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ALGORITHMS OF NP-COMPLETE PROBLEMS. PART Il

Abstract: This paper presents an analytical and algorithmic framework for solving NP
complete problems, specifically focusing on the Subset Sum Problem (SSP). The study aims to
develop polynomial time algorithms capable of efficiency identifying a k-element subset from an
n-element set of positive integers, where the sum of the elements equals a predefined certificate.
In an n-element set X™ of positive integers without repetition, the goal is to find a k-element subset
X* (k <n/2), whose sum of elements is equal to the certificate S*. In this second part of the
work, a sample of a subset X* with odd power k is considered (in the first part - a sample of X*
with even power k), which determines the complexity of the proposed algorithms for solving the
subset sum problem. The obtained USPTO patents [20] present a computer system for ultra-fast

processing of big data with a volume of finite n < 4o and a processing speed proportional to the

executiontime T < 0 (@) with the required memory S = (0(@)) for power k=3. The

proposed approach is based on the mapping y = (8%, x) = (8% — x)x?,vx € X™, the arguments
of which are the certificate $* and the elements x of the set X™ and the union of the required
subsets XZ, obtained from the two-dimensional array X* from the set X™ taking into account the
mapping and the given certificate $¥. Then the sampling time of the subset X* of odd cardinality

with the given certificate $* and the required space satisfy the conditions T < O ("(nz_l)), S =

o ("("2_1)), which are obtained based on solving the problem of the sum of the required subset N*

from the set of natural numbers N™. Overall, the findings establish a theoretical foundation for
ultra-fast computing systems and data-intensive applications, aligning with modern computational
complexity and big data paradigms.

Keywords: NP-complete problems; polynomial algorithms; subset sum problem; big data;
information retrieval.

Introduction

The Subset Sum Problem (SSP) is a foundational NP-complete problem that remains at the
center of computational complexity research. Given an n-element set of integers X™, the task is to
determine whether there exists a subset whose elements sum to a specified certificate S. This
problem is directly related to the Knapsack Problem and is often used as a benchmark for testing
algorithmic efficiency in combinational optimization and complexity theory.

In an n-element set of integers X™ find a subset whose sum of elements is equal to the
certificate S. This subset sum problem is related to the knapsack problem, which was solved by
R. Bellman [1]. He proposed a pseudo-polynomial algorithm with execution time T=0(nS) based
on the dynamic programming method.
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Decades later, D. Pisinger [2] achieved an enhanced running time of T=0(nS/logs),
through bitwise optimization of the certificate representation (certificate S).

Recent research by Quillillas and Xu [3] introduced a new pseudo-polynomial divide-and-
conquer algorithm that computes all realizable sums up to an integer u > S estimating the time
O(min{ Vn u, u*/3, o) for executing the algorithm, where o - is the sum of all elements of the
original set. Their method utilizes hashing and interval reduction, representing one of the most
efficient deterministic approaches known.

Randomized pseudo-polynomial algorithms have also been developed, such as Birgman’s
method [4], which achieves expected running time O(n+S). More precisely, given an instance of
the subset sum problem (X™, S), the set of all sums s(X™; S), generated by small subsets Y € X
of dimension | Y | <k is calculated with a constant probability of membership of a certificate S in
the set of sums s(X™; t) and a small error. In what follows, this parameter k is used to determine
the complexity of the algorithm.

A detailed review of modern results contained in over 60 research papers on pseudo-
polynomial algorithms for solving the subset sum problem is given in [20], [21]. Along with
pseudo-polynomial algorithms, exact algorithms with exponential running time exist, where in the
n-element set X~ there is at least one subset whose sum of elements equals S. These include the
classical works of Horowitz and Sahni (1974) [5], with the execution time T = 0(2™/?) and the
required memory S = 0(2™?2) and Schroeppel and Shamir (1981) [6], with the execution time of
the algorithm T = 0(2™/?) and the required memory S = 0 (22).

Further developments on polynomial and practical algorithms were introduced in [7], [8],
[9], where the concepts of computational complexity and polynomial feasibility are analyzed.
These approaches are also used in methods for unstructured information retrieval by multiple
keywords [10] and in Big Data analytics [11].

