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MULTILINGUAL AUTOMATIC SPEECH RECOGNITION INTERFACE FOR 
TYPING: USABILITY STUDY AND PERFORMANCE EVALUATION FOR 

KAZAKH, RUSSIAN, AND ENGLISH 
 
Abstract:  We present a multilingual automatic speech recognition (ASR) system for Kazakh, 
Russian, and English designed for the trilingual community of Kazakhstan. Although prior 
research has shown that speech-based text entry can outperform conventional keyboard typing 
for human–computer interaction and interaction with large language models (LLMs), little is 
known about its performance and usability in low-resource multilingual contexts, particularly for 
Kazakh. To address this gap, we fine-tuned a Whisper-based model on additional Kazakh speech 
data, achieving a large reduction in Kazakh word error rate (WER) from 21.55% with the OpenAI 
baseline to 8.84%, while preserving competitive performance for Russian and English. We then 
conducted a user study with 38 participants from Nazarbayev University, who performed dictated 
reading and editing tasks in all three languages. We evaluated performance using WPM, CPM, 
WER, and CER, and assessed usability and cognitive effort using the System Usability Scale 
(SUS) and the Raw NASA Task Load Index (NASA-TLX). Participants reached high speech-
based typing speeds without editing and moderate speeds with editing across all three languages. 
Importantly, there were no statistically significant differences between Kazakh, Russian, and 
English in error rates, cognitive load, or perceived usability. Users reported low cognitive load 
(NASA-TLX < 40) and consistently high usability (SUS > 80%), indicating that the interface is 
efficient, easy to use, and requires minimal mental effort. These results demonstrate that Kazakh-
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adapted Whisper enables accurate, usable, and low-effort multilingual ASR, and highlight the 
potential of speech-driven text entry systems for trilingual contexts such as Kazakhstan. 

Keywords: automatic speech recognition (ASR); cognitive load; usability; human-
computer interaction (HCI); human-AI interaction; speech-based typing.  
  

Introduction 

Multilingual ASR Systems and LLMs 

Speech technologies such as Automatic Speech Recognition (ASR) [1], speaker 
recognition [2], and Text-to-Speech (TTS) [3] systems are introducing novel communication 
methods in the fields of human-robot interaction, dialogue systems, and intelligent social agents. 
It is remarkable how a single Large Language Model (LLM) can be adapted to perform different 
tasks including writing, coding, utilizing search tools, chatbots, virtual assistants, and embodied 
agents [4]. LLMs as cutting-edge artificial intelligence (AI) systems are data hungry and have 
billions of parameters that need to be trained on massive text corpora [5]. Generally, LLMs have 
revolutionized the reality of AI and natural language processing (NLP) at their core, introducing 
a foundational shift in millions of people's everyday lives [6]. 

Speech-Based Text Entry Interfaces 

Modern interactive input methods showcase a microphone button alongside text entry 
windows, indicating that voice-based entry mode is added to conventional typing-based text entry 
methods. As an example, Google’s Gboard and Yandex Keyboard integrated a microphone icon 
into their keyboards. When the user taps or taps-and-holds the mic icon, the system's microphone 
is activated, and the spoken words appear as text in the communication window. Apple’s iOS 
Dictation also uses the mic integrated into the on-screen keyboard. During the dictation, the on-
screen keyboard keeps being open, allowing the user to switch between keyboard typing and 
speech-based typing. Custom web applications enable users to click a custom button to record 
speech-based input, view the resulting transcription as text in the communication box, and then 
edit it before proceeding. In commercial systems (i.e., Gboard and Yandex), dictation can run 
continuously across fields. Custom web applications enforce a one-phrase-at-a-time workflow 
for structured data collection. Usually, dictation-supported systems use common visuals, 
including mic icons, real-time instructions such as “Start speaking” and “Recording”. 

In addition, many speech-based and typing-based input methods are integrated with error 
correction frameworks [7]. Authors in [8] describe a mechanism for dynamic propagation of user 
feedback that progressively adapts the system to different speakers and lexical contexts. In [9], 
the authors integrated LLM with an audio encoder supporting speech-based communication with 
LLMs. In another work, a speech recognition system was integrated with LLM to deal with 
transcription errors, helping to increase the accuracy of the system [10]. Commercial UIs 
enhanced with voice-based input methods offer both touch-based typing and voice input for 
making corrections to the transcribed input text. For example, Google Docs’ voice-based typing 
interface underlines uncertain words and offers a few alternatives for correcting the 
corresponding words. Specifically, users can right-click on an underlined word to see suggestions 
as a potential correction. Gboard and Yandex Keyboards enable users to apply voice commands 
for text corrections, such as “delete last word” or “clear,” which removes recognized words. 
Some systems use, “Fix it” feature that performs auto-correction of the grammar as the post-
dictation text processing 

. 



