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MULTILINGUAL AUTOMATIC SPEECH RECOGNITION INTERFACE FOR
TYPING: USABILITY STUDY AND PERFORMANCE EVALUATION FOR
KAZAKH, RUSSIAN, AND ENGLISH

Abstract: We present a multilingual automatic speech recognition (ASR) system for Kazakh,
Russian, and English designed for the trilingual community of Kazakhstan. Although prior
research has shown that speech-based text entry can outperform conventional keyboard typing
for human—computer interaction and interaction with large language models (LLMs), little is
known about its performance and usability in low-resource multilingual contexts, particularly for
Kazakh. To address this gap, we fine-tuned a Whisper-based model on additional Kazakh speech
data, achieving a large reduction in Kazakh word error rate (WER) from 21.55% with the OpenAl
baseline to 8.84%, while preserving competitive performance for Russian and English. We then
conducted a user study with 38 participants from Nazarbayev University, who performed dictated
reading and editing tasks in all three languages. We evaluated performance using WPM, CPM,
WER, and CER, and assessed usability and cognitive effort using the System Usability Scale
(SUS) and the Raw NASA Task Load Index (NASA-TLX). Participants reached high speech-
based typing speeds without editing and moderate speeds with editing across all three languages.
Importantly, there were no statistically significant differences between Kazakh, Russian, and
English in error rates, cognitive load, or perceived usability. Users reported low cognitive load
(NASA-TLX < 40) and consistently high usability (SUS > 80%), indicating that the interface is
efficient, easy to use, and requires minimal mental effort. These results demonstrate that Kazakh-
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adapted Whisper enables accurate, usable, and low-effort multilingual ASR, and highlight the
potential of speech-driven text entry systems for trilingual contexts such as Kazakhstan.

Keywords: automatic speech recognition (ASR); cognitive load; usability; human-
computer interaction (HCI); human-Al interaction; speech-based typing.

Introduction

Multilingual ASR Systems and LLMs

Speech technologies such as Automatic Speech Recognition (ASR) [1], speaker
recognition [2], and Text-to-Speech (TTS) [3] systems are introducing novel communication
methods in the fields of human-robot interaction, dialogue systems, and intelligent social agents.
It is remarkable how a single Large Language Model (LLM) can be adapted to perform different
tasks including writing, coding, utilizing search tools, chatbots, virtual assistants, and embodied
agents [4]. LLMs as cutting-edge artificial intelligence (AI) systems are data hungry and have
billions of parameters that need to be trained on massive text corpora [5]. Generally, LLMs have
revolutionized the reality of Al and natural language processing (NLP) at their core, introducing
a foundational shift in millions of people's everyday lives [6].

Speech-Based Text Entry Interfaces

Modern interactive input methods showcase a microphone button alongside text entry
windows, indicating that voice-based entry mode is added to conventional typing-based text entry
methods. As an example, Google’s Gboard and Yandex Keyboard integrated a microphone icon
into their keyboards. When the user taps or taps-and-holds the mic icon, the system's microphone
is activated, and the spoken words appear as text in the communication window. Apple’s i0S
Dictation also uses the mic integrated into the on-screen keyboard. During the dictation, the on-
screen keyboard keeps being open, allowing the user to switch between keyboard typing and
speech-based typing. Custom web applications enable users to click a custom button to record
speech-based input, view the resulting transcription as text in the communication box, and then
edit it before proceeding. In commercial systems (i.e., Gboard and Yandex), dictation can run
continuously across fields. Custom web applications enforce a one-phrase-at-a-time workflow
for structured data collection. Usually, dictation-supported systems use common visuals,
including mic icons, real-time instructions such as “Start speaking” and “Recording”.

In addition, many speech-based and typing-based input methods are integrated with error
correction frameworks [7]. Authors in [8] describe a mechanism for dynamic propagation of user
feedback that progressively adapts the system to different speakers and lexical contexts. In [9],
the authors integrated LLLM with an audio encoder supporting speech-based communication with
LLMs. In another work, a speech recognition system was integrated with LLM to deal with
transcription errors, helping to increase the accuracy of the system [10]. Commercial Uls
enhanced with voice-based input methods offer both touch-based typing and voice input for
making corrections to the transcribed input text. For example, Google Docs’ voice-based typing
interface underlines uncertain words and offers a few alternatives for correcting the
corresponding words. Specifically, users can right-click on an underlined word to see suggestions
as a potential correction. Gboard and Yandex Keyboards enable users to apply voice commands
for text corrections, such as “delete last word” or “clear,” which removes recognized words.
Some systems use, “Fix it” feature that performs auto-correction of the grammar as the post-
dictation text processing



