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ENSEMBLE MACHINE LEARNING FOR GLOBAL HYDROLOGICAL PREDICTION

Abstract: Accurate global hydrological prediction is vital for sustainable water
management but is often hindered by data complexity and fragmentation. This study introduces
an advanced machine learning framework to predict long-term average discharge using widely
available global hydrological station metadata, aiming to develop a highly accurate and
generalizable model for large-scale water resource assessment. The methodology utilized the
Global Runoff Data Centre (GRDC) dataset, applying extensive feature engineering to station
characteristics and a logarithmic transformation to the discharge variable. A diverse set of
algorithms was trained, including a custom deep neural network with specialized architecture
and several gradient boosting machines. These individual models were then integrated into a
final Meta Ensemble model through an optimized weighting strategy to maximize predictive
performance. The framework was rigorously validated on an independent test set. The Meta
Ensemble model demonstrated superior predictive power, achieving a Coefficient of
Determination (R?) of 0.954. This performance significantly surpassed that of both baseline
methods and the individual advanced models. Analysis of the results confirmed that the model
learned hydrologically meaningful relationships, identifying catchment area and geographical
location as the most influential predictors. The findings confirm that a data-driven ensemble
framework can accurately predict key hydrological characteristics using only station metadata.
This approach offers a powerful and scalable alternative to traditional modeling, holding
significant potential for water resource assessment in data-scarce regions and serving as a robust
foundation for future intelligent monitoring systems.

Keywords: hydrological modeling; machine learning; ensemble learning; discharge
prediction; water resources monitoring.

Introduction

Accurate hydrological prediction is a cornerstone of modern water resource management,
essential for mitigating flood risks, optimizing the operation of hydraulic structures, and ensuring
sustainable water supply amidst increasing climatic variability and anthropogenic pressures.
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Traditional process-driven hydrological models, while offering mechanistic insights, are often
constrained by extensive data requirements, limiting their applicability in many global basins.
This has spurred the rapid adoption of data-driven approaches, particularly machine learning
(ML), which excel at capturing complex, non-linear relationships in hydrological systems
directly from observational data.

The evolution of ML in hydrology has seen a progression from single, often “black-box,”
models to more sophisticated and interpretable frameworks. Early applications demonstrated the
viability of various architectures. For instance, M. Almetwally Ahmed and S. Samuel Li
proposed a model based on the Group Method of Data Handling (GMDH), which generates
explicit polynomial equations, offering greater transparency compared to typical neural networks
[1]. Similarly, comparative studies by Amin Asadollahi, Ajay Kalra, and colleagues confirmed
that with careful hyperparameter tuning, models like Artificial Neural Networks (ANN) can
achieve high accuracy in data-scarce environments, often outperforming alternatives like Support
Vector Machines (SVM) in capturing peak flows [2].

A significant trend in the field is the development of ensemble and hybrid models
designed to overcome the limitations of individual algorithms. One prominent approach is to
leverage the strengths of multiple models by combining their outputs. Alexandr Neftissov,
Andrii Biloshchytskyi, and co-authors developed a Meta Ensemble model to estimate long-term
average (LTA) discharge on a global scale using only static station metadata from the GRDC
database [3]. This work demonstrated that by combining a custom deep neural network with
several gradient boosting machines, it is possible to create a highly accurate (R? = 0.954) and
scalable tool for water resource assessment in ungauged basins. The concept of stacking, a more
advanced ensemble technique, was explored by Mingshen Lu, Lei Cheng, and their team, who
used an attention mechanism as a meta-model to adaptively weight the predictions of base
learners (Random Forest, AdaBoost, XGBoost) [4]. Their attention-based stacking model
significantly improved runoff forecasting accuracy by dynamically learning the complementary
strengths of its components.