 

 

Kazakhstan Context and Fine-Tuned ASR Model 

In this work, we present a multilingual ASR interface designed for the trilingual 
community of Kazakhstan. We evaluate the system’s usability in an ASR-based typing task in 
three languages: Kazakh, Russian, and English. The system is deployed as a web application that 
integrates OpenAI’s Whisper large-v3-turbo model fine-tuned by the Institute of Smart Systems 
and Artificial Intelligence (ISSAI). The resulting model, issai/whisper-turbo, demonstrates 
accurate speech recognition in Kazakh while maintaining high performance in Russian, English, 
and Turkish. Fine-tuning was performed using the Common Voice 12.0 dataset for Russian and 
English [11], the Kazakh Speech Corpus 2 (KSC2) [12], and the Turkish Speech Corpus (TSC) 
[13]. 
          Quantitative evaluation shows that issai/whisper-turbo achieves a word error rate (WER) 
of 8.84% on Kazakh, a substantial improvement over the OpenAI Whisper baseline (21.55%). 
For English, the model achieves 5.82% WER vs. 5.15% baseline, and for Russian 6.15% WER 
vs. 5.89% baseline. These results highlight that our fine-tuning significantly enhances Kazakh 
recognition while preserving strong performance for high-resource languages, validating the 
model’s effectiveness for real-world multilingual usage. 

Aim of the study 
 
We created a web application that simulates speech typing and editing processes. To 

evaluate how fast people could type via speech in three languages, Kazakh, Russian, and English, 
we designed a user study with 38 participants. During the user study, participants were asked to 
read aloud texts in three languages to create the ASR-based text transcriptions. Users could also 
make edits to the transcribed texts using the computer keyboard. During the experimental study, 
we explored the usability of the presented speech-based typing interface and evaluated the 
cognitive load of participants after using the system in each of the three languages. The aim of 
this study was to evaluate the performance and usability of a multilingual ASR interface for 
Kazakh, Russian, and English, with the hypothesis that speech-based text entry can be performed 
with comparable efficiency, usability, and cognitive load across the three languages 

The rest of the paper is structured as follows: In the next section of the paper, we present 
the literature review on how ASR systems are integrated in various spheres of human-technology 
interaction and communication. We also provide an overview of the background research prior 
to the development of ASR systems for the Kazakh language. Then we present the methodology 
part of the paper with an overview of the user study design, the method used for the data 
collection, and analysis. This is followed by the part of the paper where we present the results of 
the user study and discussion. The paper is concluded in the final part of the paper.  
 

Literature Review  
 
Current trends in language models show that they are becoming increasingly multimodal 

and multilingual, meaning that interaction with LLMs via text and typing is extended by other 
modalities and communication patterns [6]. According to Fathullah et al. [9], interaction with 
LLMs purely via text may be limited due to the wide range of information structures that are 
difficult to capture in text but are naturally encoded in voice and visual inputs. For example, 
voice inputs to LLMs could provide information on speaker emotions, while images present 
contextual environmental information, making communication with LLMs faster and more 
efficient. Adhikary et al. [14] claim that speech-based interactions outperform typing when users 
are moving or multitasking. According to the authors, speech lets users focus more on what they 
want to say rather than how to type it, reducing human mental and physical workloads. Fig. 1 
compares three input paradigms for communicating with LLMs. The traditional keyboard-only 
interface is a low-bandwidth channel which is slow and unnatural. Moreover, it comes with 



 

 

substantial information loss since voice-based and visual cues are not transmitted. The hybrid 
approach proposed in this study uses voice to generate text and the keyboard for editing. From 
our experiments it approximately doubles input speed and partially improves naturalness, yet it 
remains constrained by a text-only bottleneck that discards prosodic and visual information. 
Future multimodal systems accept high-bandwidth, parallel streams (speech, text, video), 
reducing information loss and enabling LLMs to form more holistic, context-rich interpretations, 
thereby supporting faster and more natural human-AI interaction [15]. 
 

 
Figure 1.  Comparison of Traditional, Hybrid (This study), and Future Human-AI Interaction Systems 

There is a growing interest in multilingual ASR systems in bilingual and trilingual 
countries. Multilingual ASRs aim to preserve and enhance the practical use of native languages 
during human AI interaction and communication with LLMs. In [16],[17], the authors present 
multilingual ASR systems for Dutch-Frisian, Arabic-English, and Arabic-Malay languages. A 
speech emotion recognition system that can recognize emotional context for different languages 
is presented in [18]. Authors discuss how emotional cues can be understood differently 
depending on the language and culture. Overall, multilingual ASR systems enhanced with 
emotion recognition modality could be the next step for a multimodal communication framework 
with LLMs and AI agents. 

