deep Generative
Adversarial Network with Wasserstein Gradient Penalty and Transfer Learning (DGAN-WP-TL).
Two configurations were evaluated: one trained using Wasserstein GAN with Gradient Penalty
(WGAN-GP) and another trained using Binary Cross-Entropy (BCE) loss. The experiments were
conducted on the BUSI dataset with perceptual loss weights A = 0.5, 3.0, 5.0, 7.0, and 10.0. Model
performance was comprehensively assessed using Fréchet Inception Distance (FID), Kernel
Inception Distance (KID), Learned Perceptual Image Patch Similarity (LPIPS), and Multi-Scale
Structural Similarity Index (MS-SSIM). Results demonstrate that WGAN-GP consistently
outperformed BCE across all A values, generating images with higher fidelity, improved realism,
and greater visual diversity. The superiority was most pronounced for A = 3.0 and A = 5.0, where
WGAN-GP achieved the lowest KID and FID and the most balanced diversity—fidelity trade-off.
The best-performing DGAN-WP-TL configuration (WGAN-GP, A = 5.0) achieved KID = 0.14,
FID =179.42, LPIPS (fake—fake) = 0.49, and MS-SSIM (fake—fake) = 0.18. These results highlight
the crucial role of loss function design in medical image synthesis. Overall, the study confirms that
WGAN-GP provides superior image realism and variability, making it the preferred choice for
high-quality, clinically relevant synthetic data generation, while BCE remains a lightweight and
practical alternative for constrained computational environments.

Keywords: BUSI dataset; DGAN-WP-TL; WGAN-GP; BCE loss; synthetic medical
images; loss function analysis

Introduction

Breast cancer is one of the world's most prevalent cancers and the leading cause of death
in females [1], [2]. Screening for breast cancer with ultrasound imaging is established because the
modality is safe, inexpensive, and universally available, particularly in healthcare-impoverished
communities [2]. Despite the clinically useful breast ultrasound data being available, the data are
often sparse and unevenly distributed, with the malignant cases underrepresented. The imbalance
in this type of data negatively affects the training of deep networks, which require large and varied
datasets to be effective in terms of diagnostics [3].

Generative Adversarial Networks (GANSs), first introduced by Goodfellow et al. [4], have
established remarkable promise in the transcending of data scarcity via the creation of realistic
synthetic images. GANs in medical imaging applications have been implemented in diverse
modalities, including in magnetic resonance imaging (MRI) [5], computed tomography (CT) [6],
histopathology [7], and ultrasound [8]. The synthetic data produced via GANs could be employed
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in mitigating the problem of class imbalance, augmenting the amount of training sets, and
improving the generalizability of machine learning systems in medical applications [9].

The working of GANSs is quite dependent on the choice of the loss function. The Binary
Cross-Entropy (BCE) loss is employed in standard GANS, which evaluates the data distribution
divergence of the synthesized and real data. Although widely used, the BCE loss is found to suffer
from vanishing gradients and instability during training, often resulting in mode collapse as well
as low diversity. The Wasserstein GAN (WGAN) with the application of the gradient penalty
(WGAN-GP) was therefore introduced, claiming more stable optimization along with better-
quality samples [10]. Existing medical images research holds the view that techniques based on
WGAN are capable of yielding more anatomically consistent images, along with better capture of
minority pathological classes.

Under breast ultrasound imaging, applications of the generative models were classification
[11], [12], segmentation [13], [14], and image-to-image translation tasks [15]. Although the
methodologies report progress, the experiments in most cases relied on architectural design or
supervised scenarios, with limited efforts devoted to the role of loss functions in the quality of
synthesized images. Especially, no systematic comparison in the breast ultrasound synthesis
scenario is presented among the widely used BCE and WGAN-GP, despite their popularity.

The gap motivates the present study. The objective is the study of the influence of the
selection of the loss function on the quality and the diversity of the synthesized breast ultrasound
images. Of particular interest is the comparison of the behavior of the DGAN-WP-TL [16] when
initialized from the training data with the BCE loss and the WGAN-GP. The experiments are
conducted on the BUSI dataset across a range of A values (0.5, 3.0, 5.0, 7.0, 10.0), with evaluation
using widely accepted metrics, including Fréchet Inception Distance (FID), Kernel Inception
Distance (KID), Learned Perceptual Image Patch Similarity (LPIPS), Multi-Scale Structural
Similarity Index (MS-SSIM) and Sliced Wasserstein Distance (SWD) with PCA and UMAP.