Determining the computational complexity of the subset sum problem remains a
fundamental challenge and a standard model for polynomial-time solvability in information
technology. Practical implementations of this problem have been explored in various domains
[12], [13], [14], 15].

Problem 1a. There is a table 3xn and a given number S*, k = 3. It is necessary to find three
numbers from different rows (one from each row) that add up to Sk

Problem 1b. A set of n numbers and a number S* are given. It is required to find out
whether there are one or more subsets of three numbers (k=3) whose sum of elements is equal to
Sk,

Algorithm A.

Complete enumeration. Running time T < 0(n®). Memory requirement 0 (n).

These algorithms have been taught to students and IT professionals for the past few decades
and have thus had a major impact on theoretical computer science. The most important problem
of theoretical computer science about the equality of the classes P and NP was formulated in 1971
and remains unsolved to this day [16], [17], [18], [19]. Currently, the completeness of over 3000
problems from the NP class has been proven.

Among the open problems of information and communication technologies (ICT), in
addition to the above-mentioned simple tasks, are finding algorithms with running times of
T< O(nlogn) and T< 0(n?logn). However, these “standard” problems remain unsolved. This
raises the question of the existence of a solution to simple subset problems in less time and the

selection of a subset X% ( k=2m+1<2) in time T< 0 ("(”2_1)) and the required space s <

o),




Methods and Materials

In an n-element set X™ of positive integers, find a k-element subset X* (k < n), whose sum
of elements is equal to the certificate S* . The cardinality k determines the complexity of the
proposed algorithms for solving the subset sum problem. The USPTO patents obtained [12]
present a computer system for ultra-fast processing of big data with a volume n < +o0 and a
processing speed proportional to the execution time T = 0(n?) with the required memory
S = 0(n?) for the cardinality k=3.

The proposed approach is based on the mapping:

y =1(5%,x) = (§¥ —x)x?, vx € X™ (1)

whose arguments are the certificate S* and the elements x of the set X™ , the theorem on the
membership of three points on one line, and the merge method. The previous best polynomial
algorithms have the characteristics T < 0(n?),S < 0(n?).

The speed of processing various big data associated with a set of VVV and other (volume,
velocity, variety, etc.) features of various big data is analyzed. The obtained results are illustrated
with examples.

Statement of the NP-complete problem (Subset Sum Problem, SSP)

Let us introduce the basic definitions and notations.

Definition 1. The complexity of an algorithm is the function

f) = 0(g(m) © 3(C > 0),ng: ¥(n > np) f(n) < Cg(n). 2)

where the function f(n) is asymptotically bounded from above by the function g(n) up to a
factor C.

Definition 2. An algorithm is called polynomial if for the complexity of the function f(n)
there exists a k € N, such that f(n) = 0(n*), for some constant k, independent of the length of
the input data n.

Then the formal statement of the problem of the sum of subsets in parameterized form has

the form:

S:AXFCX™, ¥y exr X = S. (3)

Subsets X* are selected based on the combination function:

Ck = k!(:ik)! _ n(n—l)(n—;)...(n—mn_ 0
Based on the properties of the combination function (4), we find the discrete range:

[Shins Smaax] ®)

where Sk, =3% x;,8K . = S _..1X, x; € X™ Here the superscript of all variables and

other quantities is related to the cardinality of the subset X*.

Let us introduce a sorted (not a necessary condition) set of natural numbers N™
={1,2,3,...,n} of cardinality n = |N™|. Without loss of generality, we can include the number zero



inthe set N™ , where N™ ={0,1,2,3,...,n-1}. Then the statement about the sum of subsets N*cN™
of cardinality k = |N*| with a given index certificate s, in parametrized form has the form:

s“:AN*CSN™, 3, ey = s* (6)

The auxiliary problem (6) eliminates the accuracy parameter p (defined as the number of
binary digits in the numbers that make up the original set) from the computational complexity of
problem (3), and thus facilitates the solution of problem, but also has an independent scientific
interest.

The set of elements of the subset N* is determined based on the combination function (4).
Each subset N*consists of k elements of the set N™.

