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ENSEMBLE MACHINE LEARNING FOR GLOBAL HYDROLOGICAL PREDICTION  
 

Abstract: Accurate global hydrological prediction is vital for sustainable water 

management but is often hindered by data complexity and fragmentation. This study introduces 

an advanced machine learning framework to predict long-term average discharge using widely 

available global hydrological station metadata, aiming to develop a highly accurate and 

generalizable model for large-scale water resource assessment. The methodology utilized the 

Global Runoff Data Centre (GRDC) dataset, applying extensive feature engineering to station 

characteristics and a logarithmic transformation to the discharge variable. A diverse set of 

algorithms was trained, including a custom deep neural network with specialized architecture 

and several gradient boosting machines. These individual models were then integrated into a 

final Meta Ensemble model through an optimized weighting strategy to maximize predictive 

performance. The framework was rigorously validated on an independent test set. The Meta 

Ensemble model demonstrated superior predictive power, achieving a Coefficient of 

Determination (R²) of 0.954. This performance significantly surpassed that of both baseline 

methods and the individual advanced models. Analysis of the results confirmed that the model 

learned hydrologically meaningful relationships, identifying catchment area and geographical 

location as the most influential predictors. The findings confirm that a data-driven ensemble 

framework can accurately predict key hydrological characteristics using only station metadata. 

This approach offers a powerful and scalable alternative to traditional modeling, holding 

significant potential for water resource assessment in data-scarce regions and serving as a robust 

foundation for future intelligent monitoring systems. 

Keywords: hydrological modeling; machine learning; ensemble learning; discharge 

prediction; water resources monitoring. 

 

Introduction  

Accurate hydrological prediction is a cornerstone of modern water resource management, 

essential for mitigating flood risks, optimizing the operation of hydraulic structures, and ensuring 

sustainable water supply amidst increasing climatic variability and anthropogenic pressures. 
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Traditional process-driven hydrological models, while offering mechanistic insights, are often 

constrained by extensive data requirements, limiting their applicability in many global basins. 

This has spurred the rapid adoption of data-driven approaches, particularly machine learning 

(ML), which excel at capturing complex, non-linear relationships in hydrological systems 

directly from observational data. 

The evolution of ML in hydrology has seen a progression from single, often “black-box,” 

models to more sophisticated and interpretable frameworks. Early applications demonstrated the 

viability of various architectures. For instance, M. Almetwally Ahmed and S. Samuel Li 

proposed a model based on the Group Method of Data Handling (GMDH), which generates 

explicit polynomial equations, offering greater transparency compared to typical neural networks 

[1]. Similarly, comparative studies by Amin Asadollahi, Ajay Kalra, and colleagues confirmed 

that with careful hyperparameter tuning, models like Artificial Neural Networks (ANN) can 

achieve high accuracy in data-scarce environments, often outperforming alternatives like Support 

Vector Machines (SVM) in capturing peak flows [2]. 

A significant trend in the field is the development of ensemble and hybrid models 

designed to overcome the limitations of individual algorithms. One prominent approach is to 

leverage the strengths of multiple models by combining their outputs. Alexandr Neftissov, 

Andrii Biloshchytskyi, and co-authors developed a Meta Ensemble model to estimate long-term 

average (LTA) discharge on a global scale using only static station metadata from the GRDC 

database [3]. This work demonstrated that by combining a custom deep neural network with 

several gradient boosting machines, it is possible to create a highly accurate (R² = 0.954) and 

scalable tool for water resource assessment in ungauged basins. The concept of stacking, a more 

advanced ensemble technique, was explored by Mingshen Lu, Lei Cheng, and their team, who 

used an attention mechanism as a meta-model to adaptively weight the predictions of base 

learners (Random Forest, AdaBoost, XGBoost) [4]. Their attention-based stacking model 

significantly improved runoff forecasting accuracy by dynamically learning the complementary 

strengths of its components. 

Another powerful paradigm is the hybrid integration of ML with traditional physics-

based models. Instead of replacing mechanistic models, ML can be used to correct their errors. 