Overall, the principal contributions of this paper are threefold:

- We provide the first systematic comparison of BCE and WGAN-GP loss functions during
the synthesis of breast ultrasound.

- We analyze the A scaling sensitivity of the generative ability under multiple evaluation
metrics.

- We find that WGAN-GP is always more diverse and faithful, while the training of the
BCE is unstable but comparable in some settings.

By detailing the function of loss function design, this work is beneficial in optimizing
breast ultrasound imaging synthetic data generation pipelines as well as more broadly optimizing
medical image analysis data augmentation techniques.

Methods and Materials

Data Materials

In this study, we focused exclusively on the Breast Ultrasound Images (BUSI) dataset [17].
The dataset consists of grayscale ultrasound scans collected from female patients in a clinical
setting, with expert annotations provided by radiologists. Each image is categorized into one of
two classes: benign or malignant.

The dataset contains 437 benign and 210 malighant tumor images. Lesions vary in size,
shape, and background complexity, reflecting realistic diagnostic challenges. Importantly, the
malignant class is significantly underrepresented, which is a common limitation in breast cancer
imaging datasets. Such underrepresentation usually makes supervised learning-based algorithms
biased against majority classes and insensitive in the detection of malignant tumors.

Methodology

The paper compares the impact of loss function selection in the context of GAN-based
breast ultrasound image synthesis. We employ an architecture of DGAN-WP-TL proposed in [16],
which consists of an ImageNet-pretrained, frozen VGG-19 backbone as the perceptual feature



extractor [16, 18, 19]. Two architectures are compared with one another: one is trained using
Binary Cross-Entropy (BCE) loss, while the other is trained using Wasserstein GAN with Gradient
Penalty (WGAN-GP). Both of the setups are compared using multiple perceptual loss weights (A
= 0.5, 3.0, 5.0, 7.0, 10.0) in order to analyze their impact on the perceived image's fidelity,
diversity, and structure consistency.

Generator Architecture

The generator is designed so that the 100-dimensional latent noise vector, sampled from
the standard Gaussian distribution, is converted into a synthetic breast ultrasound image of size
512x512 pixels. The network is founded on the progressive upsampling framework in which the
spatial resolution is expanded step-wise through the sequence of transposed convolution layers.

The architecture begins with a single dense projection layer that restructures the input into
an 8x8x512 feature map, providing the initial low-resolution representation. Next are five
upsampling blocks that consist of transposed convolution (4x4 kernel size, stride 2, same padding),
batch normalization, and LeakyReLU activation. The feature maps across the layers are upscaled
sequentially into 16x16, 32x32, 64x64, 128x128, 256x256, and then finally back to 512x512.

The final layer outputs the transposed convolution, which changes the high-level feature
representation into a one-channel grayscale image. The hyperbolic tangent (tanh) activation is used
in order to scale the output values so the generated images end up in the correct domain for
ultrasound data.

Discriminator and Perceptual Backbone

The discriminator is trained to recognize the realism of synthesized breast ultrasound
images with the added advantage of perceptual supervision from a pretrained network. The input
to the discriminator is the grayscale image of size 512x512, repeated across three channels so that
it aligns with the ImageNet-pretrained VGG19 backbone. The VGG19 network is shortened at the
block2_pool step so that mid-level semantic and textural characteristics, which are informative
enough for the analysis of ultrasound images, are retained.

Simultaneously, the original input is processed in a custom convolutional pathway. The
pathway is composed of multiple convolutional layers with increasingly deeper filters (128-512),
separated with LeakyReL U activation in order to maintain non-linear representations of features.
Two residual blocks are included to refine the learning structure and mitigate vanishing gradients.
The two 3x3 convolutions in each residual block with skip connection are followed by LeakyRelLU
activation, allowing the network to learn both low-level texture information and high-order
dependencies.