Another powerful paradigm is the hybrid integration of ML with traditional physics-
based models. Instead of replacing mechanistic models, ML can be used to correct their errors.
Liyao Peng, Jian Tong, and their team proposed a Bayesian ensemble learning-based correction
(BELC) scheme that uses a suite of ML models to post-process and improve the forecasts from a
conceptual hydrological (XAJ) model [5]. Similarly, Jin-Cheng Fu, Wen-Cheng Liu, and
collaborators developed a framework that integrates a 1D unsteady flow model with Multiple
Additive Regression Trees (MART) and an Ensemble Kalman Filter (EnKF) for real-time data
assimilation and forecast correction, showing how ML can be deeply embedded into operational
physical models [6]. While these hybrid approaches show great promise, direct comparisons
reveal a fundamental trade-off. A study by Yuhao Zhou, Jing Pan, and Guangcheng Shao
demonstrated that a well-calibrated, physics-based Two-Dimensional Slope Hydrodynamic
Model (TDSHM) could achieve superior accuracy and interpretability for runoff prediction
compared to standalone LSTM and CNN models, particularly in scenarios requiring detailed
mechanistic insights [7].

Handling the non-stationarity inherent in hydrological time series is another critical
challenge. A common and effective approach is to first decompose the signal into more
stationary components before applying predictive models. Xiaolong Kang and his collaborators
used signal processing techniques to identify multi-scale cycles and abrupt change points in
annual runoff series before applying hybrid LSTM-RF and LSTM-CNN models for prediction
[8]. A more sophisticated, multi-layered “secondary decomposition” strategy was proposed by
Huaibin Wei, Jing Liu, and colleagues, who used CEEMDAN followed by VMD to deconstruct
complex runoff signals, allowing for the targeted application of different ML models (LSTM and
Informer) to components with varying characteristics [9]. The integration of interpretable
predictor selection with decomposition was demonstrated by Kaigiang Yong, Bing Gao, and



their team, who used an XGBoost-SHAP method to identify influential large-scale climate
indices for their MODWT-LSTM forecasting model [10].

The success of any ML model is critically dependent on the quality of its inputs,
encompassing both the raw data and the engineered features. The issue of inherent uncertainty in
hydrological data was explored by Nick Martin and Jeremy White, who advocated for Data
Assimilation (DA) as a formal framework to mitigate the risks of overfitting by explicitly
accounting for observation error [11]. The uncertainty in the input data itself was highlighted by
Shuanglong Chen, Heng Yang, and Hui Zheng in their intercomparison of global reanalysis
datasets, which revealed that model calibration had a more profound impact on accuracy than the
choice of meteorological forcing data [12]. The importance of feature engineering has been
demonstrated across various water science domains, from the use of graph theory to extract
topological features for water distribution network design [13] to the application of ensemble
models for the spatial downscaling of satellite-derived groundwater [14] and river flow data [15].
Furthermore, the interpretability of “black-box” models remain a key concern for their practical
adoption. To this end, Sheng He, Xuefeng Sang, and collaborators integrated SHAP into their
ensemble ML framework for discharge estimation at a sluice station, providing crucial insights
into feature importance and enhancing trust in the model’s predictions [16].

Recent research continues to push the boundaries of deep learning architectures. Alina
Barbulescu and Liu Zhen showed that LSTMs are particularly adept at modeling hydrological
systems that have undergone significant anthropogenic changes [17], while Habtamu Alemu
Workneh and Manoj K. Jha demonstrated that simpler CNNs can outperform more complex
recurrent architectures when combined with effective feature selection like PCA [18]. To address
the degradation of accuracy over longer lead times, Jianze Huang, Xitian Cai, and colleagues
developed a coupled SA-CNN-BIiLSTM model that provided both high accuracy and robust
uncertainty quantification for multi-day forecasts [19]. Novel applications have also emerged,
such as the work by Wei Liu, Peng Zou, and their team, who used a BiGRU network to
accurately compute discharge time series using only water surface elevation as input, offering an
alternative to traditional rating curves [20]. Finally, the exploration of cutting-edge architectures
like the Temporal Fusion Transformer (TFT) by Rafael Francisco and José Pedro Matos has
shown great promise, demonstrating not only high deterministic accuracy but also an inherent
ability to provide probabilistic forecasts, which are crucial for risk-informed decision-making
[21]. A conceptual link to the “digital twin” paradigm, as explored in the construction industry
by Serhii Dolhopolov, Tetyana Honcharenko, and their team, suggests that the ultimate goal of
these advanced monitoring systems is to create comprehensive, dynamic digital replicas of water
resource systems [22].

