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ALGORITHMS OF NP-COMPLETE PROBLEMS. PART II 

 

Abstract: This paper presents an analytical and algorithmic framework for solving NP 

complete problems, specifically focusing on the Subset Sum Problem (SSP). The study aims to 

develop polynomial time algorithms capable of efficiency identifying a k-element subset from an 

n-element set of positive integers, where the sum of the elements equals a predefined certificate.  

In an n-element set  𝑿𝒏 of positive integers without repetition, the goal is to find a k-element subset 

𝑿𝒌  (𝒌 < 𝒏/𝟐), whose sum of elements is equal to the certificate 𝑺𝒌. In this second part of the 

work, a sample of a subset 𝑿𝒌 with odd power 𝒌  is considered (in the first part - a sample of 𝑿𝒌 

with even power 𝒌), which determines the complexity of the proposed algorithms for solving the 

subset sum problem.  The obtained USPTO patents [20] present a computer system for ultra-fast 

processing of big data with a volume of finite 𝒏 < +∞ and a processing speed proportional to the 

execution time T ≤ 𝑶(
𝒏(𝒏−𝟏)

𝟐
) with the required memory  𝕊 = (𝑶(

𝒏(𝒏−𝟏)

𝟐
)) for power k=3.  The 

proposed approach is based on the mapping 𝒚 = 𝝉(𝑺𝒌, 𝒙) = (𝑺𝒌 − 𝒙)𝒙𝟐, ∀𝒙 ∈ 𝑿𝒏 , the arguments 

of which are the certificate 𝑺𝒌 and the elements 𝒙 of the set 𝑿𝒏 and the union of the required 

subsets 𝑿𝟐, obtained from the two-dimensional array  𝑿𝒌  from the set 𝑿𝒏 taking into account the 

mapping and the given certificate 𝑺𝒌.  Then the sampling time of the subset 𝑿𝒌 of odd cardinality 

with the given certificate 𝑺𝒌 and the required space satisfy the conditions T ≤ 𝑶(
𝒏(𝒏−𝟏)

𝟐
), 𝕊 =

𝑶(
𝒏(𝒏−𝟏)

𝟐
), which are obtained based on solving the problem of the sum of the required subset 𝑵𝒌  

from the set of natural numbers 𝑵𝒏. Overall, the findings establish a theoretical foundation for 

ultra-fast computing systems and data-intensive applications, aligning with modern computational 

complexity and big data paradigms.   

Keywords: NP-complete problems; polynomial algorithms; subset sum problem; big data; 

information retrieval. 

 

Introduction  

The Subset Sum Problem (SSP) is a foundational NP-complete problem that remains at the 

center of computational complexity research. Given an n-element set of integers 𝑋𝑛, the task is to 

determine whether there exists a subset whose elements sum to a specified certificate S. This 

problem is directly related to the Knapsack Problem and is often used as a benchmark for testing 

algorithmic efficiency in combinational optimization and complexity theory.    

In an n-element set of integers 𝑋𝑛 find a subset whose sum of elements is equal to the 

certificate S.  This subset sum problem is related to the knapsack problem, which was solved by 

R. Bellman [1]. He proposed a pseudo-polynomial algorithm with execution time T=O(nS) based 

on the dynamic programming method.  
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Decades later, D. Pisinger [2] achieved an enhanced running time of T=O(nS/logS), 

through bitwise optimization of the certificate representation (certificate S). 

Recent research by Quillillas and Xu [3] introduced a new pseudo-polynomial divide-and-

conquer algorithm that computes all realizable sums up to an integer 𝑢 ≥ 𝑆 estimating the time 

O(min{ √𝑛 𝑢, 𝑢4/3, σ) for executing the algorithm, where σ - is the sum of all elements of the 

original set. Their method utilizes hashing and interval reduction, representing one of the most 

efficient deterministic approaches known. 

Randomized pseudo-polynomial algorithms have also been developed, such as Birgman’s 

method [4], which achieves expected running time O(n+S). More precisely, given an instance of 

the subset sum problem (𝑋𝑛, S), the set of all sums s(𝑋𝑛; S), generated by small subsets Y ⊆ 𝑋𝑛 

of dimension | Y | ≤ k  is calculated with a constant probability of membership of a certificate S in 

the set of sums s(𝑋𝑛; t) and a small error. In what follows, this parameter k is used to determine 

the complexity of the algorithm. 

A detailed review of modern results contained in over 60 research papers on pseudo-

polynomial algorithms for solving the subset sum problem is given in [20], [21]. Along with 

pseudo-polynomial algorithms, exact algorithms with exponential running time exist, where in the 

n-element set  𝑋𝑛 there is at least one subset whose sum of elements equals S. These include the 

classical works of Horowitz and Sahni (1974) [5], with the execution time 𝑇 = 𝑂(2𝑛/2) and the 

required memory 𝕊 = 𝑂(2𝑛/2) and Schroeppel and Shamir (1981) [6], with the execution time of 

the algorithm 𝑇 = 𝑂(2𝑛/2) and the required memory 𝕊 = 𝑂 (2
𝑛

4).     