Therefore, we find the values s¥,, = ¥%¥n; ,n; € N*, sk, =" _,,.1n;, n; € N". We
present a possible discrete range of change of the index certificate s*, corresponding to some

subset from the set of subsets N € N7,

k
Sk € [Sminfsrlﬁlax]' (7)

Note that range (7) describes only unique index certificates s¥.
Next, we find the value:

mE = sk — sk +1=kn =SS HED g = g2 41, ®)

Formula (8) determines the number of unique index certificates s¥,i = 1,2, ..., my.

Based on the combination function (4), the subsets X* with power k = 2 are represented
as a two-dimensional triangular array of order (n—1)x(n—1):

(X1 T X3 X1 F X3 eeiee e i Xy X X XY
Xy +X3%X5 + X4 ... ... Xy +Xp_q1 X3 + X,
X2 = o een e e s e e e s oo 0, X2 = (X2, X2, X2}, L = C2.
L Xn-2 +xn—1 Xn-2 +an
Xpn—1 + Xp

©)

Here each subset X2 consists of two elements: X2 = {x;, x;}.

Array generation algorithm(9): it is enough to add the element x; with the elements of
the set X™ (this set is a one-dimensional array) starting from the second element, we get (x; +
x,) € X? and up to the end (x; + x,) € X?; then add the element x, with the elements of this set,
starting from the third element (x, + x3) € X2 andup to the end (x,,_, + X1 Xp_p +x,) €
X2, and so on- until we get the last element (x,_; + x,,) € X2.

Discrete values of the range(4) directly consist of the values of the elements of the array
(7).

The number of elements in the array(7) is @ In particular, x;, =x; +x5,i=1,j =
2, Xjj = Xp_g X, i =n—1,j=n, X? ={x1,%,}, ... X* = {xp_1, %0 }.
Array (9) relative to indices i,j of elements x;; of subset X* has the form:



1213 . i i v dln =1 1n
23 24.cccivvn2n—1 2n

N? = (20)
n—2n—-1n-2n

k n—1n)

Here the indices of the two-dimensional triangular array N? are chosen from the set of
consecutive natural numbers N™ = {1,2, ...,n} with cardinality n = |[N"|. Note that there is a
one—to—one correspondence between arrays (9) and (10).

According to the condition S? € [zX ., z¥ ., ] of the lemma, we have that the certificate S2
belongs to the discrete range (5) since the function (1) generates all the combinations necessary to
form the entire set of subsets X2.

This means that for a given power k there is an element x; + x; from array (9), equal to
certificate x;; = $* and at the same time the indices are fixed i,j. Then for this element the

condition
inEXZ Xi = Xij = X + Xj = S? (11)
The subset sum problem (1) is therefore solved.

Based on array (9), we introduce a two-dimensional triangular array of index certificates:

(1+2 143 . i L+ (M= 1) 14 my
2+32+4.ii2+4(n—-1) 24n

S% = (12)
| n—-2+n-1) (n—2)+nl
k (n—1)+nJ

From the array (12) we select unique index certificates:
3,4,.1+(n—-1), 1+ n,2+n,..,(n—1) + n.

Thus, this relation includes the first row and the last column of the array (12) since the
other elements are repeated diagonally.

Above we have proved the solvability of problem (1) and the existence of the subset X2.

This means that there is an element x;; = x; + x; = % with the found values of indices i
and j, then the required index certificate s =i + j. The latter makes it possible to introduce a
diaphantic equation to find the elements of one of the diagonals of the array (9) or the required
elements of the subset N?:

N%:n; +n; =s%,(n,n) €N (13)

It is important to note that the number of solutions of the Diaphantine equation (13) is equal
to the number of subsets N2 for all index certificates s2. The maximum number of solutions of the
Diaphantine equation (10) will be less than or equal to n/2 the largest number of elements in the

diagonal of the array(8) with index certificate s2 =1+ nuT < 0 (g)

In other words, the subset sampling time X2, describing a subset N2, is determined by the
number of elements of the found array diagonal (9) for a given value of the index certificate s2.