Aim and Obijectives of the Study
Despite significant advancements, a clear research gap remains in developing a unified,
data-driven framework that can accurately estimate key hydrological characteristics on a global
scale using readily available, static metadata. While many studies focus on dynamic forecasting
with time-series data, a robust and scalable tool for baseline water resource assessment in data-
scarce and ungauged basins is critically needed.
The primary aim of this research is to develop and validate a novel, high-performance
Meta Ensemble machine learning framework capable of accurately estimating long-term average
discharge at hydrological stations worldwide, relying solely on globally available station
metadata.
To achieve this aim, the following objectives were established:
1. To develop an integrated data processing and feature engineering pipeline to
transform raw global hydrological station metadata (from the GRDC database) into a
rich and informative set of predictors.



2. To design and optimize a diverse suite of advanced machine learning models,
including a custom-designed deep neural network and several state-of-the-art gradient
boosting machines, for the prediction task.

3. To construct and validate a high-performance Meta Ensemble model that
synergistically combines the predictions of the individual models to maximize
accuracy and generalization.

4. To interpret the final model using explainable Al techniques (SHAP) to identify the
key geographical and physical catchment attributes that most significantly influence
long-term average discharge, ensuring the model’s logic is hydrologically plausible.

5. To demonstrate the potential of this data-driven methodology as a scalable and cost-
effective tool for large-scale water resource assessment, particularly for preliminary
assessments of hydraulic structures in ungauged or data-limited regions.

Methods and Materials

Data Source and Description

The empirical basis for this study is the Global Runoff Data Centre (GRDC) Station
Catalogue. The GRDC, operating under the auspices of the World Meteorological Organization
(WMO), serves as a central repository for worldwide river discharge data and associated station
metadata. This globally comprehensive dataset is an invaluable resource for large-scale
hydrological research, encompassing a wide diversity of climatic and hydrological regimes. The
initial dataset contained 10,978 station records from across the globe. Each record is
characterized by a set of attributes describing the station’s geographical location (latitude,
longitude), physical catchment properties (area, altitude), and key characteristics of its historical
data records (period of operation). A summary of the primary variables selected from this
catalogue for use in the study is presented in Table 1.

Table 1. Key Variables from the GRDC Station Catalogue Used in the Stud

Variable Description
Wmo_reg WMO region code
sub_reg WMO subregion code
lat, lon Geographical coordinates (decimal degrees)
area Catchment size (km?2)
altitude Altitude of gauge zero (m)
t start, t end Start and end year of the observation period
t yrs Total length of the observation period (years)
Ita_discharge Long-term average discharge (m?/s)

Data Preprocessing and Feature Engineering

A systematic, multi-step pipeline was implemented to transform the raw GRDC metadata
into a clean, structured, and feature-rich dataset suitable for machine learning modeling. The
initial stage involved data cleaning, which included converting variables stored as text (e.g.,
Ita_discharge) to numeric formats and implementing a strategy for handling missing values
present in the raw data.

A critical step in preparing the data was the transformation of the target variable, the
Long-Term Average (LTA) discharge. Hydrological variables like discharge are well-known to
exhibit highly skewed distributions, with a large number of stations having low to moderate flow
and a long tail of stations with very high flows. This characteristic, confirmed during exploratory
data analysis, can violate the assumptions of many regression algorithms and disproportionately
weight the model towards predicting high-magnitude events. To address this, a logarithmic
transformation using the function log(1+x) was applied. This function is particularly suitable as
it stabilizes variance across the range of values and transforms the skewed distribution into a



more symmetric, approximately normal (Gaussian) distribution, which is more amenable to
modeling. The profound effect of this transformation is illustrated in Figure 1. The resulting
variable, Ita_discharge_log, was used as the prediction target for all subsequent modeling tasks.