There are also many works exploring speech-based technologies in education. For 
example, in [19], [20], the authors provide an overview of AI teaching assistants in online 
education. Kim et al. [21] in their work show that students view AI assistants as technically 
helpful, while limited emotionally. A meta-analysis [19] shows that learners gain more when 
chatbots offer quick, personalised feedback. In [22], authors discuss the effectiveness of AI 
chatbots in language practice. A review of 32 chatbot systems for English language learners' 
practice speaking and listening is presented in [23]. 

Early development of speech-based systems for the Kazakh language faced significant 
challenges due to a lack of linguistic and technological resources. In recent years, foundational 
datasets for Kazakh have been created to support the advancement of ASR systems, including 
large-scale speech corpora composed of transcribed audio from diverse speakers and sources 
such as media broadcasts and online content [12]. Additionally, publicly available resources have 
been developed for other NLP tasks, such as sentiment analysis, question answering, machine 
translation, and emotional TTS synthesis. These datasets have played a critical role in enabling 
research and development in Kazakh language technologies and continue to support progress in 
AI-driven language applications. 
 



 

 

Methods and Materials  
  

System Description 
 

Commercial voice-based text entry applications involve steps such as speaking, viewing 
the transcribed text, and then editing the text. Many systems share common design principles, 
such as a button to start recording, displaying the transcribed text in real time, punctuation 
support, and an after-dictation editing flow. Correction workflows also overlap with manual edits 
and voice-based commands. In our application, transcribed text is highlighted in yellow where a 
mismatch occurred between the original and transcribed texts, helping users to quickly navigate 
through the text during editing (see Fig. 2). This way, users could manually correct any 
misrecognized words in the transcribed text. 
 

 
 

Figure 2.  Editable Transcription Interface with Real-Time Error Highlighting 

 
Our web application consists of five pages (registration, experiments, break, results, end). 

The interface presents the text to be read, provides a voice recording button using the 
MediaRecorder API, shows live ASR transcription, and highlights character-level mismatches in 
yellow. Users can correct errors before moving forward using a control button that advances the 
experiment. Front-end logic handles recording, rendering, and editing, while a Python backend 
executes ASR via the Flask framework. 

The web application performs data logging of information presented in Table 1 for data 
collection and further statistical analysis. 

 
Table 1. Variables and their descriptions stored for data analysis 

Variable Description 

P Presented text (string). 

P_words Number of words in P. 

S Returned text by ASR (string). 



 

 

S_words Number of words in S. 

T Transcribed text after user editing (string). 

T_words Number of words in T. 

Time_talking 
(seconds) 

Time elapsed from pressing the Record button until pressing Stop. 

Time_asr 
(seconds) 

Time from pressing Stop until the ASR result is received. 

Time_edit 
(seconds) 

Time from the first keyboard press during editing until the “Next” 
button is pressed. 

Time_server 
(seconds) 

Computed as Time_talking + Time_asr. 

Time_total 
(seconds) 

Computed as Time_talking + Time_asr + Time_edit. 

WPM_asr Calculated as S_words divided by (Time_asr/60). 

WPM_server Calculated as S_words divided by (Time_server/60). 

WPM_user Calculated as T_words divided by (Time_total/60). 

CPM_server Calculated as Number_of_characters divided by (Time_server/60). 

CPM_user Calculated as Number_of_characters divided by (Time_total/60). 

CER_asr (%) Used the provided formula (see Methods section) to compute the 
character error rate between S and P, then multiply by 100. 

CER_user (%) Compute the CER between T and P, then multiply by 100. 

WER_asr (%) Used the provided formula (see Methods section) to compute the word 
error rate between S and P, then multiply by 100. 



 

 

WER_user (%) Compute the WER between T and P, then multiply by 100. 

Backspaces Number of backspaces recorded during text editing in the current trial. 