Kazakhstan Context and Fine-Tuned ASR Model

In this work, we present a multilingual ASR interface designed for the trilingual
community of Kazakhstan. We evaluate the system’s usability in an ASR-based typing task in
three languages: Kazakh, Russian, and English. The system is deployed as a web application that
integrates OpenAlI’s Whisper large-v3-turbo model fine-tuned by the Institute of Smart Systems
and Artificial Intelligence (ISSAI). The resulting model, issai/whisper-turbo, demonstrates
accurate speech recognition in Kazakh while maintaining high performance in Russian, English,
and Turkish. Fine-tuning was performed using the Common Voice 12.0 dataset for Russian and
English [11], the Kazakh Speech Corpus 2 (KSC2) [12], and the Turkish Speech Corpus (TSC)
[13].

Quantitative evaluation shows that issai/whisper-turbo achieves a word error rate (WER)
of 8.84% on Kazakh, a substantial improvement over the OpenAl Whisper baseline (21.55%).
For English, the model achieves 5.82% WER vs. 5.15% baseline, and for Russian 6.15% WER
vs. 5.89% baseline. These results highlight that our fine-tuning significantly enhances Kazakh
recognition while preserving strong performance for high-resource languages, validating the
model’s effectiveness for real-world multilingual usage.

Aim of the study

We created a web application that simulates speech typing and editing processes. To
evaluate how fast people could type via speech in three languages, Kazakh, Russian, and English,
we designed a user study with 38 participants. During the user study, participants were asked to
read aloud texts in three languages to create the ASR-based text transcriptions. Users could also
make edits to the transcribed texts using the computer keyboard. During the experimental study,
we explored the usability of the presented speech-based typing interface and evaluated the
cognitive load of participants after using the system in each of the three languages. The aim of
this study was to evaluate the performance and usability of a multilingual ASR interface for
Kazakh, Russian, and English, with the hypothesis that speech-based text entry can be performed
with comparable efficiency, usability, and cognitive load across the three languages

The rest of the paper is structured as follows: In the next section of the paper, we present
the literature review on how ASR systems are integrated in various spheres of human-technology
interaction and communication. We also provide an overview of the background research prior
to the development of ASR systems for the Kazakh language. Then we present the methodology
part of the paper with an overview of the user study design, the method used for the data
collection, and analysis. This is followed by the part of the paper where we present the results of
the user study and discussion. The paper is concluded in the final part of the paper.

Literature Review

Current trends in language models show that they are becoming increasingly multimodal
and multilingual, meaning that interaction with LLMs via text and typing is extended by other
modalities and communication patterns [6]. According to Fathullah et al. [9], interaction with
LLMs purely via text may be limited due to the wide range of information structures that are
difficult to capture in text but are naturally encoded in voice and visual inputs. For example,
voice inputs to LLMs could provide information on speaker emotions, while images present
contextual environmental information, making communication with LLMs faster and more
efficient. Adhikary et al. [14] claim that speech-based interactions outperform typing when users
are moving or multitasking. According to the authors, speech lets users focus more on what they
want to say rather than how to type it, reducing human mental and physical workloads. Fig. 1
compares three input paradigms for communicating with LLMs. The traditional keyboard-only
interface is a low-bandwidth channel which is slow and unnatural. Moreover, it comes with



substantial information loss since voice-based and visual cues are not transmitted. The hybrid
approach proposed in this study uses voice to generate text and the keyboard for editing. From
our experiments it approximately doubles input speed and partially improves naturalness, yet it
remains constrained by a text-only bottleneck that discards prosodic and visual information.
Future multimodal systems accept high-bandwidth, parallel streams (speech, text, video),
reducing information loss and enabling LLMs to form more holistic, context-rich interpretations,
thereby supporting faster and more natural human-AlI interaction [15].