Distribution of the Target Variable Before and After Logarithmic Transformation
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Figure 1. Distribution of the target variable, Long-Term Average (LTA) Discharge: (a) before and (b) after logarithmic transformation

Following the transformation of the target variable, a comprehensive feature engineering
process was undertaken to generate new, more informative predictors from the base metadata.
This process was crucial for enabling the models to capture complex non-linear relationships and
interactions. The engineered features included various non-linear transformations of the
catchment area (logarithmic and square root) to better represent its scaling effects on discharge.
To handle the cyclical nature of geographical coordinates, sine and cosine transformations of
latitude and longitude were computed. Furthermore, interaction terms between key predictors
(e.g., area multiplied by wmo_reg) and ratio features (e.g., area to_altitude ratio) were
generated to model combined effects. Temporal attributes, such as the operational lifetime of
each station, were also calculated to capture information related to data record maturity. A final
set of 33 features was chosen for the predictive modeling phase, based on a rigorous selection
process that combined correlation analysis with the target variable and model-based feature
importance rankings from preliminary models.

Predictive Modeling Framework

The core of this study is a hybrid, hierarchical modeling strategy that leverages the
strengths of multiple diverse machine learning paradigms to maximize predictive accuracy and
robustness. The overall workflow of this framework is conceptually illustrated in Figure 2. It is
designed as a stacking-like ensemble, where the predictions of several powerful base models are
intelligently combined by a higher-level meta-model.

The framework is composed of two main layers. The first layer consists of several
diverse, individual models, referred to as base learners. This set includes a custom Advanced
Neural Network (NN), designed using TensorFlow/Keras. Recognizing the paramount
importance of the catchment area, the NN architecture features a specialized, separate processing
path for this feature, allowing the model to learn its influence directly and with dedicated
parameters. This path is then concatenated with the main network path, which consists of
multiple hidden layers with residual connections (inspired by ResNet architectures) to facilitate
the training of a deep network and avoid issues like vanishing gradients. In addition to the neural
network, a suite of state-of-the-art Gradient Boosting Machines (GBMs) was trained, including
XGBoost, LightGBM, and CatBoost. These tree-based ensemble algorithms were selected for



their proven high performance on tabular data and their ability to capture complex non-linear
interactions and feature dependencies automatically.
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Figure 2. Conceptual Architecture of the Meta Ensemble Modeling Framework, showing the flow from input features through the base learner
and meta-ensemble layers

The cornerstone of the predictive strategy is the second layer, the Meta-Ensemble Model.
This final model aggregates the predictions from the best-performing individual base learners.
Instead of a simple average, it employs a more sophisticated weighted combination where the
weights are themselves optimized on a validation set to maximize the final R2 score. This
strategy allows the final model to capitalize on the unique strengths and perspectives of each
base model — for instance, combining the powerful non-linear function approximation of the
neural network with the robust handling of tabular data by the GBMs — often leading to
performance superior to any single constituent.

Model Training and Validation Strategy

A rigorous validation protocol was established to ensure the development of a robust and
generalizable model, free from overfitting. The final, cleaned dataset of 10,586 samples was
definitively partitioned into a primary training set (80%, or 8,468 samples) and an independent
test set (20%, or 2,118 samples). The test set was strictly held out from all training and tuning
activities and was used exclusively for the final, unbiased evaluation of the fully trained models.

During the model development and hyperparameter tuning phase, all optimizations were
performed exclusively on the 80% training set. This involved using internal validation splits to
guide the hyperparameter search (e.g., via Bayesian optimization with Optuna) and to implement
early stopping for the neural network models to prevent overfitting. For building robust
ensemble components, such as the Neural Ensemble, K-fold cross-validation (with k=5) was
employed. This iterative process of training and validating on different subsets of the training
data ensures that the selected hyperparameters and model architectures are robust and not
overfitted to a specific data partition, thereby enhancing their generalization potential.

Model Evaluation and Interpretation

The performance of all predictive models was rigorously evaluated using a set of standard
statistical metrics. The Coefficient of Determination (R?) was used to measure the proportion of
variance in the target variable explained by the model. Root Mean Squared Error (RMSE) was
calculated to assess the typical magnitude of prediction errors on the log-transformed scale.
Additionally, the Mean Absolute Error (MAE) was computed on both the log-transformed scale
and, crucially, on the original discharge units (m3/s) by back-transforming the predictions and
observations. The mathematical formulas for these metrics are provided in Equations (1) — (4).
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where y represents the observed values, y represents the predicted values, y is the mean of
observed values, and n is the number of samples.