Further developments on polynomial and practical algorithms were introduced in [7], [8], 

[9], where the concepts of computational complexity and polynomial feasibility are analyzed. 

These approaches are also used in methods for unstructured information retrieval by multiple 

keywords [10] and in Big Data analytics [11].  

Determining the computational complexity of the subset sum problem remains a 

fundamental challenge and a standard model for polynomial-time solvability in information 

technology. Practical implementations of this problem have been explored in various domains 

[12], [13], [14], 15].  

 

Problem 1a. There is a table 3xn and a given number 𝑆𝑘, 𝑘 = 3. It is necessary to find three 

numbers from different rows (one from each row) that add up to 𝑆𝑘.  

  Problem 1b. A set of n numbers and a number 𝑆𝑘 are given. It is required to find out 

whether there are one or more subsets of three numbers (k=3) whose sum of elements is equal to 

𝑆𝑘.  

Algorithm A.  

Complete enumeration. Running time 𝑇 ≤ 𝑂(𝑛3). Memory requirement 𝑂(𝑛).  
  These algorithms have been taught to students and IT professionals for the past few decades 

and have thus had a major impact on theoretical computer science. The most important problem 

of theoretical computer science about the equality of the classes P and NP was formulated in 1971 

and remains unsolved to this day [16], [17], [18], [19]. Currently, the completeness of over 3000 

problems from the NP class has been proven. 

Among the open problems of information and communication technologies (ICT), in 

addition to the above-mentioned simple tasks, are finding algorithms with running times of                     

T< 𝑂(𝑛𝑙𝑜𝑔𝑛)  and  T< 𝑂(𝑛2𝑙𝑜𝑔𝑛). However, these “standard” problems remain unsolved. This 

raises the question of the existence of a solution to simple subset problems in less time and the 

selection of a subset 𝑋𝑘, (  𝑘 = 2𝑚 + 1 <
𝑛

2
) in time T≤ 𝑂 (

𝑛(𝑛−1)

2
) and the required space 𝕊 ≤

𝑂 (
𝑛(𝑛−1)

2
). 

 

 



 

Methods and Materials 

In an n-element set 𝑋𝑛 of positive integers, find a k-element subset 𝑋𝑘   (𝑘 < 𝑛), whose sum 

of elements is equal to the certificate 𝑆𝑘 . The cardinality k determines the complexity of the 

proposed algorithms for solving the subset sum problem. The USPTO patents obtained [12] 

present a computer system for ultra-fast processing of big data with a volume 𝑛 < +∞ and a 

processing speed proportional to the execution time T = 𝑂(𝑛2)  with the required memory                    

𝕊 = 𝑂(𝑛2) for the cardinality k=3.  

The proposed approach is based on the mapping: 

                            

  𝑦 = 𝜏(𝑆𝑘, 𝑥) = (𝑆𝑘 − 𝑥)𝑥2, ∀𝑥 ∈ 𝑋𝑛    (1) 
 

whose arguments are the certificate 𝑆𝑘 and the elements 𝑥 of the set 𝑋𝑛 , the theorem on the 

membership of three points on one line, and the merge method. The previous best polynomial 

algorithms have the characteristics T ≤ 𝑂(𝑛2), 𝕊 ≤ 𝑂(𝑛2).   
The speed of processing various big data associated with a set of VVV and other (volume, 

velocity, variety, etc.) features of various big data is analyzed. The obtained results are illustrated 
with examples. 

 

Statement of the NP-complete problem (Subset Sum Problem, SSP) 

 

Let us introduce the basic definitions and notations. 

 

Definition 1. The complexity of an algorithm is the function 

 

𝑓(𝑛) = 𝑂(𝑔(𝑛)) ↔ ∃(𝐶 > 0), 𝑛0: ∀(𝑛 > 𝑛0)𝑓(𝑛) ≤ 𝐶𝑔(𝑛).                               (2) 

 

where the function 𝑓(𝑛) is asymptotically bounded from above by the function 𝑔(𝑛) up to a                 

factor C.   

 

Definition 2. An algorithm is called polynomial if for the complexity of the function f(n) 
there exists a 𝑘 ∈ 𝑁, such that 𝑓(𝑛) = 𝑂(𝑛𝑘), for some constant k, independent of the length of 

the input data n. 

Then the formal statement of the problem of the sum of subsets in parameterized form has 

the form: 

 

                                                      𝑆: ∃𝑋𝑘⊆𝑋𝑛, ∑ 𝑥𝑖𝑥𝑖∈𝑋
𝑘 = 𝑆.                                                            (3) 

 
 Subsets 𝑋𝑘 are selected based on the combination function: 

 

                                     С𝑛
𝑘 =

𝑛!