The features extracted from the frozen VGG19 branch are flattened and combined with the
output of the custom pathway. Such a combination allows the discriminator to combine domain-
agnostic perceptual embeddings with domain-related texture information. The combined features
pass into the dense output layer, which outputs one scalar score that measures the input image's
probability as real or fake.

Training Protocol

The models were trained for 500 epochs using the Adam optimizer with a learning rate of
1 x 1073, B1 = 0.5, and a decay factor of 0.995 per epoch (minimum learning rate set to 1 x 107).
The generator was updated once for every five discriminator updates (n_critic = 5), following
standard practice in adversarial training. The batch size was set to two due to GPU RAM
constraints.

Two training configurations were compared that differed only in the adversarial loss
function. The discriminator was optimized with the Wasserstein loss with gradient penalty
(WGAN-GP) in the first condition. For the purpose of the study of the effect of the regularization
strength, the individual models were trained with the values of the coefficients of the gradient
penalties A as 0.5, 3.0, 5.0, 7.0, and 10.0. The discriminator was trained with the Binary Cross-
Entropy (BCE) loss in the second configuration. The values of A in this scenario were employed



only as the weights within the perceptual loss term because no gradient penalty was used in the
training with BCE.

All experiments were conducted on a single NVIDIA GeForce RTX 3060 GPU with 12
GB of VRAM. The experiments were implemented in TensorFlow 2.11 with Python 3.8, using
ImageNet-pretrained VGG19 weights as a fixed perceptual feature extractor.

Evaluation Metrics

To comprehensively evaluate the quality and diversity of the generated breast ultrasound
images, we employed a set of complementary metrics. These measures capture both fidelity to real
data and intra-class variability within synthetic samples, which are critical when generating
underrepresented malignant cases in the BUSI dataset.

Fréchet Inception Distance (FID). FID quantifies the similarity between the distributions
of real and generated images in a deep feature space. It is computed from the mean (n) and
covariance (X) of feature embeddings [20], as shown in Eq. (1):

FID = [l — g’ +Tr (50 + 59 — 2(5,:54) ") (1)

where .., ug are the means and ., 3., are the covariances of real and generated features.
Tr denotes the trace of a matrix, i.e., the sum of its diagonal elements. In the FID formula, the
trace operation reduces the covariance difference term to a scalar, making the overall distance
computable as a single number.

Lower FID values indicate closer alignment to real data and improved fidelity.

Kernel Inception Distance (KID). KID measures the squared Maximum Mean Discrepancy
(MMD) between real and generated features using a polynomial kernel [21], as defined in Eq. (2):

KID(x,y) = MMD?*(p(x), p(¥)) (2

The expanded MMD?2 definition is provided in Eq. (3):
2
MMDZ(X, Y) = ﬁziij k(xl-,x]-) +n(n;—1)2i¢j k(yi:yj) — % ?;1 2;-;1 k(xi,xy) (3)

where k(xl-,xj) is a polynomial kernel and ¢ (x), ¢(y)are feature embeddings of real and
generated images.

Lower KID values indicate closer alignment with real data. Unlike FID, KID provides an
unbiased estimator and is particularly reliable in small datasets such as BUSI.

Learned Perceptual Image Patch Similarity (LPIPS). LPIPS captures perceptual similarity
by comparing distances between image patches in a pretrained feature space. Two modes of
evaluation were applied [22]:

- Real-fake LPIPS: measures fidelity using perceptual similarity metric from real and
synthesized samples. Lower values indicate better perceptual similarity.

- Fake—fake LPIPS: measures diversity by assessing variability among generated samples.
Higher scores indicate greater intra-class variability and reduced risk of mode collapse.

The metric is formally defined in Eq. (4):

LPIPS(x,y) = Zlﬁzh,wllwl O (F'ex) = FLoII (4)

where f!(x)) are deep features at layer I, w, are learned weights, and H,W, are spatial
dimensions.



Multi-Scale Structural Similarity Index (MS-SSIM). MS-SSIM evaluates structural
similarity across multiple spatial resolutions by jointly considering luminance, contrast, and
structure terms. Similar to LPIPS, two evaluation modes were applied [23]:

- Real-fake MS-SSIM: assesses structural fidelity between real and generated samples.
Lower values suggest reduced structural consistency, while higher values indicate stronger
alignment.