Traditional system Hybrid system (This study) Future systems
o n waveform
8 @te
‘@ Slow communication “» 2x faster communication &% Fast communication
= Unnatural ws + @ Half-natural 2 Natural
< Information loss < Information loss @ No information loss

Figure 1. Comparison of Traditional, Hybrid (This study), and Future Human-AlI Interaction Systems

There is a growing interest in multilingual ASR systems in bilingual and trilingual
countries. Multilingual ASRs aim to preserve and enhance the practical use of native languages
during human Al interaction and communication with LLMs. In [16],[17], the authors present
multilingual ASR systems for Dutch-Frisian, Arabic-English, and Arabic-Malay languages. A
speech emotion recognition system that can recognize emotional context for different languages
is presented in [18]. Authors discuss how emotional cues can be understood differently
depending on the language and culture. Overall, multilingual ASR systems enhanced with
emotion recognition modality could be the next step for a multimodal communication framework
with LLMs and Al agents.

There are also many works exploring speech-based technologies in education. For
example, in [19], [20], the authors provide an overview of Al teaching assistants in online
education. Kim et al. [21] in their work show that students view Al assistants as technically
helpful, while limited emotionally. A meta-analysis [19] shows that learners gain more when
chatbots offer quick, personalised feedback. In [22], authors discuss the effectiveness of Al
chatbots in language practice. A review of 32 chatbot systems for English language learners'
practice speaking and listening is presented in [23].

Early development of speech-based systems for the Kazakh language faced significant
challenges due to a lack of linguistic and technological resources. In recent years, foundational
datasets for Kazakh have been created to support the advancement of ASR systems, including
large-scale speech corpora composed of transcribed audio from diverse speakers and sources
such as media broadcasts and online content [12]. Additionally, publicly available resources have
been developed for other NLP tasks, such as sentiment analysis, question answering, machine
translation, and emotional TTS synthesis. These datasets have played a critical role in enabling
research and development in Kazakh language technologies and continue to support progress in
Al-driven language applications.



Methods and Materials
System Description

Commercial voice-based text entry applications involve steps such as speaking, viewing
the transcribed text, and then editing the text. Many systems share common design principles,
such as a button to start recording, displaying the transcribed text in real time, punctuation
support, and an after-dictation editing flow. Correction workflows also overlap with manual edits
and voice-based commands. In our application, transcribed text is highlighted in yellow where a
mismatch occurred between the original and transcribed texts, helping users to quickly navigate
through the text during editing (see Fig. 2). This way, users could manually correct any
misrecognized words in the transcribed text.

Demo kz 1/3 texts

OcimgikTep Tipi opraHusmaep AyHUeciHAeri Heri3ri eki TonTbIH Gipi. ©cimaikTep KypAbIKTbIH 6apbik XepiHae eceqj, cyaa aa
KesgeceTiH Typnepi fe 6ap. ©ciMaikTepAiH eH ipi Tobbl ryngi Hemece xabblK TyKbIMAbI 6CiMAIKTEP.

Your Transcription:

OcimaikTep Tipi opraHuaMaep AyHUeciHAeri Heri3ri eki ToNTbIH 6ipi,|eciMAiKTep KYP/bIKTbIH 6ap/bIK XepiHae ecefj, cyaa aa
KesgeceTiH Typnepi fe 6ap, ecivaikTepaiH eH ipi Tobbl rynai Hemece xabblK TYKbIMAbI 6CiMAIKTEp.

Transcription complete in 0.85 seconds.
Record Next >>

Figure 2. Editable Transcription Interface with Real-Time Error Highlighting

Our web application consists of five pages (registration, experiments, break, results, end).
The interface presents the text to be read, provides a voice recording button using the
MediaRecorder API, shows live ASR transcription, and highlights character-level mismatches in
yellow. Users can correct errors before moving forward using a control button that advances the
experiment. Front-end logic handles recording, rendering, and editing, while a Python backend
executes ASR via the Flask framework.

The web application performs data logging of information presented in Table 1 for data
collection and further statistical analysis.

Table 1. Variables and their descriptions stored for data analysis

Variable Description
P Presented text (string).
P words Number of words in P.

S Returned text by ASR (string).




S words

Number of words in S.

Transcribed text after user editing (string).

T words

Number of words in T.

Time talking

Time elapsed from pressing the Record button until pressing Stop.

(seconds)

Time asr Time from pressing Stop until the ASR result is received.
(seconds)

Time edit Time from the first keyboard press during editing until the “Next”
(seconds) button is pressed.

Time server

Computed as Time_talking + Time_asr.

(seconds)

Time total Computed as Time talking + Time_asr + Time_edit.

(seconds)

WPM_asr Calculated as S_words divided by (Time ast/60).