To move beyond simple performance metrics and understand why the Meta Ensemble
model is successful, the SHAP (SHapley Additive exPlanations) framework was employed for
model interpretation. SHAP is a game-theoretic, model-agnostic approach that explains the
output of any machine learning model by assigning each feature an importance value — the
SHAP value — for each individual prediction. This powerful technique provides both global and
local interpretability. It allowed for a detailed analysis of which features had the most significant
impact on discharge estimation across the entire dataset, and it helped to ensure that the model
was learning hydrologically meaningful and physically plausible relationships, thereby building
confidence in its predictions.

Results

Comparative Model Performance

A comprehensive evaluation was conducted to compare the predictive capabilities of all
developed models, from simple baselines to advanced ensembles. The key performance metrics
— Coefficient of Determination (R2?), Root Mean Squared Error (RMSE), and Mean Absolute
Error (MAE) — were calculated for both the training and testing datasets to assess accuracy and
generalization.

The results, summarized in Table 2, reveal a clear performance hierarchy. The baseline
linear model, ElasticNet, performed poorly (Test R? = 0.25), confirming its inability to capture
the complex, non-linear relationships inherent in the global hydrological data. Standard ensemble
methods like RandomForest and GradientBoosting offered significant improvements but were
ultimately surpassed by the more sophisticated, custom-designed architectures.

Table 2. Performance Metrics of All Evaluated Models on the Training and Testing Sets

. Train Test Train MAE | Test MAE
Model Train R | Test R? RMSE RMSE (m¥/s) (m¥ls)
ElasticNet 0.25 0.249 1.776 1.785 449.6 1904236.58
GradientBoosting 0.841 0.833 0.818 0.843 173.35 239.62
RandomForest 0.983 0.889 0.268 0.688 75.35 154.61
LightGBM 0.927 0.895 0.553 0.667 129.21 201.36
CatBoost 0.952 0.901 0.449 0.648 95.67 131.45
XGBoost 0.972 0.903 0.341 0.641 70.25 122.9
Neural Network 0.935 0.916 0.524 0.597 83.21 105.82
Neural Ensemble 0.951 0.932 0.456 0.538 70.46 89.73
Boosted - Neural | 965 | 0941 | 0396 | 0.501 65.78 78.41
Network
Meta Ensemble 0.975 0.954 0.324 0.442 62.13 71.28




The advanced models consistently demonstrated superior performance. The custom
Neural Network and the individual Gradient Boosting Machines (XGBoost, CatBoost,
LightGBM) all performed strongly, achieving Test R2 scores around or above the target of 0.9.
However, the highest level of performance was consistently achieved by the ensemble strategies
that integrated these advanced models. The Neural Ensemble and the Boosted Neural Network
both showed excellent results, but the Meta Ensemble model, which combines predictions from
the top-performing models with optimized weights, yielded the best overall performance,
achieving a Test R2 of 0.954.

This comparative performance is visually summarized in Figure 3. The bar chart clearly
illustrates that all advanced models, and particularly the ensemble methods, successfully met and
exceeded the predefined performance target of R2 = 0.9. A crucial observation is the small gap
between the training (blue) and testing (light red) scores for the top models, especially the Meta
Ensemble. This indicates good generalization and a low risk of overfitting, confirming that the
model has learned the underlying patterns in the data rather than memorizing the training

examples.
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Figure 3. Comparative R2 Performance Across All Models. The chart displays both Training R2 and Testing R2 scores, with the dashed line
indicating the performance target of 0.9

Based on its superior performance across all key evaluation metrics on the independent
test set, the Meta Ensemble model was selected as the final, optimal model for the hydrological

prediction task.