- Fake—fake MS-SSIM: evaluates structural diversity among generated images. Lower
values reflect higher diversity, whereas higher values suggest mode collapse.

The metric is mathematically defined in Eq. (5):

MS = SS1MGe ) = T [ G ] e ] [5G ]” ®

where [;(x,y), ¢j(x,y), s;(x,y) are the luminance, contrast, and structure comparisons at
scale j, while a;, §;, y; are their respective weights.

Sliced Wasserstein Distance (SWD) with PCA and UMAP. As a supplement to the
distributional and perceptual measures, we applied the Sliced Wasserstein Distance (SWD) in the
spaces that were extracted using Principal Component Analysis (PCA) and Uniform Manifold
Approximation and Projection (UMAP) [24].

- PCA-SWD evaluates alignment in the context of a linear feature space, where

distributions are aligned along the principal components. Though efficient, the PCA
can under-estimate structured, non-linear artifacts [25].

- UMAP-SWD provides a non-linear mapping that preserves both local neighborhoods
and globally topological structures, with the end product being a more realistic
representation of the underlying manifolds of the data. This makes UMAP-SWD a
better generative aligner in medical imaging [26].

The SWD is computed as defined in Eq. (6):

SWD(P,Q) = - Zk-1 Wi(P - 6;,Q - 6;) (6)

where P, Q are real and generated distributions, 6, are random projection directions, and
W, is the 1-Wasserstein (Earth Mover’s) distance between the one-dimensional projected
distributions.

Lower SWD values indicate closer alignment between real and synthetic data distributions.

All the metrics were computed only on the malignant component of the BUSI dataset in
order to achieve consistency in the class distribution. Testing was performed separately on the
WGAN-GP loss and the BCE loss learned models across different perceptual loss weights (A =
0.5, 3.0,5.0, 7.0, 10.0). This setup enabled a detailed analysis of how the choice of adversarial loss
function influences both the fidelity and diversity of synthetic breast ultrasound images.

Results
The role of the loss function during the synthesis of synthetic breast ultrasound images
from the BUSI dataset is discussed in this paper. The discriminator and the generator in all
experiments both employ the same structure with VGG19 as the invariant perceptual backbone.
Two loss settings were compared:
- WGAN-GP loss with the gradient penalty, well-known for stabilizing adversarial
training.
- BCE loss, the initial GAN formulation, that directly optimizes the discriminator
classification objective.
The two networks shared the same hyperparameters, with A € {0.5, 3.0, 5.0, 7.0, 10.0}
controlling the perceptual loss weight. The relatively small size of the dataset meant that KID is



the primary measure of generation quality, with FID, LPIPS (real-fake and fake—fake), and MS-
SSIM (real-fake and fake—fake) as supplementary measures.

Quantitative Results

Given the relatively small dataset size, we emphasize KID as the primary metric, since it
is an unbiased estimator and more reliable than FID in low-sample regimes.

Table 1 and Table 2 present the comparative results between WGAN-GP loss and BCE
loss across different A values. The WGAN-GP yielded smaller KID and FID scores, which meant
better convergence with the actual data distribution. Compared to this, the application of BCE loss
produced more sharpened images with smaller LPIPS (real-fake), but also showed reduced
diversity (higher MS-SSIM fake—fake), with tendencies towards mode collapse.

The top-performing WGAN-GP model at A = 5.0 had the best trade-off of fidelity and
diversity with the smallest KID and similar perceptual scores. The top-scoring BCE-based model
was at A = 3.0, although with fake—fake scores reflecting lower variability in the synthesized
samples.

Table 1 — Evaluation Metrics for A = 0.5, 3.0, 5.0, 7.0, 10.0 at 500 epochs of WGAN-GP loss

A KID | FID| LPIPS LPIPS MS-SSIM  MS-SSIM

real-fake| fake-fake? real-fake| fake-fake?
0.5 0.24+0.02  251.57 0.54+0.06 0.44+0.06 0.19+0.11 0.17+0.13
3.0 0.17+0.01 193.91 0.51+0.06 0.47+0.06 0.17#0.11 0.18+0.12
5.0 0.14+0.01 179.42 0.51+0.05 0.49+0.06 0.18+0.12 0.18+0.13
7.0 0.18+0.02  202.07 0.51+0.06 0.48+0.06 0.19+0.12 0.19+0.13
10.0 0.17+0.01 198.64 0.53+0.06 0.50+0.07 0.19+0.12 0.19+0.15