Liyao Peng, Jian Tong, and their team proposed a Bayesian ensemble learning-based correction 

(BELC) scheme that uses a suite of ML models to post-process and improve the forecasts from a 

conceptual hydrological (XAJ) model [5]. Similarly, Jin-Cheng Fu, Wen-Cheng Liu, and 

collaborators developed a framework that integrates a 1D unsteady flow model with Multiple 

Additive Regression Trees (MART) and an Ensemble Kalman Filter (EnKF) for real-time data 

assimilation and forecast correction, showing how ML can be deeply embedded into operational 

physical models [6]. While these hybrid approaches show great promise, direct comparisons 

reveal a fundamental trade-off. A study by Yuhao Zhou, Jing Pan, and Guangcheng Shao 

demonstrated that a well-calibrated, physics-based Two-Dimensional Slope Hydrodynamic 

Model (TDSHM) could achieve superior accuracy and interpretability for runoff prediction 

compared to standalone LSTM and CNN models, particularly in scenarios requiring detailed 

mechanistic insights [7]. 

Handling the non-stationarity inherent in hydrological time series is another critical 

challenge. A common and effective approach is to first decompose the signal into more 

stationary components before applying predictive models. Xiaolong Kang and his collaborators 

used signal processing techniques to identify multi-scale cycles and abrupt change points in 

annual runoff series before applying hybrid LSTM-RF and LSTM-CNN models for prediction 

[8]. A more sophisticated, multi-layered “secondary decomposition” strategy was proposed by 

Huaibin Wei, Jing Liu, and colleagues, who used CEEMDAN followed by VMD to deconstruct 

complex runoff signals, allowing for the targeted application of different ML models (LSTM and 

Informer) to components with varying characteristics [9]. The integration of interpretable 

predictor selection with decomposition was demonstrated by Kaiqiang Yong, Bing Gao, and 



 

their team, who used an XGBoost-SHAP method to identify influential large-scale climate 

indices for their MODWT-LSTM forecasting model [10]. 

The success of any ML model is critically dependent on the quality of its inputs, 

encompassing both the raw data and the engineered features. The issue of inherent uncertainty in 

hydrological data was explored by Nick Martin and Jeremy White, who advocated for Data 

Assimilation (DA) as a formal framework to mitigate the risks of overfitting by explicitly 

accounting for observation error [11]. The uncertainty in the input data itself was highlighted by 

Shuanglong Chen, Heng Yang, and Hui Zheng in their intercomparison of global reanalysis 

datasets, which revealed that model calibration had a more profound impact on accuracy than the 

choice of meteorological forcing data [12]. The importance of feature engineering has been 

demonstrated across various water science domains, from the use of graph theory to extract 

topological features for water distribution network design [13] to the application of ensemble 

models for the spatial downscaling of satellite-derived groundwater [14] and river flow data [15]. 

Furthermore, the interpretability of “black-box” models remain a key concern for their practical 

adoption. To this end, Sheng He, Xuefeng Sang, and collaborators integrated SHAP into their 

ensemble ML framework for discharge estimation at a sluice station, providing crucial insights 

into feature importance and enhancing trust in the model’s predictions [16]. 

Recent research continues to push the boundaries of deep learning architectures. Alina 

Bărbulescu and Liu Zhen showed that LSTMs are particularly adept at modeling hydrological 

systems that have undergone significant anthropogenic changes [17], while Habtamu Alemu 

Workneh and Manoj K. Jha demonstrated that simpler CNNs can outperform more complex 

recurrent architectures when combined with effective feature selection like PCA [18]. To address 

the degradation of accuracy over longer lead times, Jianze Huang, Xitian Cai, and colleagues 

developed a coupled SA-CNN-BiLSTM model that provided both high accuracy and robust 

uncertainty quantification for multi-day forecasts [19]. Novel applications have also emerged, 

such as the work by Wei Liu, Peng Zou, and their team, who used a BiGRU network to 

accurately compute discharge time series using only water surface elevation as input, offering an 

alternative to traditional rating curves [20]. Finally, the exploration of cutting-edge architectures 

like the Temporal Fusion Transformer (TFT) by Rafael Francisco and José Pedro Matos has 

shown great promise, demonstrating not only high deterministic accuracy but also an inherent 

ability to provide probabilistic forecasts, which are crucial for risk-informed decision-making 

[21]. A conceptual link to the “digital twin” paradigm, as explored in the construction industry 

by Serhii Dolhopolov, Tetyana Honcharenko, and their team, suggests that the ultimate goal of 

these advanced monitoring systems is to create comprehensive, dynamic digital replicas of water 

resource systems [22]. 