Final Model Performance and Interpretation

A detailed validation of the final Meta Ensemble model was performed to assess its
accuracy and identify any potential systematic biases. Figure 4 presents a scatter plot of the
model’s predicted versus actual discharge values for the independent test set, with points colored
by their absolute prediction error. The data points cluster tightly around the 1:1 line (dashed red
line), indicating a very strong correlation and high level of agreement between the model’s
predictions and the observed data across several orders of magnitude. The color mapping



visually confirms that the vast majority of predictions (darker points) have a low absolute error.
While some larger errors (lighter yellow points) are visible, they are infrequent and typically
associated with the highest discharge values, a common challenge in hydrological modeling.
This visualization provides strong qualitative and quantitative evidence of the model’s high
accuracy.
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Figure 4. Predicted vs. Actual Values for the Meta Ensemble Model on the Test Set. The plot is on a logarithmic scale, and points are colored by
absolute prediction error.

To further understand the model’s behavior and validate its underlying logic, an
interpretability analysis was conducted using the SHAP framework. Figure 5 presents a global
feature importance plot, which ranks the input features based on their mean absolute SHAP value
across all samples in the test set. This analysis unequivocally identifies log-transformed
catchment area (area_log) as the single most dominant predictor, having a significantly larger
impact than any other feature. This finding aligns perfectly with fundamental hydrological
principles, where catchment area is the primary driver of discharge volume. Following area_log,
geographical location features — such as longitude (long), latitude (lat), and regional identifiers
(sub_reg) — are the next most important predictors. This highlights the model’s ability to
effectively learn and apply spatial context, essentially performing a form of implicit
regionalization to account for climatic and geological variability not explicitly included as
features. The significant contribution of these physically meaningful variables provides strong
evidence that the model’s high accuracy is not a “black box” artifact but is grounded in
hydrologically plausible relationships learned from the data.
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Figure 5. Global Feature Importance Ranking from SHAP Analysis. Features are ranked by their mean absolute SHAP value, representing their
overall impact on model predictions.

Collectively, the performance metrics and interpretability analysis validate the Meta
Ensemble model as a highly accurate and robust tool. The results demonstrate that a data-driven
approach, when carefully designed and rigorously validated, can successfully model complex,
large-scale hydrological phenomena based on readily available metadata.

Discussion

Interpretation of Model Performance and Feature Importance

The superior performance of the Meta Ensemble model over all individual learners,
including a sophisticated custom Neural Network and state-of-the-art GBMs, aligns with the
well-established consensus in machine learning: ensemble methods tend to be more robust and
accurate by averaging out the biases and variances of individual models. The diversity of the
base learners (a neural network and several tree-based models) was a key strength, likely
allowing the ensemble to capture different facets of the complex, non-linear relationships
between station metadata and LTA discharge.

The model interpretability analysis using SHAP provides crucial validation of the
model’s underlying logic. The overwhelming importance of catchment area (area and its
transformations) as the primary predictor (Figure 5) is consistent with fundamental hydrological
principles, confirming that the model has learned a physically plausible relationship. The
significant contribution of geographical coordinates (lat, long) and regional identifiers
(wmo_reg, sub_reg) highlights the model’s ability to effectively learn and apply spatial context.
It essentially performs a form of implicit regionalization, learning to account for climatic and
geological variability that was not explicitly included as input features. This capacity to learn
from spatial context is a key strength of applying machine learning to large, geographically



diverse datasets and provides confidence that the model’s high accuracy is not a “black box”
artifact but is grounded in hydrologically meaningful principles.

Comparison with Existing Research

While a vast body of literature exists on applying machine learning to hydrology, most
studies focus on dynamic streamflow forecasting using time-series data as inputs. Our work
addresses a different but equally important problem: estimating a static, long-term characteristic
(LTA) from metadata. This task is more aligned with regionalization studies and methods for
Prediction in Ungauged Basins (PUB), where the goal is to transfer information from gauged to
ungauged locations based on their physical characteristics. Compared to traditional regression-
based regionalization methods, our ensemble ML approach offers a more flexible and powerful
framework for capturing complex, non-linear relationships on a global scale. Unlike systems
focused purely on real-time data from IoT sensors, our approach leverages historical, aggregated
information embedded in the GRDC catalogue, making it suitable for strategic planning and
large-scale assessment rather than operational forecasting.