Table 2 — Evaluation Metrics for A = 0.5, 3.0, 5.0, 7.0, 10.0 at 500 epochs of BCE loss

A KID | FID| LPIPS LPIPS MS-SSIM  MS-SSIM

real-fake| fake-faket real-fake| fake-fake?
0.5 0.25+0.01  243.68 0.51+0.05 0.39+0.05 0.18+0.11 0.25+0.20
3.0 0.24+0.01  236.55 0.50+0.06 0.35+0.05 0.15+0.10 0.20+0.19
5.0 0.27+0.02  255.94 0.51+0.05 0.40+0.06 0.15+0.09 0.22+0.20
7.0 0.31+0.02  277.78 0.52+0.05 0.40+0.05 0.16+0.11 0.23+0.19
10.0 0.32+0.02  277.05 0.51+0.06 0.38+0.05 0.15+0.10 0.20+0.19

Fig. 1 offers an in-depth insight into the progression of KID and FID over the training
iterations for both WGAN-GP and BCE loss setups.

Fig. 1(a) displays the KID trends, in which WGAN-GP consistently achieves smaller
values within A configurations, indicating more stable convergence towards the genuine
information distribution. The BCE styles get better as time passes, but always remain bigger,
particularly at A = 0.5 as well as L = 10.0.

Fig. 1(b) compares FID dynamics, with WGAN-GP again outperforming BCE in terms of
quicker convergence and significantly lower values at 500 epochs. The gap between WGAN-GP
and BCE is most significant in mid-to-later training (300-500 epochs), reflecting the regularization
effect of the gradient penalty.

Comparison with StyleGAN2 and StyleGAN3 Baseline

To further validate the effectiveness of our proposed method, we compared DGAN-WP-
TL at A = 5.0 and DGAN-BCE-TL at A = 3.0 against state-of-the-art baselines StyleGAN2 and
StyleGAN3 (Table 3) [16, 27, 28].

StyleGANS3 achieved the lowest KID (0.09) and FID (177.99), confirming its strength in
distributional alignment. However, this performance came at the cost of reduced diversity. In
particular, StyleGAN3 exhibited lower LPIPS fake—fake (0.46) and higher MS-SSIM fake—fake
(0.23) compared to DGAN-WP-TL, indicating less variability among generated samples. By



contrast, DGAN-WP-TL at A = 5.0 maintained strong generative quality (KID = 0.14, FID =
179.42) while outperforming StyleGANS3 in perceptual similarity and structural diversity (LPIPS
fake—fake = 0.49, MS-SSIM fake—fake = 0.18).

StyleGAN2, in turn, lagged behind all models across metrics, showing higher KID and FID
along with extremely poor diversity (MS-SSIM fake—fake = 0.87). The DGAN-BCE-TL variant
produced competitive LPIPS real-fake values (0.50), but its higher KID (0.24) and FID (236.55)
confirmed weaker distributional alignment.

Overall, while StyleGAN3 remains a powerful baseline in terms of distributional fidelity,
DGAN-WP-TL at A = 5.0 provides a superior balance between realism and diversity, yielding
more structurally varied and perceptually convincing synthetic ultrasound images.

a) KID Across for WGAN-GP and BCE Losses b) FID Across for WGAN-GP and BCE Losses
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Figure 1 — Evolution of KID and FID across training epochs for WGAN-GP and BCE losses at different A values on the BUSI dataset

Table 3 — Comparative evaluation of DGAN-WP-TL, DGAN-BCE-TL, StyleGANZ2, and
StyleGAN3 on the BUSI dataset
Model KID | FID| LPIPS LPIPS MS-SSIM  MS-SSIM
real-fake| fake-fake? real-fake| fake-fake|
DGAN-WP-  0.14+0.01 179.42 0.51+0.05 0.49+0.06 0.18+0.12 0.18+0.13
TLatA=5.0
DGAN-BCE- 0.24+0.01  236.55 0.50+0.06  0.35+0.05 0.15+0.10 0.20+0.19
TLatA=3.0
StyleGAN2  0.42+0.01  383.4863 0.78+0.05 0.10+0.09 0.21+0.07 0.87+0.11
StyleGAN3  0.09+0.01  177.99 0.51+0.07 0.46+0.08 0.20+0.12 0.23+0.14

Qualitative Results

To complement the quantitative analysis, we inspected visual realism, anatomical
plausibility, and distributional alignment of the generated images.