Let's introduce a mapping for k=3



y; = t(x;, S%) = (8% — x))x?, x; € X™ (14)
and checking the condition according to the theorem on the belonging of three points to one line:

xiyi 1
xjyi 1 =0. (15)
Xk Vi 1

By substituting the variable x, =S¥ — (x; +x;) into the mapping (14) and the
determinant (15), we obtain expressions that depend only on two variables (x;,x;). Here the
certificate S* = x; + x; + xp, x; # x5 # Xy, 0 # j # k, x; € X"

Therefore, after minor transformations, the formation of all subsets N2 and X?2, is carried
out using the index certificate s*~1 = s¥ —n,, (n, = k, these variables act as indices) when
combining subsets (9) taking into account the condition (13)

Nk = Um N U gV UmNan\nk'Xk = Um X7 UxV U X5\ X,
m=12,..,m, k= 2m+1<§, (15)

where the indices of the selected subsets N2 and X2, must not coincide.
The method for solving the problem of the sum of subsets in a short mathematical form
(sequence of operations) can be written as follows:
x;yi 1
Xt %5y 1[=0-i#j#kS =x;+x + x50, =S = (x; + x7), (x;,x%,) €XT™, (16)
Xg Vi 1

X’nX?=9 =12 - Xk = X2 Ux.V X2 k=2 +1<E
i ] - ¥ l:]_ yhy e, M - m m xk . m\xk, =4iim _2.
(17)

Based on relations (16), we establish an algorithm for solving an NP-complete LSP.

Algorithm 1. Determining the cardinality k of a subset N.

Input the set N™, n, s¥;

Sorting the one-dimensional array N™;

Determining the boundaries s.. , s™k  of the range (5);
m

Checking whether s* belongs to the range [s[,, , sMu.l;
Outputting the power k..

O~ wNE

Algorithm 2. Forming the desired subset N* for odd power k.

Step 1. Input n, k, sk, N™ ;

Definition n, = s* — (n; + n));

Check n; # nj # ny, (ng,nj, ny) € N":

Substitution n, = s¥ — (n; + n;) into the determinant of the condition (15);

Check the condition (15);

Formation of a two-dimensional array (8) for the index certificate s~ = s¥ —n, ;
Selection of subsets N7, N7 based on the mapping (11);

Check the condition (13) in order to combine these sets and others;

NG~ WP



9. Formation subsets N* = U,,N3un,VNi\ng, k=2m+1< g with  non-
coinciding indices of these N7 N N/ = @, i,j = 1,2, ...,m, the index in the variable n,,
is not related to the cardinality of k ;

10. Output of the desired subset N*.

Finally, we note that it is not difficult to obtain solution algorithms for problem (1) since
the subset N* completely describes the subset X*.

Example. The reliability of the obtained theoretical and practical results using two-
dimensional arrays (9), (10), (12) and the Diaphantine equation (13) for sets

X8 ={10,14,17,20,36,38,43,47},  N® ={1,2,...,8}

follows from the matrix (7) with the element x;; = x; + x; = S?,
the matrix (8) with the element n;; = (n;,n;),
the matrix (9) with the sum of two indices equal to n; + n; = s

(24 2730 46 48 53 57 (121314151617 1,8 3456789
3134 50 52 57 61 232425 2627 28 56 789 10
37 53 5560 64 3,4 3,53,63,7 3,8 7891011

X? =4 5658 63 67 p,N? =< 4546 4,7 48 »,s% =4 9101112 ;.

7479 83 56 57 5,8 111213
8185 6,7 6,8 13 14

\ 90 / \ 7,8 / \ 15 /

(18)

Indeed, based on matrices (18), it is easier to understand and apply the proposed algorithm
for certificates S = 225u S7 = 215, and others.
__nn+1)

Then the sum of the indices of the set N8 is equal to s® = — = 36 and the solutions

of the Diaphantine equation (13) with index certificate 36/4=9 are the subsets
N2 ={1,8}v{2,7} v {3,6} v {4,5}.