 

Aim and Objectives of the Study 

Despite significant advancements, a clear research gap remains in developing a unified, 

data-driven framework that can accurately estimate key hydrological characteristics on a global 

scale using readily available, static metadata. While many studies focus on dynamic forecasting 

with time-series data, a robust and scalable tool for baseline water resource assessment in data-

scarce and ungauged basins is critically needed. 

The primary aim of this research is to develop and validate a novel, high-performance 

Meta Ensemble machine learning framework capable of accurately estimating long-term average 

discharge at hydrological stations worldwide, relying solely on globally available station 

metadata. 

To achieve this aim, the following objectives were established: 

1. To develop an integrated data processing and feature engineering pipeline to 

transform raw global hydrological station metadata (from the GRDC database) into a 

rich and informative set of predictors. 



 

2. To design and optimize a diverse suite of advanced machine learning models, 

including a custom-designed deep neural network and several state-of-the-art gradient 

boosting machines, for the prediction task. 

3. To construct and validate a high-performance Meta Ensemble model that 

synergistically combines the predictions of the individual models to maximize 

accuracy and generalization. 

4. To interpret the final model using explainable AI techniques (SHAP) to identify the 

key geographical and physical catchment attributes that most significantly influence 

long-term average discharge, ensuring the model’s logic is hydrologically plausible. 

5. To demonstrate the potential of this data-driven methodology as a scalable and cost-

effective tool for large-scale water resource assessment, particularly for preliminary 

assessments of hydraulic structures in ungauged or data-limited regions. 

 

Methods and Materials 

Data Source and Description 

The empirical basis for this study is the Global Runoff Data Centre (GRDC) Station 

Catalogue. The GRDC, operating under the auspices of the World Meteorological Organization 

(WMO), serves as a central repository for worldwide river discharge data and associated station 

metadata. This globally comprehensive dataset is an invaluable resource for large-scale 

hydrological research, encompassing a wide diversity of climatic and hydrological regimes. The 

initial dataset contained 10,978 station records from across the globe. Each record is 

characterized by a set of attributes describing the station’s geographical location (latitude, 

longitude), physical catchment properties (area, altitude), and key characteristics of its historical 

data records (period of operation). A summary of the primary variables selected from this 

catalogue for use in the study is presented in Table 1. 

 

Table 1. Key Variables from the GRDC Station Catalogue Used in the Study 

Variable Description 

wmo_reg WMO region code 

sub_reg WMO subregion code 

lat, lon Geographical coordinates (decimal degrees) 

area Catchment size (km²) 

altitude Altitude of gauge zero (m) 

t_start, t_end Start and end year of the observation period 

t_yrs Total length of the observation period (years) 

lta_discharge Long-term average discharge (m³/s) 

 

Data Preprocessing and Feature Engineering 

A systematic, multi-step pipeline was implemented to transform the raw GRDC metadata 

into a clean, structured, and feature-rich dataset suitable for machine learning modeling. The 

initial stage involved data cleaning, which included converting variables stored as text (e.g., 

lta_discharge) to numeric formats and implementing a strategy for handling missing values 

present in the raw data. 

A critical step in preparing the data was the transformation of the target variable, the 

Long-Term Average (LTA) discharge. Hydrological variables like discharge are well-known to 

exhibit highly skewed distributions, with a large number of stations having low to moderate flow 

and a long tail of stations with very high flows. This characteristic, confirmed during exploratory 

data analysis, can violate the assumptions of many regression algorithms and disproportionately 

weight the model towards predicting high-magnitude events. To address this, a logarithmic 

transformation using the function log(1+x) was applied. This function is particularly suitable as 

it stabilizes variance across the range of values and transforms the skewed distribution into a 



 

more symmetric, approximately normal (Gaussian) distribution, which is more amenable to 

modeling. The profound effect of this transformation is illustrated in Figure 1. The resulting 

variable, lta_discharge_log, was used as the prediction target for all subsequent modeling tasks. 

 

 
 

Figure 1. Distribution of the target variable, Long-Term Average (LTA) Discharge: (a) before and (b) after logarithmic transformation 

 

Following the transformation of the target variable, a comprehensive feature engineering 

process was undertaken to generate new, more informative predictors from the base metadata. 

This process was crucial for enabling the models to capture complex non-linear relationships and 

interactions. The engineered features included various non-linear transformations of the 

catchment area (logarithmic and square root) to better represent its scaling effects on discharge. 