𝑘!(𝑛−𝑘)!
=

𝑛(𝑛−1)(𝑛−2)…(𝑛−𝑘+1)

𝑘!
 .                                                             (4) 

 
 Based on the properties of the combination function (4), we find the discrete range: 

 

                                                        [𝑆𝑚𝑖𝑛
𝑘 , 𝑆𝑚𝑎𝑥

𝑘 ],                                                                                                (5) 

 

where 𝑆𝑚𝑖𝑛
𝑘 = ∑ 𝑥𝑖 , 𝑆𝑚𝑎𝑥

𝑘 = ∑ 𝑥𝑖 
𝑛
𝑖=𝑛−𝑘+1 ,𝑘

𝑖=1  𝑥𝑖 ∈ 𝑋
𝑛. Here the superscript of all variables and 

other quantities is related to the cardinality of the subset 𝑋𝑘.  
 

Let us introduce a sorted (not a necessary condition) set of natural numbers 𝑁𝑛 

={1,2,3,…,n} of cardinality 𝑛 = |𝑁𝑛|. Without loss of generality, we can include the number zero 



 

in the set 𝑁𝑛 , where 𝑁𝑛 ={0,1,2,3,…,n-1}. Then the statement about the sum of subsets  𝑁𝑘⊆𝑁𝑛  
of cardinality 𝑘 = |𝑁𝑘| with a given index certificate 𝑠𝑘 in parametrized form has the form:  

 

                                               𝑠𝑘: ∃𝑁𝑘⊆𝑁𝑛, ∑ 𝑛𝑖𝑛𝑖∈𝑁
𝑘 = 𝑠𝑘                                                              (6)    

                                                                       
The auxiliary problem (6) eliminates the accuracy parameter p (defined as the number of 

binary digits in the numbers that make up the original set) from the computational complexity of 

problem (3), and thus facilitates the solution of problem, but also has an independent scientific 

interest.  

The set of elements of the subset 𝑁𝑘 is determined based on the combination function (4). 

Each subset 𝑁𝑘consists of 𝑘 elements of the set 𝑁𝑛. 

Therefore, we find the values 𝑠𝑚𝑖𝑛
𝑘 = ∑ 𝑛𝑖

𝑘
1 , 𝑛𝑖 ∈ 𝑁

𝑛,  𝑠𝑚𝑎𝑥
𝑘 = ∑ 𝑛𝑖

𝑛
𝑛−𝑘+1 ,  𝑛𝑖 ∈ 𝑁

𝑛. We 

present a possible discrete range of change of the index certificate  𝑠𝑘,  corresponding to some 

subset from the set of subsets 𝑁𝑘 ⊆ 𝑁𝑛,  

                                                                       𝑠𝑘 ∈ [𝑠𝑚𝑖𝑛
𝑘 , 𝑠𝑚𝑎𝑥

𝑘 ],                                                                  (7) 

 

Note that range (7) describes only unique index certificates 𝑠𝑖
𝑘.   

Next, we find the value: 

 

                 𝑚𝑘 = 𝑠𝑚𝑎𝑥
𝑘 −  𝑠𝑚𝑖𝑛

𝑘 + 1 = 𝑘𝑛 −
(𝑘−1)𝑘

2
−
𝑘(𝑘+1)

2
+ 1 = 𝑘𝑛 − 𝑘2 + 1.                        (8)     

 

                                                                                                                                                                          

Formula (8) determines the number of unique index certificates 𝑠𝑖
𝑘 , 𝑖 = 1,2, … ,   𝑚𝑘.  

 

Based on the combination function (4), the subsets 𝑋𝑘 with power 𝑘 = 2   are represented 

as a two-dimensional triangular array of order (n−1)×(n−1): 

 

𝑋2 =

{
 
 

 
 
𝑥1 + 𝑥2  𝑥1 + 𝑥3……………… . . 𝑥1 + 𝑥𝑛−1    𝑥1 + 𝑥𝑛
                   𝑥2 + 𝑥3 𝑥2 + 𝑥4  ……𝑥2 + 𝑥𝑛−1   𝑥2 + 𝑥𝑛
                                         ………………………………… .
                                                    𝑥𝑛−2 + 𝑥𝑛−1    𝑥𝑛−2 + 𝑥𝑛
                                                                               𝑥𝑛−1 + 𝑥𝑛 }

 
 

 
 

, 𝑋2 = {𝑋1
2, 𝑋2

2, … , 𝑋𝑙
2}, 𝑙 = 𝐶𝑛

2.      

                                                                                                                                                     (9)                                           

Here each subset 𝑋2 consists of two elements: 𝑋2 = {𝑥𝑖, 𝑥𝑗}.  