WPM_server Calculated as S_words divided by (Time server/60).

WPM_user Calculated as T words divided by (Time_total/60).

CPM_server Calculated as Number of characters divided by (Time server/60).
CPM_user Calculated as Number_of characters divided by (Time_total/60).

CER asr (%)

Used the provided formula (see Methods section) to compute the
character error rate between S and P, then multiply by 100.

CER _user (%)

Compute the CER between T and P, then multiply by 100.

WER asr (%)

Used the provided formula (see Methods section) to compute the word
error rate between S and P, then multiply by 100.




WER user (%) Compute the WER between T and P, then multiply by 100.

Backspaces Number of backspaces recorded during text editing in the current trial.

For audio-to-text transcription, we have used OpenAI’s Whisper large-v3-turbo model,
fine-tuned by ISSAI to achieve high recognition quality in Kazakh, Russian, English, and
Turkish. The model (issai/whisper-turbo) is hosted on Hugging Face and is accessible by request
rather than publicly downloadable. Fine-tuning was performed on 8x NVIDIA A100 GPUs over
7 epochs (learning rate 5 x 1077, batch size 16) using the following corpora: Common Voice 12.0
from Mozilla [11] (Kazakh: 3.8 h; Russian: 291 h; Turkish: 134 h; English: 3758 h), Kazakh
Speech Corpus 2 (KSC2) [12] (1096 h), and Turkish Speech Corpus (TSC) [13] (218 h). Whisper
large-v3-turbo was selected as an optimal trade-off between speed and multilingual recognition
accuracy for real-time usability of the speech-based typing system. Researchers who require
access to the fine-tuned weights or the fine-tuning recipe may contact us at issai@nu.edu.kz. In
addition, to support reproducibility and facilitate future research, we publicly release the system
implementation at: https://github.com/Nurikman/ASR_interface ISSAI.

Experimental Procedure

We conducted a user study with 38 participants (17 female, 21 male; age range 20-37, M
=26.89, SD = 5.81) from the Nazarbayev University (NU) community in Astana, Kazakhstan.
Participants were recruited among students, researchers, faculty, and staff. Ethics approval was
obtained from NU’s Institutional Research Ethics Committee, and all participants provided
informed consent. Participants were randomly assigned to three groups (Group A: n=12; Group
B: n=13; Group C: n=13), each performing speech-based typing tasks in different language
orders: English-Kazakh-Russian (A), Kazakh-Russian-English (B), and Russian-English-
Kazakh (C). At registration, demographic data (age, gender, education, occupation) were
collected, and users were assigned a participant ID and task order. The speech-based typing
interface (Fig. 2) displayed a short passage for reading aloud, an editable ASR-generated
transcript, and controls to start/stop recording and move to the next passage. Each participant
read 27 short texts (3 passages per language, split into 3 segments). Audio was recorded using
the MediaRecorder API, chunked into 25-second segments, and transcribed via the Whisper-
Turbo ASR model on Hugging Face. The final transcriptions and inference times were returned
to the client.

Methods and Materials

We assessed participants’ cognitive load and system usability during speech-based typing
tasks in Kazakh, Russian, and English. After each language speech-based typing task,
participants completed the paper-based Raw NASA Task Load Index (NASA-RTLX) to evaluate
cognitive load across six dimensions: mental, physical, and temporal demand, performance,
effort, and frustration [24]. Usability was measured using the System Usability Scale (SUS) [25],
also administered after each language speech-based typing task. Participants took short breaks
between language tasks and completed a demographic survey at the end, reflecting on language
proficiency, speaking habits, and comfort with the system.
For the statistical analysis, we used means (M), standard deviations (SD), and Shapiro-Wilk
tests for normality. One-Way ANOVA and post-hoc Tukey HSD tests were applied to evaluate
differences in age, gender distribution, typing speed (i.e., words per minute - WPM, characters
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per minute - CPM), accuracy (i.e., word error rate - WER, character error rate - CER),
cognitive load (NASA-RTLX), and usability (SUS) across the three languages.

Task-Level Measures

For each trial, we recorded both text outputs and timing features of the interaction. The
interface displayed a reference prompt P (the “presented text”), and the participant was instructed
to read it aloud. The ASR system produced a raw transcription S (“system output™), after which
the participant was allowed to edit this transcription to obtain a final corrected version T (“user-
edited text”) We denote by Py pras, Swords lworas the number of word tokens in P,S,and T,
respectively.