To handle the cyclical nature of geographical coordinates, sine and cosine transformations of 

latitude and longitude were computed. Furthermore, interaction terms between key predictors 

(e.g., area multiplied by wmo_reg) and ratio features (e.g., area_to_altitude_ratio) were 

generated to model combined effects. Temporal attributes, such as the operational lifetime of 

each station, were also calculated to capture information related to data record maturity. A final 

set of 33 features was chosen for the predictive modeling phase, based on a rigorous selection 

process that combined correlation analysis with the target variable and model-based feature 

importance rankings from preliminary models. 

 

Predictive Modeling Framework 

The core of this study is a hybrid, hierarchical modeling strategy that leverages the 

strengths of multiple diverse machine learning paradigms to maximize predictive accuracy and 

robustness. The overall workflow of this framework is conceptually illustrated in Figure 2. It is 

designed as a stacking-like ensemble, where the predictions of several powerful base models are 

intelligently combined by a higher-level meta-model. 

The framework is composed of two main layers. The first layer consists of several 

diverse, individual models, referred to as base learners. This set includes a custom Advanced 

Neural Network (NN), designed using TensorFlow/Keras. Recognizing the paramount 

importance of the catchment area, the NN architecture features a specialized, separate processing 

path for this feature, allowing the model to learn its influence directly and with dedicated 

parameters. This path is then concatenated with the main network path, which consists of 

multiple hidden layers with residual connections (inspired by ResNet architectures) to facilitate 

the training of a deep network and avoid issues like vanishing gradients. In addition to the neural 

network, a suite of state-of-the-art Gradient Boosting Machines (GBMs) was trained, including 

XGBoost, LightGBM, and CatBoost. These tree-based ensemble algorithms were selected for 



 

their proven high performance on tabular data and their ability to capture complex non-linear 

interactions and feature dependencies automatically. 

 

 
 

Figure 2. Conceptual Architecture of the Meta Ensemble Modeling Framework, showing the flow from input features through the base learner 

and meta-ensemble layers 

 

The cornerstone of the predictive strategy is the second layer, the Meta-Ensemble Model. 

This final model aggregates the predictions from the best-performing individual base learners. 

Instead of a simple average, it employs a more sophisticated weighted combination where the 

weights are themselves optimized on a validation set to maximize the final R² score. This 

strategy allows the final model to capitalize on the unique strengths and perspectives of each 

base model – for instance, combining the powerful non-linear function approximation of the 

neural network with the robust handling of tabular data by the GBMs – often leading to 

performance superior to any single constituent. 

 

Model Training and Validation Strategy 

A rigorous validation protocol was established to ensure the development of a robust and 

generalizable model, free from overfitting. The final, cleaned dataset of 10,586 samples was 

definitively partitioned into a primary training set (80%, or 8,468 samples) and an independent 

test set (20%, or 2,118 samples). The test set was strictly held out from all training and tuning 

activities and was used exclusively for the final, unbiased evaluation of the fully trained models. 

During the model development and hyperparameter tuning phase, all optimizations were 

performed exclusively on the 80% training set. This involved using internal validation splits to 

guide the hyperparameter search (e.g., via Bayesian optimization with Optuna) and to implement 

early stopping for the neural network models to prevent overfitting. For building robust 

ensemble components, such as the Neural Ensemble, K-fold cross-validation (with k=5) was 

employed. This iterative process of training and validating on different subsets of the training 

data ensures that the selected hyperparameters and model architectures are robust and not 

overfitted to a specific data partition, thereby enhancing their generalization potential. 

 

Model Evaluation and Interpretation 

The performance of all predictive models was rigorously evaluated using a set of standard 

statistical metrics. The Coefficient of Determination (R²) was used to measure the proportion of 

variance in the target variable explained by the model. Root Mean Squared Error (RMSE) was 

calculated to assess the typical magnitude of prediction errors on the log-transformed scale. 

Additionally, the Mean Absolute Error (MAE) was computed on both the log-transformed scale 

and, crucially, on the original discharge units (m³/s) by back-transforming the predictions and 

observations. The mathematical formulas for these metrics are provided in Equations (1) – (4). 