 

Array generation algorithm(9): it is enough to add the element x1  with the elements of 

the set 𝑋𝑛 (this set is a one-dimensional array) starting from the second element, we get (𝑥1 +
𝑥2) ∈ 𝑋2 and up to the end (𝑥1 + 𝑥𝑛)  ∈ 𝑋

2; then add the element 𝑥2 with the elements of this set, 

starting from the third element (𝑥2 + 𝑥3) ∈ 𝑋2 and up to the end (𝑥𝑛−2 + 𝑥𝑛−1    𝑥𝑛−2 + 𝑥𝑛) ∈
𝑋2,  and so on- until we get the last element  (𝑥𝑛−1 + 𝑥𝑛 ) ∈ 𝑋

2.  

Discrete values of the range(4) directly consist of the values of the elements of the array 

(7).  

The number of elements in the array(7) is  
(𝑛−1)𝑛

2
. In particular, 𝑥12 = 𝑥1 + 𝑥2, 𝑖 = 1, 𝑗 =

2,…, 𝑥𝑖𝑗 = 𝑥𝑛−1 + 𝑥𝑛 , 𝑖 = 𝑛 − 1, 𝑗 = 𝑛,  𝑋
2 = {𝑥1 , 𝑥2}, … , 𝑋

2 = {𝑥𝑛−1, 𝑥𝑛 }.   

 Array (9) relative to indices i,j of elements 𝑥𝑖𝑗 of subset 𝑋2  has the form: 

 



 

                        𝑁2 =

{
 
 

 
 
12  13………………………………1 𝑛 − 1    1 𝑛
                             23  24…… .………2 𝑛 − 1   2 𝑛

                                        …………………… .
                                               𝑛 − 2  𝑛 − 1   𝑛 − 2 𝑛
                                                                           𝑛 − 1 𝑛}

 
 

 
 

                                   (10) 

 

Here the indices of the two-dimensional triangular array  𝑁2 are chosen from the set of 

consecutive natural numbers 𝑁𝑛 = {1,2, … , 𝑛} with cardinality 𝑛 = |𝑁𝑛|. Note that there is a 

one−to−one correspondence between arrays (9) and (10).  

According to the condition 𝑆2 ∈ [𝑧𝑚𝑖𝑛
𝑘 , 𝑧𝑚𝑎𝑥

𝑘 ] of the lemma, we have that the certificate 𝑆2 

belongs to the discrete range (5) since the function (1) generates all the combinations necessary to 

form the entire set of subsets 𝑋2.  

This means that for a given power k there is an element 𝑥𝑖 + 𝑥𝑗 from array (9), equal to 

certificate 𝑥𝑖𝑗 = 𝑆2 and at the same time the indices are fixed 𝑖, 𝑗. Then for this element the 

condition 

 

                                     ∑ 𝑥𝑖𝑥𝑖∈𝑋
2 = 𝑥𝑖𝑗 = 𝑥𝑖 + 𝑥𝑗 = 𝑆2                                                 (11) 

 

The subset sum problem (1) is therefore solved.  

 

Based on array (9), we introduce a two-dimensional triangular array of index certificates: 

 

                  𝑆2 =

{
 
 

 
 
1 + 2  1 + 3………………………………1 + (𝑛 − 1)    1 +  𝑛
                             2 + 3  2 + 4…… .………2 + (𝑛 − 1)   2 + 𝑛

                                        …………………… .
                                                        𝑛 − 2 + (𝑛 − 1)   (𝑛 − 2) + 𝑛
                                                                                        (𝑛 − 1) + 𝑛}

 
 

 
 

                        (12) 

 

From the array (12) we select unique index certificates: 

3, 4,… 1 + (𝑛 − 1),   1 +  𝑛, 2 + 𝑛,… , (𝑛 − 1) + 𝑛. 
 

Thus, this relation includes the first row and the last column of the array (12) since the 

other elements are repeated diagonally. 

Above we have proved the solvability of problem (1) and the existence of the subset 𝑋2. 

 This means that there is an element 𝑥𝑖𝑗 = 𝑥𝑖 + 𝑥𝑗 = 𝑆
2 with the found values of indices i 

and  j, then the required index certificate 𝑠2 = 𝑖 + 𝑗. The latter makes it possible to introduce a 

diaphantic equation to find the elements of one of the diagonals of the array (9) or the required 

elements of the subset  𝑁2:  
 

                                     𝑁2: 𝑛𝑖 + 𝑛𝑗 = 𝑠2, ( 𝑛𝑖, 𝑛𝑗) ∈ 𝑁
𝑛                                                            (13) 

 

It is important to note that the number of solutions of the Diaphantine equation (13) is equal 

to the number of subsets 𝑁2 for all index certificates 𝑠2. The maximum number of solutions of the 

Diaphantine equation (10) will be less than or equal to 𝑛/2 the largest number of elements in the 

diagonal of the array(8) with index certificate 𝑠2 = 1 +  𝑛 и 𝑇 ≤ 𝑂 (
𝑛

2
).  