We also logged timing signals for each phase of the interaction. Time qiking (5) is the
duration from when the participant pressed the Record button until they pressed Stop (i.e., active
speech production). Timeg, (s) is the duration from Stop until the ASR hypothesis S was
returned to the interface (model inference time). Time,q;: (S) is the duration from the first
manual keystroke in the editable transcript until the participant confirmed the transcription by
pressing “Next.” We define Timeg,,perr (S) as the sum of speech and inference time,

Timeserper = Timergiking + Timegsy, (1)

and Timey,q; (S) as the full end-to-end interaction time including manual correction,
Timeiorqr = TiMerqiking + Timegsy + Timeegis, (2)
Using these quantities, we computed multiple throughput measures. WPM ;. is defined as

SWOT S
WPM,,, = ——words (3)

Timeggy / 60°

capturing the instantaneous decoding rate of the ASR system alone. WPMg,, ., reflects
effective speech-to-text throughput including speaking and inference,

SWOT S
WPMserper = e (4)

Timeserver / 60°

and WPM,,,, reflects the end-to-end effective text entry rate experienced by the participant after
corrections,

TWOT S
WPM,,,, = —2ords (5)

Timetotar / 60°

In parallel, we computed CPM g,1per and CPM ¢, as the number of produced characters (in the
ASR hypothesis for CPMg,,er and in the final corrected text for CPM,,.,) divided by
Timegorper / 60 and Time;orq; / 60, respectively, yielding character-level entry speed in
characters per minute.

Transcription accuracy was quantified at both the system and user levels. WER,,. (%) and
CER,,, (%) are the word error rate and character error rate, respectively, between S and P,
multiplied by 100. WER, 5., (%) and CER ., (%) are the same metrics computed between T
and P, multiplied by 100. WER and CER follow standard edit-distance definitions, i.e.,

S+D+1I Sc+ D41,

WER = X 100%,CER =

x 100%, (6), (7)

c



where S, D, and I are word-level substitutions, deletions, and insertions with respect to the
reference, and N is the total number of reference words; S., D¢, I, and N, are the analogous
quantities at the character level. Finally, we recorded Backspaces, defined as the number of
backspace keypresses during the edit phase of that trial. This serves as a proxy for manual
correction effort.

Results

The study involved 38 participants with an average age of 26.89 + 5.81 years, randomly
assigned to three groups (A, B, C) to perform speech-based typing tasks in Kazakh, Russian, and
English in varied orders. One-way ANOVA showed no significant differences in age
(F(2,35)=0.85, p=0.44) or gender distribution (F(2,35)=2.53, p=0.09) across groups.

Typing performance, measured in WPM, differed significantly across languages. System
WPM (typing without editing) showed significant variation (F(2,111)=101.61, p<0.001), as did
user WPM (including editing time) (F(2,111)=51.01, p<0.001). According to Tukey HSD,
Kazakh WPM values were significantly lower than both Russian and English. Mean system
WPM was 90.87 + 16.48 for Kazakh, 130.07 + 16.41 for Russian, and 144.56 + 18.01 for English.
Corresponding user WPM values were 40.31+£16.06, 68.81+17.4, and 76.98+16.37,
respectively (Fig. 3a-b).

Typing performance, measured in CPM, also showed significant differences across
languages. System CPM was significantly different across groups (F(2,111)=7.3, p<0.001),
particularly between Kazakh and Russian. User CPM differences were significant for Kazakh-
Russian and Kazakh-English pairs (F(2,111)=11.5, p<0.001). Mean system CPM values were
667.96 +118.02 (Kazakh), 759.49 +£99.92 (Russian), and 716.94 + 94.14 (English), while user
CPM values were 264.55 +98.25, 362.22 £ 96.93, and 335.06 + 78.32, respectively (Fig. 3c—d).

Figure 4a-d presents speech-based typing accuracy metrics, including system and user
WER and CER. System WER was highest for Kazakh (26.32 + 8.34), followed by Russian
(11.86 + 2.38) and English (9.65 + 2.52) (Fig. 4a). User WER followed a similar trend: Kazakh
(3.40 £ 6.33), Russian (1.29 +6.25), and English (0.95 £2.11) (Fig. 4b). One-way ANOVA
showed significant differences for system WER (F(2,111)=114.63, p<0.001) and user WER
(F(2,111)=3.88, p=0.023). Tukey HSD confirmed significant differences between Kazakh-
Russian and Kazakh-English for system WER, and between Kazakh-English for user WER.