 

 

𝑅2 = 1 −
∑ (𝑦𝑖−𝑦𝑖̂)

2𝑛
𝑖=1

∑ (𝑦𝑖−𝑦̅)
2𝑛

𝑖=1

,              (1) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑦𝑖̂)2
𝑛
𝑖=1 ,             (2) 

 

𝑀𝐴𝐸𝑙𝑜𝑔 =
1

𝑛
∑ |𝑦𝑖 − 𝑦𝑖̂|
𝑛
𝑖=1 ,             (3) 

 

𝑀𝐴𝐸𝑜𝑟𝑖𝑔 =
1

𝑛
∑ |expm1(𝑦𝑖) − expm1(𝑦𝑖̂)|
𝑛
𝑖=1 ,            (4) 

 

where y represents the observed values, ŷ represents the predicted values, ȳ is the mean of 

observed values, and n is the number of samples. 

To move beyond simple performance metrics and understand why the Meta Ensemble 

model is successful, the SHAP (SHapley Additive exPlanations) framework was employed for 

model interpretation. SHAP is a game-theoretic, model-agnostic approach that explains the 

output of any machine learning model by assigning each feature an importance value – the 

SHAP value – for each individual prediction. This powerful technique provides both global and 

local interpretability. It allowed for a detailed analysis of which features had the most significant 

impact on discharge estimation across the entire dataset, and it helped to ensure that the model 

was learning hydrologically meaningful and physically plausible relationships, thereby building 

confidence in its predictions. 

 

Results 

Comparative Model Performance 

A comprehensive evaluation was conducted to compare the predictive capabilities of all 

developed models, from simple baselines to advanced ensembles. The key performance metrics 

– Coefficient of Determination (R²), Root Mean Squared Error (RMSE), and Mean Absolute 

Error (MAE) – were calculated for both the training and testing datasets to assess accuracy and 

generalization. 

The results, summarized in Table 2, reveal a clear performance hierarchy. The baseline 

linear model, ElasticNet, performed poorly (Test R² ≈ 0.25), confirming its inability to capture 

the complex, non-linear relationships inherent in the global hydrological data. Standard ensemble 

methods like RandomForest and GradientBoosting offered significant improvements but were 

ultimately surpassed by the more sophisticated, custom-designed architectures. 

 

Table 2. Performance Metrics of All Evaluated Models on the Training and Testing Sets 

 

Model Train R² Test R² 
Train 

RMSE 

Test 

RMSE 

Train MAE 

(m³/s) 

Test MAE 

(m³/s) 

ElasticNet 0.25 0.249 1.776 1.785 449.6 1904236.58 

GradientBoosting 0.841 0.833 0.818 0.843 173.35 239.62 

RandomForest 0.983 0.889 0.268 0.688 75.35 154.61 

LightGBM 0.927 0.895 0.553 0.667 129.21 201.36 

CatBoost 0.952 0.901 0.449 0.648 95.67 131.45 

XGBoost 0.972 0.903 0.341 0.641 70.25 122.9 

Neural Network 0.935 0.916 0.524 0.597 83.21 105.82 

Neural Ensemble 0.951 0.932 0.456 0.538 70.46 89.73 

Boosted Neural 

Network 
0.963 0.941 0.396 0.501 65.78 78.41 

Meta Ensemble 0.975 0.954 0.324 0.442 62.13 71.28 



 

 

The advanced models consistently demonstrated superior performance. The custom 

Neural Network and the individual Gradient Boosting Machines (XGBoost, CatBoost, 

LightGBM) all performed strongly, achieving Test R² scores around or above the target of 0.9. 

However, the highest level of performance was consistently achieved by the ensemble strategies 

that integrated these advanced models. The Neural Ensemble and the Boosted Neural Network 

both showed excellent results, but the Meta Ensemble model, which combines predictions from 

the top-performing models with optimized weights, yielded the best overall performance, 

achieving a Test R² of 0.954. 

This comparative performance is visually summarized in Figure 3. The bar chart clearly 

illustrates that all advanced models, and particularly the ensemble methods, successfully met and 

exceeded the predefined performance target of R² = 0.9. A crucial observation is the small gap 

between the training (blue) and testing (light red) scores for the top models, especially the Meta 

Ensemble. This indicates good generalization and a low risk of overfitting, confirming that the 

model has learned the underlying patterns in the data rather than memorizing the training 

examples. 

 

 
 

Figure 3. Comparative R² Performance Across All Models. The chart displays both Training R² and Testing R² scores, with the dashed line 

indicating the performance target of 0.9 

 

Based on its superior performance across all key evaluation metrics on the independent 

test set, the Meta Ensemble model was selected as the final, optimal model for the hydrological 

prediction task. 