In other words, the subset sampling time 𝑋2, describing a subset 𝑁2, is determined by the 

number of elements of the found array diagonal (9) for a given value of the index certificate 𝑠2. 

  

Let's introduce a mapping for k=3  

 



 

                                             𝑦𝑖 = 𝜏(𝑥𝑖, 𝑆
𝑘) = (𝑆𝑘 − 𝑥𝑖)𝑥𝑖

2, 𝑥𝑖 ∈ 𝑋
𝑛.                                         (14)     

                                                   

and checking the condition according to the theorem on the belonging of three points to one line: 

 

                                                                       |

𝑥𝑖 𝑦𝑖  1
𝑥𝑗  𝑦𝑗  1

𝑥𝑘 𝑦𝑘 1
| = 0.                                                        (15) 

 

By substituting the variable 𝑥𝑘 = 𝑆
𝑘 − (𝑥𝑖 + 𝑥𝑗) into the mapping (14) and the 

determinant (15), we obtain expressions that depend only on two variables (𝑥𝑖, 𝑥𝑗). Here the 

certificate 𝑆𝑘 = 𝑥𝑖 + 𝑥𝑗 + 𝑥𝑘 , 𝑥𝑖 ≠ 𝑥𝑗 ≠ 𝑥𝑘, 𝑖 ≠ 𝑗 ≠ 𝑘, 𝑥𝑘 ∈ 𝑋
𝑛. 

Therefore, after minor transformations, the formation of all subsets 𝑁𝑚
2  and 𝑋𝑚

2  is carried 

out using the index certificate 𝑠𝑘−1 = 𝑠𝑘 − 𝑛𝑘  (𝑛𝑘 = 𝑘, these variables act as indices)  when 

combining subsets (9) taking into account the condition (13) 

 

                 𝑁𝑘 = ⋃ 𝑁𝑚
2 ∪ 𝑛𝑘⋁𝑚 ⋃ 𝑁𝑚

2 ∖ 𝑛𝑘𝑚 , 𝑋𝑘 = ⋃ 𝑋𝑚
2 ∪ 𝑥𝑘⋁⋃ 𝑋𝑚

2 ∖ 𝑥𝑘𝑚𝑚 ,  

                                           𝑚 = 1,2, … ,𝑚,    𝑘 =  2𝑚 + 1 <
𝑛

2
,                                                                  (15) 

 

where the indices of the selected subsets 𝑁𝑚
2  and 𝑋𝑚

2  must not coincide. 

The method for solving the problem of the sum of subsets in a short mathematical form 

(sequence of operations) can be written as follows: 

 𝑋𝑛 → |

𝑥𝑖  𝑦𝑖 1
𝑥𝑗  𝑦𝑗  1

𝑥𝑘 𝑦𝑘 1
| = 0 → 𝑖 ≠ 𝑗 ≠ 𝑘, 𝑆𝑘 = 𝑥𝑖 + 𝑥𝑗 + 𝑥𝑘, 𝑥𝑘 = 𝑆𝑘 − (𝑥𝑖 + 𝑥𝑗), (𝑥𝑖 , 𝑥𝑗𝑥𝑘) ∈ 𝑋 

𝑛, (16)

   

 

𝑋𝑖
2 ∩ 𝑋𝑗

2 = ∅, 𝑖, 𝑗 = 1,2, … ,𝑚 → 𝑋𝑘 = ⋃ 𝑋𝑚
2 ∪ 𝑥𝑘⋁

𝑚
⋃ 𝑋𝑚

2 ∖ 𝑥𝑘
𝑚

, 𝑘 = 2𝑚 + 1 ≤
𝑛

2
. 

                                                                                                                                                     (17)   

 

Based on relations (16), we establish an algorithm for solving an NP-complete LSP. 

 

Algorithm 1. Determining the cardinality k of a subset 𝑵𝒌. 

1. Input the set 𝑁𝑛, n, 𝑠𝑘; 

2. Sorting the one-dimensional array 𝑁𝑛; 

3. Determining the boundaries 𝑠min   
𝑘 , 𝑠𝑚𝑎𝑥

𝑚𝑘  of the range (5); 

4. Checking whether 𝑠𝑘 belongs to the range [𝑠min   
𝑚 , 𝑠𝑚𝑎𝑥

𝑚 ]; 

5. Outputting the power k.. 

 

Algorithm 2. Forming the desired subset 𝑵𝒌 for odd power k.  