Typing Speed
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Figure 3.

System CER was highest for Kazakh (5.28 + 2.7), compared to English (3.85 + 1.29) and
Russian (3.80 £ 1.39) (Fig. 4c). User CER values were lower overall, Kazakh (0.52 £ 0.98),
Russian (0.40 + 0.80), and English (0.33 +0.82) (Fig. 4d). One-way ANOVA revealed a
significant difference in system CER across languages (F(2,111)=7.33, p=0.001), with Tukey
HSD indicating significant differences for Kazakh-Russian and Kazakh-English pairs. However,
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Typing speed: a) system WPM not edit case, b) user WPM edit case, c) system CPM not edit case, and d) user CPM edit case

user CER differences were not statistically significant (F(2,111)=0.43, p=0.65).

Figure 5a-f presents cognitive load ratings across six NASA-TLX dimensions (i.e.,
mental, physical, and temporal demand; effort; frustration; and perceived performance) for
Kazakh, Russian, and English. One-way ANOVA revealed no statistically significant differences
across languages for any dimension. While Kazakh showed slightly higher average scores in
mental demand (29 +30.26), effort (34 =27.43), and frustration (17 +22.20), these differences
were not statistically significant. Performance ratings were comparable across languages:

66+ 28.13 (Kazakh), 73 + 22.30 (Russian), and 69 +21.62 (English).



Typing Accuracy
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Figure 4. Typing accuracy: a) system WER not edit case, b) user WER edit case, c) system CER not edit case, and d) user CER edit case

As shown in Fig. 6, usability ratings for speech-based typing were high across all
languages: 86.58 +14.29 (Kazakh), 86.91 +10.97 (Russian), and 88.95 +9.54 (English). One-
way ANOVA revealed no significant differences between languages (F(2,111)=0.45, p=0.64),
indicating similarly high usability (>80%) among the Kazakhstani population.

Demographic results are summarized in Fig. 7a-d. Most participants rated their typing
experience in all three languages as “very comfortable” or “somewhat comfortable,” with Kazakh
receiving slightly higher “somewhat comfortable” ratings (34.21%) and a higher “neutral”
response rate (10.53%) compared to Russian and English (5.26%) (Fig. 7a). In terms of language
background (Fig. 7b), 57.89% reported Kazakh as their first language and 42.11% Russian; none
reported English. Fluency was highest in Russian (73.68%), followed by English (13.16%) and
Kazakh. Intermediate proficiency was lowest in Russian, being 5-6 times lower than in Kazakh
or English.

Daily language use (Fig. 7c) showed limited use of English, with 65.79% using it 0-25%
of the time. Russian and Kazakh were used more frequently: 55.26% and 60.53% reported using
them 26—-50% of the time, respectively. Only 2.63% reported using Kazakh 76—-100% of the time;
no participants reported this level of use for Russian or English. Educational levels (Fig. 7d) were
predominantly at the Master’s level (44.74%), followed by graduate students (21.05%),
undergraduates (18.42%), and smaller proportions of Bachelor’s and PhD holders (7.89% each).
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Demographic Questionnaire Results
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Figure 7. Demographic questionnaire results expressed in percentage: a) speech-based typing experience, b) language proficiency in three
languages, c) how often participants type in each of the three languages during the day, and d) educational level

Discussion

In the era of Al, new interaction and communication modalities with Al and LLMs can
further impact the usability of languages. In general, in our times of Al and technological
development, speech has become an essential modality of embodiment, communication, and
interaction between humans and Al-enhanced social robots, conversational agents, and voice
assistants [9]. While one set of languages becomes more popular, accessible, and tech-supported,
the others become less popular. This could disadvantage people who speak native languages with
less support from the global tech community. Individuals who speak native languages may be
hindered from integrating Al technologies and innovations into their daily lives due to the
language barrier.