 

Final Model Performance and Interpretation 

A detailed validation of the final Meta Ensemble model was performed to assess its 

accuracy and identify any potential systematic biases. Figure 4 presents a scatter plot of the 

model’s predicted versus actual discharge values for the independent test set, with points colored 

by their absolute prediction error. The data points cluster tightly around the 1:1 line (dashed red 

line), indicating a very strong correlation and high level of agreement between the model’s 

predictions and the observed data across several orders of magnitude. The color mapping 



 

visually confirms that the vast majority of predictions (darker points) have a low absolute error. 

While some larger errors (lighter yellow points) are visible, they are infrequent and typically 

associated with the highest discharge values, a common challenge in hydrological modeling. 

This visualization provides strong qualitative and quantitative evidence of the model’s high 

accuracy. 

 

 
 

Figure 4. Predicted vs. Actual Values for the Meta Ensemble Model on the Test Set. The plot is on a logarithmic scale, and points are colored by 
absolute prediction error. 

 

To further understand the model’s behavior and validate its underlying logic, an 

interpretability analysis was conducted using the SHAP framework. Figure 5 presents a global 

feature importance plot, which ranks the input features based on their mean absolute SHAP value 

across all samples in the test set. This analysis unequivocally identifies log-transformed 

catchment area (area_log) as the single most dominant predictor, having a significantly larger 

impact than any other feature. This finding aligns perfectly with fundamental hydrological 

principles, where catchment area is the primary driver of discharge volume. Following area_log, 

geographical location features – such as longitude (long), latitude (lat), and regional identifiers 

(sub_reg) – are the next most important predictors. This highlights the model’s ability to 

effectively learn and apply spatial context, essentially performing a form of implicit 

regionalization to account for climatic and geological variability not explicitly included as 

features. The significant contribution of these physically meaningful variables provides strong 

evidence that the model’s high accuracy is not a “black box” artifact but is grounded in 

hydrologically plausible relationships learned from the data. 

 



 

 
Figure 5. Global Feature Importance Ranking from SHAP Analysis. Features are ranked by their mean absolute SHAP value, representing their 

overall impact on model predictions. 

  

Collectively, the performance metrics and interpretability analysis validate the Meta 

Ensemble model as a highly accurate and robust tool. The results demonstrate that a data-driven 

approach, when carefully designed and rigorously validated, can successfully model complex, 

large-scale hydrological phenomena based on readily available metadata. 

 

Discussion 

Interpretation of Model Performance and Feature Importance 

The superior performance of the Meta Ensemble model over all individual learners, 

including a sophisticated custom Neural Network and state-of-the-art GBMs, aligns with the 

well-established consensus in machine learning: ensemble methods tend to be more robust and 

accurate by averaging out the biases and variances of individual models. The diversity of the 

base learners (a neural network and several tree-based models) was a key strength, likely 

allowing the ensemble to capture different facets of the complex, non-linear relationships 

between station metadata and LTA discharge. 

The model interpretability analysis using SHAP provides crucial validation of the 

model’s underlying logic. The overwhelming importance of catchment area (area and its 

transformations) as the primary predictor (Figure 5) is consistent with fundamental hydrological 

principles, confirming that the model has learned a physically plausible relationship. The 

significant contribution of geographical coordinates (lat, long) and regional identifiers 

(wmo_reg, sub_reg) highlights the model’s ability to effectively learn and apply spatial context. 

It essentially performs a form of implicit regionalization, learning to account for climatic and 

geological variability that was not explicitly included as input features. This capacity to learn 

from spatial context is a key strength of applying machine learning to large, geographically 



 

diverse datasets and provides confidence that the model’s high accuracy is not a “black box” 

artifact but is grounded in hydrologically meaningful principles. 

 

Comparison with Existing Research 

While a vast body of literature exists on applying machine learning to hydrology, most 

studies focus on dynamic streamflow forecasting using time-series data as inputs. Our work 

addresses a different but equally important problem: estimating a static, long-term characteristic 

(LTA) from metadata. This task is more aligned with regionalization studies and methods for 

Prediction in Ungauged Basins (PUB), where the goal is to transfer information from gauged to 

ungauged locations based on their physical characteristics. Compared to traditional regression-

based regionalization methods, our ensemble ML approach offers a more flexible and powerful 

framework for capturing complex, non-linear relationships on a global scale. Unlike systems 

focused purely on real-time data from IoT sensors, our approach leverages historical, aggregated 

information embedded in the GRDC catalogue, making it suitable for strategic planning and 

large-scale assessment rather than operational forecasting. 