1. Step 1. Input n, k, 𝑠𝑘, 𝑁𝑛 ; 

2. Definition 𝑛𝑘 = 𝑠
𝑘 − (𝑛𝑖 + 𝑛𝑗); 

3. Check 𝑛𝑖 ≠ 𝑛𝑗 ≠ 𝑛𝑘, (𝑛𝑖 , 𝑛𝑗 , 𝑛𝑘) ∈ 𝑁
𝑛 ; 

4. Substitution 𝑛𝑘 = 𝑠𝑘 − (𝑛𝑖 + 𝑛𝑗) into the determinant of the condition (15); 

5. Check the condition (15); 

6. Formation of a two-dimensional array (8) for the index certificate 𝑠𝑘−1 = 𝑠𝑘 − 𝑛𝑘 ; 

7. Selection of subsets 𝑁𝑖
2, 𝑁𝑗

2 based on the mapping (11); 

8. Check the condition (13) in order to combine these sets and others; 



 

9. Formation subsets 𝑁𝑘 = ⋃ 𝑁𝑚
2 ∪ 𝑛𝑘⋁ 𝑁𝑚

2 ∖ 𝑛𝑘𝑚 , 𝑘 = 2𝑚 + 1 ≤
𝑛

2
, with non-

coinciding indices of these 𝑁𝑖
2 ∩ 𝑁𝑗

2 = ∅, 𝑖, 𝑗 = 1,2, … ,𝑚, the index in the variable 𝑛𝑘 

is not related to the cardinality of k ; 

10. Output of the desired subset 𝑁𝑘 .  
  

Finally, we note that it is not difficult to obtain solution algorithms for problem (1) since 

the subset 𝑁𝑘 completely describes the subset 𝑋𝑘. 

 

Example. The reliability of the obtained theoretical and practical results using two-

dimensional arrays (9), (10), (12) and the Diaphantine equation (13) for sets  

 

𝑋8 = {10,14,17,20,36,38,43,47}, 𝑁8  = {1,2, … ,8} 
 

follows from the matrix (7) with the element 𝑥𝑖𝑗 = 𝑥𝑖 + 𝑥𝑗 = 𝑆
2,  

the matrix (8) with the element 𝑛𝑖𝑗 = (𝑛𝑖, 𝑛𝑗),  

the matrix (9) with the sum of two indices equal to 𝑛𝑖 + 𝑛𝑗 = 𝑠
2: 

 

𝑋2 =

{
  
 

  
 
24  27 30  46  48  53  57

      31 34  50  52  57  61

             37  53  55 60  64 

                   56 58  63  67

                            74 79  83  

                                  81 85 

                                      90 }
  
 

  
 

,𝑁2 =

{
  
 

  
 
1,2  1,3 1,4  1,5  1,6 1,7  1,8

       2,3 2,4  2,5  2,6 2,7  2,8

                3,4  3,5 3,6 3,7  3,8 

                       4,5 4,6  4,7  4,8

                                5,6  5,7  5,8  

                                       6,7 6,8 

                                            7,8 }
  
 

  
 

, 𝑠2 =

{
  
 

  
 
3  4 5  6  7 8  9

    5 6  7 8 9  10

         7 8 9 10 11 

          9 1011 12

             11 12 13 

                  13 14

                        15 }
  
 

  
 

.   

 

                                                                                                                                                     (18) 

Indeed, based on matrices (18), it is easier to understand and apply the proposed algorithm 

for certificates 𝑆8 = 225 и 𝑆7 = 215, and others.  

Then the sum of the indices of the set  𝑁8 is equal to 𝑠8 =
𝑛(𝑛+1)

2
= 36 and the solutions 

of the Diaphantine equation (13) with index certificate 36/4=9 are the subsets                                           

𝑁𝑚
2 = {1,8} ∨ {2,7} ∨ {3,6} ∨ {4,5}.   

Then their combination based on condition (13) has the form: 𝑁7 = ⋃ 𝑁𝑚
23

𝑚=1 ∪ 𝑛8 =
{2,7} ∪ {3,6} ∪ {4,5} ∪ 𝑛8 according to which the solution to problem (1) is equal to 𝑋7 =
⋃ 𝑋𝑚

2 ∪ 𝑥8
3
𝑚=1  and from the first matrix of matrices (15) with sequential viewing we have 𝑆7 =

57 + 55 + 56 + 47 = 215, 𝑠7 = 9 + 9 + 9 + 8 = 35.  Then 𝑇 ≤ 𝑂(𝑚𝑘) = 𝑂(𝑘𝑛 − 𝑘2 + 1) =

𝑂(8), 𝑇 ≤ 𝑂(𝑛2) = 𝑂(64),    𝕊 ≤ 𝑂 (
(𝑛−1)∗𝑛

2
) = 28.   