In our previous study [26], we found that keyboard typing in Kazakh was slower and less
accurate than in Russian and English, with higher cognitive load. Kazakh typing speed averaged
23.04 £ 6.59 WPM, which was 1.27 times and 1.41 times lower than Russian (29.15 + 7.58) and
English (32.53 +8.31), respectively. Kazakh typing also had a higher character error rate
(CER =5.73 £5.00) compared to Russian (5.24 +5.27) and English (3.22 £ 3.59). Participants
reported lower comfort and frequency of use when typing in Kazakh. In the current study, speech-
based typing outperformed keyboard input across all languages. For Kazakh, participants
achieved 90.87 £ 16.48 WPM (no edits) and 40.31 = 16.06 WPM (with edits), which is 3.94x and
1.75x% faster than keyboard typing. For Russian, the speed was 130.07 +16.41 WPM (no edits)
and 68.81+17.4 WPM (with edits), i.e., 4.48 times and 2.36 times faster. In English, users
reached 144.56+18.01 WPM and 76.98 £ 16.37 WPM, showing 4.44 times and 2.37 times
improvements over keyboard input. Despite the speed advantage, Kazakh showed significantly
higher word error rates (WER), being 2.22 vs. 2.64 times higher than Russian and 2.73 vs. 3.58
times higher than English (no edits/with edits). CER was also elevated for Kazakh, 1.39 vs. 1.30
times higher than Russian and 1.37 vs. 1.58 times higher than English. Nonetheless, speech-



based typing resulted in lower reported effort and higher perceived performance compared to
keyboard input, particularly in Kazakh.

Our study has certain limitations concerning the diversity of the participant sample: 38
participants were recruited from NU. In the future these limitations can be addressed by involving
more participants of various domains from different regions. Further works might be focused on
expanding the Kazakh speech corpus with more diverse data, advancing research in emotional
speech recognition, and deploying the system in real-world human-AlI interaction scenarios to
assess its practical applicability.

Overall, communication with LLMs in the Kazakh language via keyboard typing could
become much less effective over time. ASR offers a faster alternative. Prior studies [26] have
shown that voice input on smartphones allows significantly faster text entry, nearly 3 times faster
than typing, when users are certain of what they want to say. However, users often prefer text in
uncertain situations due to easier message editing and greater comfort. Similar findings were
reported by Ruan et al. [27], where speech input was 2.93 and 2.87 times faster than typing in
English and Mandarin, respectively.

Despite speed advantages, speech input poses challenges: editing is time-consuming, and
users may feel uncomfortable speaking aloud in public or noisy settings. Therefore, designing
audio-based interfaces requires attention to both technical performance and human factors. Deep
learning systems like Deep Speech 2 [28] show promise in handling spontaneous speech, accents,
and background noise, making speech-based interaction with LLMs more feasible across
languages, including Kazakh.

ASR technology plays a key role in speaker identification and authentication, enabling
speaker-independent and multi-speaker recognition systems. Target-speaker ASR, which
identifies and responds to a specific user’s voice, presents a promising direction for future
research in the Kazakh language. Investigating its development and evaluating usability in terms
of cognitive load and performance could be particularly valuable.

Conclusion

In this paper, we presented a multilingual ASR system and applied it in a speech-based
typing user study in three languages: Kazakh, Russian, and English. The system was able to
transcribe read speech into written text and was evaluated with 38 participants (17 female and 21
male), including students, researchers, faculty, and staff from NU in Astana, Kazakhstan. We
investigated typing speed with and without editing the ASR-transcribed text, measured in WPM
and CPM. In addition, we assessed participants’ cognitive load and usability through NASA-
RTLX and SUS.

The results indicate that users could type via speech in Kazakh at 90.87+16.48 WPM
without editing and 40.31+16.06 WPM with editing, which is 3.94 and 1.75 times faster than
keyboard typing speeds reported in our previous study. Russian and English also showed higher
results, with speech-based typing being 4.48 and 2.36 times faster in Russian and 4.44 and 2.37
times faster in English compared to keyboard typing. Across all three languages, participants
reported low cognitive load and high usability, with SUS scores above 80%. These findings
suggest that the developed system can serve as a foundation for practical voice interfaces and
educational applications in the Kazakh language and can be scaled to real-world multilingual
services requiring fast and accessible text entry. As part of this work, we additionally employed
ISSAI’s fine-tuned Whisper model (issai/whisper-turbo) to support the system. This model
significantly improves recognition accuracy in Kazakh (8.84% WER vs. 21.55% baseline) while
maintaining comparable performance in English (5.82% vs. 5.15 baseline) and Russian (6.15%
vs. 5.89 baseline). While not the central focus of this study, these improvements demonstrate the
feasibility of enhancing ASR for low-resource languages without sacrificing performance in
high-resource ones.
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