Real BUSI images are shown alongside samples from each model in Fig. 2. DGAN-WP-
TL (A=5.0) produces images with realistic speckle patterns, lesion heterogeneity, and continuous
tissue layers that closely resemble real scans. DGAN-BCE-TL (A=3.0) often looks sharp but
exhibits reduced variety across samples (repeated textures and lesion shapes). StyleGAN2 tends
to generate over-smoothed images with weak tumor boundaries and limited anatomical detail.
StyleGANS consistently introduces artifacts—horizontal banding/striping, haloing near borders,
and locally distorted textures—visible across nearly all examples. These artifacts explain why
StyleGAN3 can achieve strong distributional scores while still being perceptually less reliable for
clinical use.
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Figure 2 - Real BUSI images compared to generated samples from DGAN-WP-TL (A=5.0), DGAN-BCE-TL (A=3.0), StyleGAN2, and
StyleGANS3.

We project real and synthetic images into a feature space and visualize with PCA and
UMAP (Fig. 3). DGAN-WP-TL shows the closest overlap with real data (Fig. 3a-b), indicating
good coverage of the target manifold. DGAN-BCE-TL forms a tighter, more compact cluster (Fig.
3c—d), suggesting reduced diversity. StyleGAN2 clusters far from real data (Fig. 3e—f), reflecting
poor alignment. StyleGANS3 partially overlaps but with an elongated, anisotropic spread (Fig. 3g—
h), consistent with the artifacts seen in Fig. 2. The Sliced Wasserstein Distance (SWD) printed on
the plots supports this: UMAP-SWD is lowest for DGAN-WP-TL (=1.09) vs. StyleGAN3 (=1.32),
indicating better alignment on a non-linear embedding of the data manifold. PCA-SWD slightly
favors StyleGAN3 (=3.30 vs. =5.58), but PCA’s linearity can under-penalize structured artifacts.

The bar chart in Fig. 4 summarizes SWD across models for both PCA and UMAP. It
confirms the embedding analysis: DGAN-WP-TL yields the best (lowest) UMAP-SWD among all
models, with StyleGAN3 second, DGAN-BCE-TL next, and StyleGAN2 worst. Though at times
favoring StyleGANS3, being distorted as a linear projection and often underestimating structured
but non-linearly inseparable artifacts, PCA is defective. However, better reflecting the intrinsic
manifold with preservation of local neighborhoods as well as large-scale topology, UMAP
captures the manifolds more accurately. Thus, UMAP-SWD is the more reliable measure of the
type's generative alignment in this scenario. Considering qualitative artifacts (Fig. 2) together with
the non-linear embedding advantage (Fig. 3 and 4), DGAN-WP-TL (A=5.0) offers the most



credible trade-off—high perceptual realism and structural diversity without the systematic artifacts
observed in StyleGANS.
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Figure 3 - PCA and UMAP visualizations of real and synthetic image distributions across models. (a) PCA — Real vs. DGAN-WP-TL
(A=5.0); (b) UMAP — Real vs. DGAN-WP-TL (1=5.0); (c) PCA — Real vs. DGAN-BCE-TL (1=3.0); (d) UMAP — Real vs. DGAN-BCE-TL
(1=3.0); (e) PCA — Real vs. StyleGAN2; (f) UMAP — Real vs. StyleGAN2; (g) PCA — Real vs. StyleGAN3; (h) UMAP — Real vs. StyleGAN3.
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Figure 4 — Bar plots of Sliced Wasserstein Distance (SWD) across models using PCA and UMAP embeddings.

Discussion

The impact of the choice of loss function on DGAN-WP-TL's generation of synthetic breast
ultrasound images from the BUSI database were investigated, as described in the paper.
Systematically comparing WGAN-GP and BCE loss functions and baselines against StyleGAN2
and StyleGAN3, we offer a distributional alignment-perceptual realism-structural diversity trade-
off study.