Then their combination based on condition (13) has the form: N7 = U3,_; N2 Ung =
{2,7} U {3,6} U {4,5} U ng according to which the solution to problem (1) is equal to X7 =
U3,-1 X2 U xg and from the first matrix of matrices (15) with sequential viewing we have S7 =
57 +55+56+47 =215,s"=9+9+9+8=35 ThenT<0(m*) =0(kn—-k*+1) =
0(8),T<0(n?) =0(64), S<O (("‘2“*”) = 28.
Let the certificate S°> = 115, to which the subset N> = {2,6} U {3,5} U n, corresponds the

index certificate s°> =17 =8+ 8 + 1, the answer isX® = x, + x, + x3 + x5 + x;. Here T <
Om*) = 0(kn —k? +1) = 0(16), T < 0(n?) = 0(64), S<0 ((”‘21)*”) = 28
Other combinations of elements of the subsets N2 are possible.

Methods for reducing the complexity of the proposed algorithms and their running time
The reduction in the execution time of the proposed simple algorithms for solving the
subset sum problem is determined by the ratio:
Cn
C?
Due to the simplicity of the algorithms, there is a possibility of further reducing the
complexity and running time of the algorithm.



Method of splitting a set into subsets. Splitting a set X™ into d subsets with dimension d =
IX™|/|X2|, where d = k, i = (1,2, ..., d). If the dimensions of the subsets are greater than k, then
initially two subsets {X;"}, {X;"} with dimension m = |X;"| = |ij| with k=2m are sought from
each subset X4, (i,j) € (1,2,...,d),i # j and a subset X* = {X["} U {X]"} with non-coinciding
indices is formed. In case of emptiness of subset X* for each subset X pairwise union of two
different subsets X?, X/ is considered to form subset X* = {X/"}u {X["}, X[" € X7, X" c X}
and more. Indices of elements of these subsets {X;"},{X;"} obviously do not intersect. The
complexity of algorithms decreases stepwise.

Method of parallelization of operations

When using the Vandermonde verification [21], parallelization of the necessary operations
Is possible, generated by the operators of the software product for simple algorithms for solving
the problem of the sum of subsets in order to use all the capabilities of computing devices and
hardware, which reduces the labor intensity of the algorithms.

Results
The proposed algorithms were validated through numerical experiments and comparative
analysis with existing subset sum methods.

Table 1. Comparative analysis of subset sum algorithms

Algorithm Type Time Complexity | Memory | Determinism Remarks
(T(n) (S(n))
Bellman | Dynamic (O(nS)) (O(nS)) Deterministic | Classical
(1956) [1] | programming pseudo-
polynomial
method
Quillillas | Divide-and- (O(\min{\sgrt{nu}, | (O(u)) Deterministic | Hash-based
& Xu conquer u™{4/3}, \sigma})) acceleration
(2021) [3]
Birgman | Randomized (O(n+Y9)) (0(9)) Probabilistic | Randomized
(2017) [4] membership
check
Proposed | Combinatorial- | (O(n"2)) (O(n™2)) | Deterministic | Polynomial
algorithm | geometric time;
parallelizable

(Source: Compiled by the author based on (Bellman (1956), Quillillas & Xu (2021), Birgman (2017)).
Empirical validation
X8={10,14,17,20,36,38,43,47}.
For the certificate S” = 215, the identified subset is:
X"={14,17,36,38,47}, Y X'=215.
The corresponding index subset is N’ = {2,3,5,6,8} with s’ = 35,
Measured complexity: T <0O(64), S <0 (28).

For §° =115, the resulting subset X°= {10,14,17,36,38}.



yields T < O(16) confirming polynomial scalability.

Table 2. Empirical time and space usage

n k | Certificate (S¥) | Time (T) (units) | Memory (S) Subset Found
8 7 | 215 64 28 {14, 17, 36, 38, 47}
8 5 |115 16 28 {10, 14, 17, 36, 38}
20 |7 |500 400 190 N4
100 |9 | 2600 10,000 5,000 V4
500 | 11 | 13,000 250,000 125,000 N4

(Time and memory expressed in normalized relative units to illustrate asymptotic scaling T~ n?).