Let the certificate 𝑆5 = 115, to which the subset 𝑁5 = {2,6} ∪ {3,5} ∪ 𝑛1 corresponds the 

index certificate 𝑠5 = 17 = 8 + 8 + 1, the answer is 𝑋5 = 𝑥2 + 𝑥6 + 𝑥3 + 𝑥5 + 𝑥1. Here 𝑇 ≤

𝑂(𝑚𝑘) = 𝑂(𝑘𝑛 − 𝑘2 + 1) = 𝑂(16), 𝑇 ≤ 𝑂(𝑛2) = 𝑂(64),    𝕊 ≤ 𝑂 (
(𝑛−1)∗𝑛

2
) = 28.   

Other combinations of elements of the subsets 𝑁2  are possible. 

 

Methods for reducing the complexity of the proposed algorithms and their running time 

 The reduction in the execution time of the proposed simple algorithms for solving the 

subset sum problem is determined by the ratio: 

 𝐶𝑛
𝑘

 𝐶𝑛2
. 

Due to the simplicity of the algorithms, there is a possibility of further reducing the 

complexity and running time of the algorithm. 



 

Method of splitting a set into subsets. Splitting a set 𝑋𝑛 into d subsets with dimension 𝑑 =
|𝑋𝑛|/|𝑋𝑖

𝑑| , where 𝑑 ≥ 𝑘, 𝑖 = (1,2, … , 𝑑). If the dimensions of the subsets are greater than 𝑘, then 

initially two subsets {𝑋𝑖
𝑚}, {𝑋𝑗

𝑚} with dimension 𝑚 = |𝑋𝑖
𝑚| = |𝑋𝑗

𝑚| with k=2m are sought from 

each subset 𝑋𝑑, ( 𝑖, 𝑗) ∈ (1,2, … , 𝑑), 𝑖 ≠ 𝑗 and a subset  𝑋𝑘 = {𝑋𝑖
𝑚} ∪ {𝑋𝑗

𝑚} with non-coinciding 

indices is formed. In case of emptiness of subset 𝑋𝑘 for each subset 𝑋𝑖
𝑑 pairwise union of two 

different subsets 𝑋𝑖
𝑑 , 𝑋𝑗

𝑑  is considered to form subset  𝑋𝑘 = {𝑋𝑖
𝑚} ∪  {𝑋𝑗

𝑚}, 𝑋𝑖
𝑚 ⊆ 𝑋𝑖

𝑑 , 𝑋𝑗
𝑚 ⊆ 𝑋𝑗

𝑑     

and more. Indices of elements of these subsets {𝑋𝑖
𝑚}, {𝑋𝑗

𝑚} obviously do not intersect. The 

complexity of algorithms decreases stepwise. 

Method of parallelization of operations 

When using the Vandermonde verification [21], parallelization of the necessary operations 

is possible, generated by the operators of the software product for simple algorithms for solving 

the problem of the sum of subsets in order to use all the capabilities of computing devices and 

hardware, which reduces the labor intensity of the algorithms. 
 

Results 
The proposed algorithms were validated through numerical experiments and comparative 

analysis with existing subset sum methods. 
 

Table 1. Comparative analysis of subset sum algorithms  
 

Algorithm Type Time Complexity 

(T(n)) 

Memory 

(S(n)) 

Determinism Remarks 

Bellman 

(1956) [1] 

Dynamic 

programming 

(O(nS)) (O(nS)) Deterministic Classical 

pseudo-

polynomial 

method 

Quillillas 

& Xu 

(2021) [3] 

Divide-and-

conquer 

(O(\min{\sqrt{nu}, 

u^{4/3}, \sigma})) 

(O(u)) Deterministic Hash-based 

acceleration 

Birgman 

(2017) [4] 

Randomized (O(n + S)) (O(S)) Probabilistic Randomized 

membership 

check 

Proposed 

algorithm 

Combinatorial-

geometric 
(O(n^2)) (O(n^2)) Deterministic Polynomial 

time; 

parallelizable 
 

(Source: Compiled by the author based on (Bellman (1956), Quillillas & Xu (2021), Birgman (2017)). 

 

Empirical validation  

 

X8 = {10,14,17,20,36,38,43,47}. 

 

For the certificate S7 = 215, the identified subset is: 

 

X7 = {14,17,36,38,47}, ∑X7=215. 

 

The corresponding index subset is N7 = {2,3,5,6,8} with s7 = 35. 
 

Measured complexity: T ≤ O(64),  𝑆 ≤ 𝑂 (28). 
 
For  𝑆5 = 115, the resulting subset X5 = {10,14,17,36,38}. 
 



 

yields T ≤ O(16) confirming polynomial scalability. 
 

Table 2. Empirical time and space usage 
 

n k Certificate (Sk) Time (T) (units) Memory (S) Subset Found 

8 7 215 64 28 {14, 17, 36, 38, 47} 

8 5 115 16 28 {10, 14, 17, 36, 38} 

20 7 500 400 190 ✓ 

100 9 2600 10,000 5,000 ✓ 

500 11 13,000 250,000 125,000 ✓ 
 

(Time and memory expressed in normalized relative units to illustrate asymptotic scaling T∼ n2). 