Practical Implications and Potential for Operationalization

The developed model has significant practical implications. It provides a robust, cost-
effective tool for estimating baseline water availability in regions with sparse or non-existent
gauging networks. This can be invaluable for preliminary water resource planning, climate
change impact assessment, and the initial design of hydraulic structures. For example, for a
proposed dam or irrigation project in a data-scarce region, the model can provide a rapid first-
order estimate of LTA discharge, requiring only basic geographical and catchment information.

While this study focused on developing the predictive model, its outputs could be
integrated into a broader, operational monitoring system, as conceptually outlined in the system
architecture (Figure 2). In such a system, our LTA estimation model could serve two roles: (1)
providing baseline “normal” discharge values against which real-time data from 10T sensors can
be compared for anomaly detection, and (2) generating plausible estimates for initializing more
complex hydrological models or for filling gaps in records. This illustrates a potential pathway
from the strategic estimation tool developed here to a comprehensive, operational monitoring
platform.

Limitations and Future Research Directions

Despite the promising results, this study has several limitations that open avenues for
future research. First, the model’s performance is inherently dependent on the quality and
geographical representativeness of the GRDC dataset. Gaps in station coverage, particularly in
Africa, South America, and parts of Asia, may limit the model’s accuracy in these regions. The
dataset’s heterogeneity, stemming from different measurement standards and data quality across
countries, also introduces unquantified uncertainty into the predictions.

Second, the model estimates a static, long-term average and does not provide dynamic,
time-varying forecasts. It is therefore not suitable for short-term operational flood management.
Third, the model relies on historical relationships and may struggle to adapt to non-stationary
conditions driven by rapid climate change or large-scale land-use changes not captured by the
input features.

Future research should address these limitations. Integrating additional data sources, such
as climate reanalysis data (e.g., precipitation, temperature) and land-cover classifications, could
help the model better account for climatic variability and reduce regional biases. Developing
robust methods for quantifying prediction uncertainty (e.g., using quantile regression or



Bayesian neural networks) is crucial for providing risk-based information to decision-makers.
Finally, exploring transfer learning could leverage the globally trained model to improve
performance in specific data-scarce regions with limited local data, thereby enhancing its
practical applicability.

Conclusion

This research successfully developed and validated an advanced machine learning
framework for estimating long-term average discharge using globally available hydrological
station metadata. The study demonstrated that a data-driven approach, leveraging a sophisticated
ensemble of diverse models, can accurately estimate this key hydrological characteristic without
relying on complex, time-varying simulations. The main conclusions of this work are as follows:

1. The developed Meta Ensemble model, which integrates predictions from an
optimized Neural Network and several Gradient Boosting Machines, achieved
excellent predictive performance on an independent test set (R2 = 0.954, MAE =71.3
m?3/s). This significantly surpasses the accuracy of both baseline methods and
individual advanced models, highlighting the power of hybrid ensembling for this
hydrological task.

2. Model interpretability analysis using SHAP confirmed that the model learned
physically plausible relationships. It identified catchment area as the most dominant
predictor, with geographical location and regional identifiers playing a crucial
secondary role in capturing spatial variability. This provides confidence that the
model’s high accuracy is not a “black box” artifact but is grounded in hydrologically
meaningful principles.

3. Rigorous data preprocessing and feature engineering were critical to the model’s
success. The logarithmic transformation of the skewed target variable and the creation
of interaction, ratio, and transformed geographical features were essential for
achieving high performance.

4. The study demonstrates that it is feasible to build a robust and scalable tool for large-
scale water resource assessment using readily available global metadata. This
approach offers a valuable, cost-effective alternative to traditional methods, especially
for preliminary assessments in ungauged or data-scarce basins.

In summary, this work contributes a robust methodology and a high-accuracy predictive

model, advancing the application of machine learning in large-scale hydrology. It provides a
validated framework for estimating a fundamental hydrological characteristic, offering a
powerful tool to support global and regional water resource management and planning.
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