 

Practical Implications and Potential for Operationalization 

The developed model has significant practical implications. It provides a robust, cost-

effective tool for estimating baseline water availability in regions with sparse or non-existent 

gauging networks. This can be invaluable for preliminary water resource planning, climate 

change impact assessment, and the initial design of hydraulic structures. For example, for a 

proposed dam or irrigation project in a data-scarce region, the model can provide a rapid first-

order estimate of LTA discharge, requiring only basic geographical and catchment information. 

While this study focused on developing the predictive model, its outputs could be 

integrated into a broader, operational monitoring system, as conceptually outlined in the system 

architecture (Figure 2). In such a system, our LTA estimation model could serve two roles: (1) 

providing baseline “normal” discharge values against which real-time data from IoT sensors can 

be compared for anomaly detection, and (2) generating plausible estimates for initializing more 

complex hydrological models or for filling gaps in records. This illustrates a potential pathway 

from the strategic estimation tool developed here to a comprehensive, operational monitoring 

platform. 

 

Limitations and Future Research Directions 

Despite the promising results, this study has several limitations that open avenues for 

future research. First, the model’s performance is inherently dependent on the quality and 

geographical representativeness of the GRDC dataset. Gaps in station coverage, particularly in 

Africa, South America, and parts of Asia, may limit the model’s accuracy in these regions. The 

dataset’s heterogeneity, stemming from different measurement standards and data quality across 

countries, also introduces unquantified uncertainty into the predictions. 

Second, the model estimates a static, long-term average and does not provide dynamic, 

time-varying forecasts. It is therefore not suitable for short-term operational flood management. 

Third, the model relies on historical relationships and may struggle to adapt to non-stationary 

conditions driven by rapid climate change or large-scale land-use changes not captured by the 

input features. 

Future research should address these limitations. Integrating additional data sources, such 

as climate reanalysis data (e.g., precipitation, temperature) and land-cover classifications, could 

help the model better account for climatic variability and reduce regional biases. Developing 

robust methods for quantifying prediction uncertainty (e.g., using quantile regression or 



 

Bayesian neural networks) is crucial for providing risk-based information to decision-makers. 

Finally, exploring transfer learning could leverage the globally trained model to improve 

performance in specific data-scarce regions with limited local data, thereby enhancing its 

practical applicability. 

 

Conclusion  
This research successfully developed and validated an advanced machine learning 

framework for estimating long-term average discharge using globally available hydrological 

station metadata. The study demonstrated that a data-driven approach, leveraging a sophisticated 

ensemble of diverse models, can accurately estimate this key hydrological characteristic without 

relying on complex, time-varying simulations. The main conclusions of this work are as follows: 

1. The developed Meta Ensemble model, which integrates predictions from an 

optimized Neural Network and several Gradient Boosting Machines, achieved 

excellent predictive performance on an independent test set (R² = 0.954, MAE = 71.3 

m³/s). This significantly surpasses the accuracy of both baseline methods and 

individual advanced models, highlighting the power of hybrid ensembling for this 

hydrological task. 

2. Model interpretability analysis using SHAP confirmed that the model learned 

physically plausible relationships. It identified catchment area as the most dominant 

predictor, with geographical location and regional identifiers playing a crucial 

secondary role in capturing spatial variability. This provides confidence that the 

model’s high accuracy is not a “black box” artifact but is grounded in hydrologically 

meaningful principles. 

3. Rigorous data preprocessing and feature engineering were critical to the model’s 

success. The logarithmic transformation of the skewed target variable and the creation 

of interaction, ratio, and transformed geographical features were essential for 

achieving high performance. 

4. The study demonstrates that it is feasible to build a robust and scalable tool for large-

scale water resource assessment using readily available global metadata. This 

approach offers a valuable, cost-effective alternative to traditional methods, especially 

for preliminary assessments in ungauged or data-scarce basins. 

In summary, this work contributes a robust methodology and a high-accuracy predictive 

model, advancing the application of machine learning in large-scale hydrology. It provides a 

validated framework for estimating a fundamental hydrological characteristic, offering a 

powerful tool to support global and regional water resource management and planning. 
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