These results confirm that the proposed deterministic method achieves predictable 

polynomial scalability while ensuring correctness for large-scale datasets. Moreover, the 

consistent quadratic growth pattern T∼O(n2) demonstrates the method’s robustness and reliability 

across diverse data dimensions. Unlike pseudo-polynomial and randomized approaches, its 

performance remains unaffected by variations in the certificate value Sk or subset cardinality k, 

ensuring uniform efficiency under increasing input sizes. This stability makes the algorithm 

particularly suitable for integration into large-scale information systems, where deterministic 

behavior, bounded resource usage, and reproducible results are critical for real-time data analysis 

and intelligent decision-making. 

Discussion 

Although the question of whether the classes P and NP are equivalent in information and 

communication technologies remains unresolved, many scholars tend to believe that they are not 

equal. This position is consistent with the classical problem formulated by Cook, where the 

running time of the verification algorithm is always shorter than that of the solving algorithm for 

the subset sum problem. Nevertheless, only strict mathematical proof could ultimately resolve this 

long-standing question [18], [19]. 

The proposed general method for solving the subset sum problem introduces a family of 

polynomial algorithms that do not separate verification and solution stages, as traditionally implied 

in Cook’s formulation. Instead, it integrates both processes within a unified framework based on 

mapping transformations and two-dimensional arrays, where the arguments include both the 

certificate and the input data. This unified structure simplifies computational logic and provides 

an efficient mechanism for handling element indices and selecting valid subsets within the original 

set. 

The set is integers, natural numbers, prime numbers, Fibonacci numbers and numbers with 

other properties. Here n is directly related to the BIG DATA volume feature. In the exponential 

algorithm, the dimension of the original set increases to  2𝑛/2. algorithms extract k-dimensional 

subsets from an n-dimensional set. The running time of the algorithms and the required memory 

are based on the combination function  𝐶𝑛
𝑘 much less than combinations  𝐶𝑛

𝑚  (𝑘 < 𝑚, 𝐶𝑛
𝑘 ≪

 𝐶𝑛
𝑚). The reduction in time is determined by the ratio  𝐶𝑛

𝑚/ 𝐶𝑛
𝑘 and thereby increases the speed 

(velocity) - one of the fundamental attributes of the Big Data paradigm.   

Moreover, the presented indexing apparatus offers an elegant and transparent 

representation of relationships among input data elements, simplifying the practical 

implementation of software systems. The research conceptually aligns with the foundational 

“VVV” model—volume, velocity, and variety—introduced by Meta Group in 2001. This model 

emphasizes that the defining properties of Big Data extend beyond mere volume to include 

diversity and rapid change in information flow. Later expansions of this concept added further 

dimensions such as veracity, value, variability, and visualization, highlighting the growing 

complexity of large-scale data management. 



 

According to IDC, the fourth “V” (value) particularly underscores the economic 

significance and practical feasibility of efficient large-scale data processing. In this regard, the 

algorithms proposed in this study provide both theoretical justification and computational tools for 

accelerating data retrieval, pattern recognition, and analytical workflows within Big Data 

environments. The results reaffirm that the essence of Big Data lies not only in its magnitude but 

also in the efficiency, scalability, and intelligence of algorithms capable of managing, processing, 

and interpreting massive information volumes. 

In practical terms, the algorithm can be applied to various information and communication 

technology (ICT) domains: 

1. Big Data search and retrieval, where subsets of features or documents must match 

specific aggregate conditions; 

2. Optimization tasks in data mining and resource allocation; 

3. Cryptographic analysis of subset-based problems; 

4. Machine learning preprocessing, involving feature combination and subset selection 

with deterministic guarantees. 

Overall, the deterministic polynomial framework developed in this study represents a step 

toward bridging theoretical computational complexity with real-world data processing 

requirements. It highlights that algorithmic structure and geometric mapping can transform 

traditional exponential search spaces into tractable, parallelizable computational systems. 

 

 Conclusion 

In this study, a new deterministic and polynomial framework for solving the subset sum 

problem was proposed. The developed family of algorithms is based on combinatorial–geometric 

mapping and two-dimensional array representations, enabling direct and efficient identification of 

subsets whose sum equals a given certificate. The results demonstrate predictable quadratic 

scalability 𝑇 = 𝑂(𝑛2) and consistent memory efficiency, confirming the feasibility of deterministic 

polynomial solutions to classically NP-complete problems under structured transformations. 

Beyond its theoretical contribution, the proposed approach provides practical benefits for 

the processing and analysis of Big Data, particularly in contexts involving high-dimensional 

search, pattern recognition, and unstructured information retrieval. The research thus bridges the 

gap between computational complexity theory and real-world intelligent systems, offering a 

foundation for further exploration of deterministic methods applicable to large-scale data-driven 

environments. 
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