WGAN-GP loss, particularly for A = 5.0, yields optimal fidelity and diversity tradeoff were
observe. Whilst in certain instances, BCE loss produced images that looked sharper, higher
resulting MS-SSIM fake—fake values demonstrated lower variability, in agreement with partial
mode collapse. It then follows that BCE loss continues to be less suited for producing medical
data, where diversity in lesion morphology is central to allowing for robust downstream diagnostic
models.

Comparisons to StyleGAN baselines indicate a significant gap exists between numerical
metric measurements of alignment and perceptual plausibility. StyleGAN3 had the lowest FID and
KID, in agreement with its superior modelling of global distributional stats. Qualitative assessment
presented, however, persistent structured artifacts, e.g., banding and local distortions, making it
clinically unreliable. DGAN-WP-TL, in contrast, though with slightly higher FID/KID, had more
anatomically plausible images and higher diversity-sensitive scores (MS-SSIM and LPIPS). These
again prove that distributional measures may not capture the perceptual and diagnostic sufficiency
of computer-generated medical images.

Embedding-based comparison, via PCA and UMAP, also supports this conclusion. While
PCA-SWD tended to favour StyleGAN3 at times, linear PCA underrepresented structured
artifacts. UMAP, which maintains non-linear manifolds and neighbourhood topology, on the other
hand, disclosed DGAN-WP-TL as the closest to real BUSI data. Such a conclusion again
highlights the importance of judging generative models not only via traditional scores but also via
manifold-informed methods that are much better reflective of clinical plausibility.

More broadly, the present contribution again highlights the key role of loss function
formulation in obtaining a realism-diversity balance in medical image generation. Higher-order
gradient-penalized adversarial losses such as WGAN-GP provide stable optimization and higher
distributional realism compared to BCE, in particular in the small and imbalanced-dataset regime.
Conversely, sole reliance on global distributional metrics (KID/FID) may overestimate a specific
model's clinical utility, in favour of the use of perceptual and embedding-based assessments.



Conclusion

This work systematically examined how the choice of adversarial loss influences synthetic
breast ultrasound image generation on the BUSI dataset. Using a fixed DGAN-WP-TL architecture
with a VGG19 perceptual backbone, we compared WGAN-GP and BCE objectives across A €
{0.5, 3.0, 5.0, 7.0, 10.0} and evaluated realism and diversity with KID, FID, LPIPS (real—
fake/fake—fake), MS-SSIM (real-fake/fake—fake), and manifold alignment (PCA/UMAP with
SWD).

Across settings, WGAN-GP at A = 5.0 delivered the most favourable trade-off: low
KID/FID, high perceptual fidelity, and more substantial diversity (higher LPIPS f—f, lower MS-
SSIM f—f) than BCE. Although StyleGAN3 achieved the highest KID/FID, qualitative studies and
embedding analysis revealed continued structural artifacts and a comparably narrower spread,
suggesting that distributional scores themselves may overestimate in-the-wild utility. BCE
intermittently resulted in clear images but had lower variability and less stable training. Taken
together, these findings show that WGAN-GP is the preferable objective for clinically credible
BUSI synthesis, balancing fidelity with lesion-level diversity that is critical for downstream
diagnostic robustness.

Our results have two practical implications. Firstly, loss design provides a primary knob
for training stability and class/lesion diversity preservation in small-scale imbalanced medical data
sets where architectural adjustments are not sufficient. Secondly, we suggest a distributional
metric-level assessment alongside diversity-auditory and manifold-sensitive analyses, rather than
relying solely on global scores, to prevent models with salient artifacts from being
disproportionately favoured.

Limitations and future work. This study focused on a single dataset (BUSI), one perceptual
backbone (VGG19), and offline metrics rather than reader studies. Future work will (i) validate on
multi-center ultrasound cohorts and additional modalities, (ii) explore conditional and
segmentation-guided synthesis to better control lesion attributes, (iii) quantify impact on
downstream classifiers and detection models, and (iv) incorporate privacy-preserving training and
clinical expert evaluation. These steps will further clarify how synthetic ultrasound can be safely
and effectively integrated into real-world workflows.
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