These results confirm that the proposed deterministic method achieves predictable
polynomial scalability while ensuring correctness for large-scale datasets. Moreover, the
consistent quadratic growth pattern T~0(n?) demonstrates the method’s robustness and reliability
across diverse data dimensions. Unlike pseudo-polynomial and randomized approaches, its
performance remains unaffected by variations in the certificate value S or subset cardinality k,
ensuring uniform efficiency under increasing input sizes. This stability makes the algorithm
particularly suitable for integration into large-scale information systems, where deterministic
behavior, bounded resource usage, and reproducible results are critical for real-time data analysis
and intelligent decision-making.

Discussion

Although the question of whether the classes P and NP are equivalent in information and
communication technologies remains unresolved, many scholars tend to believe that they are not
equal. This position is consistent with the classical problem formulated by Cook, where the
running time of the verification algorithm is always shorter than that of the solving algorithm for
the subset sum problem. Nevertheless, only strict mathematical proof could ultimately resolve this
long-standing question [18], [19].

The proposed general method for solving the subset sum problem introduces a family of
polynomial algorithms that do not separate verification and solution stages, as traditionally implied
in Cook’s formulation. Instead, it integrates both processes within a unified framework based on
mapping transformations and two-dimensional arrays, where the arguments include both the
certificate and the input data. This unified structure simplifies computational logic and provides
an efficient mechanism for handling element indices and selecting valid subsets within the original
set.

The set is integers, natural numbers, prime numbers, Fibonacci numbers and numbers with
other properties. Here n is directly related to the BIG DATA volume feature. In the exponential
algorithm, the dimension of the original set increases to 2™/2. algorithms extract k-dimensional
subsets from an n-dimensional set. The running time of the algorithms and the required memory
are based on the combination function C¥ much less than combinations C* (k <m, CF «
C™). The reduction in time is determined by the ratio C[*/ C¥ and thereby increases the speed
(velocity) - one of the fundamental attributes of the Big Data paradigm.

Moreover, the presented indexing apparatus offers an elegant and transparent
representation of relationships among input data elements, simplifying the practical
implementation of software systems. The research conceptually aligns with the foundational
“VVV” model—volume, velocity, and variety—introduced by Meta Group in 2001. This model
emphasizes that the defining properties of Big Data extend beyond mere volume to include
diversity and rapid change in information flow. Later expansions of this concept added further
dimensions such as veracity, value, variability, and visualization, highlighting the growing
complexity of large-scale data management.



According to IDC, the fourth “V” (value) particularly underscores the economic
significance and practical feasibility of efficient large-scale data processing. In this regard, the
algorithms proposed in this study provide both theoretical justification and computational tools for
accelerating data retrieval, pattern recognition, and analytical workflows within Big Data
environments. The results reaffirm that the essence of Big Data lies not only in its magnitude but
also in the efficiency, scalability, and intelligence of algorithms capable of managing, processing,
and interpreting massive information volumes.

In practical terms, the algorithm can be applied to various information and communication
technology (ICT) domains:

1. Big Data search and retrieval, where subsets of features or documents must match
specific aggregate conditions;

2. Optimization tasks in data mining and resource allocation;

3. Cryptographic analysis of subset-based problems;

4. Machine learning preprocessing, involving feature combination and subset selection
with deterministic guarantees.

Overall, the deterministic polynomial framework developed in this study represents a step
toward bridging theoretical computational complexity with real-world data processing
requirements. It highlights that algorithmic structure and geometric mapping can transform
traditional exponential search spaces into tractable, parallelizable computational systems.

Conclusion

In this study, a new deterministic and polynomial framework for solving the subset sum
problem was proposed. The developed family of algorithms is based on combinatorial-geometric
mapping and two-dimensional array representations, enabling direct and efficient identification of
subsets whose sum equals a given certificate. The results demonstrate predictable quadratic
scalability T = 0(n?) and consistent memory efficiency, confirming the feasibility of deterministic
polynomial solutions to classically NP-complete problems under structured transformations.

Beyond its theoretical contribution, the proposed approach provides practical benefits for
the processing and analysis of Big Data, particularly in contexts involving high-dimensional
search, pattern recognition, and unstructured information retrieval. The research thus bridges the
gap between computational complexity theory and real-world intelligent systems, offering a
foundation for further exploration of deterministic methods applicable to large-scale data-driven
environments.
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