 

For audio-to-text transcription, we have used OpenAI’s Whisper large-v3-turbo model, 
fine-tuned by ISSAI to achieve high recognition quality in Kazakh, Russian, English, and 
Turkish. The model (issai/whisper-turbo) is hosted on Hugging Face and is accessible by request 
rather than publicly downloadable. Fine-tuning was performed on 8× NVIDIA A100 GPUs over 
7 epochs (learning rate 5 × 10⁻⁷, batch size 16) using the following corpora: Common Voice 12.0 
from Mozilla [11] (Kazakh: 3.8 h; Russian: 291 h; Turkish: 134 h; English: 3758 h), Kazakh 
Speech Corpus 2 (KSC2) [12] (1096 h), and Turkish Speech Corpus (TSC) [13] (218 h). Whisper 
large-v3-turbo was selected as an optimal trade-off between speed and multilingual recognition 
accuracy for real-time usability of the speech-based typing system. Researchers who require 
access to the fine-tuned weights or the fine-tuning recipe may contact us at issai@nu.edu.kz. In 
addition, to support reproducibility and facilitate future research, we publicly release the system 
implementation at: https://github.com/Nurikman/ASR_interface_ISSAI. 

Experimental Procedure 

We conducted a user study with 38 participants (17 female, 21 male; age range 20–37, M 
= 26.89, SD = 5.81) from the Nazarbayev University (NU) community in Astana, Kazakhstan. 
Participants were recruited among students, researchers, faculty, and staff. Ethics approval was 
obtained from NU’s Institutional Research Ethics Committee, and all participants provided 
informed consent. Participants were randomly assigned to three groups (Group A: n=12; Group 
B: n=13; Group C: n=13), each performing speech-based typing tasks in different language 
orders: English-Kazakh-Russian (A), Kazakh-Russian-English (B), and Russian-English-
Kazakh (C). At registration, demographic data (age, gender, education, occupation) were 
collected, and users were assigned a participant ID and task order. The speech-based typing 
interface (Fig. 2) displayed a short passage for reading aloud, an editable ASR-generated 
transcript, and controls to start/stop recording and move to the next passage. Each participant 
read 27 short texts (3 passages per language, split into 3 segments). Audio was recorded using 
the MediaRecorder API, chunked into 25-second segments, and transcribed via the Whisper-
Turbo ASR model on Hugging Face. The final transcriptions and inference times were returned 
to the client. 

 Methods and Materials 
We assessed participants’ cognitive load and system usability during speech-based typing 

tasks in Kazakh, Russian, and English. After each language speech-based typing task, 
participants completed the paper-based Raw NASA Task Load Index (NASA-RTLX) to evaluate 
cognitive load across six dimensions: mental, physical, and temporal demand, performance, 
effort, and frustration [24]. Usability was measured using the System Usability Scale (SUS) [25], 
also administered after each language speech-based typing task. Participants took short breaks 
between language tasks and completed a demographic survey at the end, reflecting on language 
proficiency, speaking habits, and comfort with the system. 
For the statistical analysis, we used means (M), standard deviations (SD), and Shapiro-Wilk 
tests for normality. One-Way ANOVA and post-hoc Tukey HSD tests were applied to evaluate 
differences in age, gender distribution, typing speed (i.e., words per minute - WPM, characters 
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per minute - CPM), accuracy (i.e., word error rate - WER, character error rate - CER), 
cognitive load (NASA-RTLX), and usability (SUS) across the three languages. 

 
 Task-Level Measures 
 For each trial, we recorded both text outputs and timing features of the interaction. The 
interface displayed a reference prompt 𝑃 (the “presented text”), and the participant was instructed 
to read it aloud. The ASR system produced a raw transcription 𝑆 (“system output”), after which 
the participant was allowed to edit this transcription to obtain a final corrected version 𝑇 (“user-
edited text”) We denote by 𝑃!"#$%, 𝑆!"#$%, 𝑇!"#$% the number of word tokens in 𝑃, 𝑆, 𝑎𝑛𝑑	𝑇, 
respectively. 
 We also logged timing signals for each phase of the interaction. 𝑇𝑖𝑚𝑒&'()*+,	(𝑠) is the 
duration from when the participant pressed the Record button until they pressed Stop (i.e., active 
speech production). 𝑇𝑖𝑚𝑒'%# 	(𝑠) is the duration from Stop until the ASR hypothesis 𝑆 was 
returned to the interface (model inference time). 𝑇𝑖𝑚𝑒-$*&	(𝑠) is the duration from the first 
manual keystroke in the editable transcript until the participant confirmed the transcription by 
pressing “Next.” We define 𝑇𝑖𝑚𝑒%-#.-# 	(𝑠) as the sum of speech and inference time, 
 

                       𝑇𝑖𝑚𝑒%-#.-# 	= 	𝑇𝑖𝑚𝑒&'()*+, 	+ 	𝑇𝑖𝑚𝑒'%#,                                          (1) 
 

and 𝑇𝑖𝑚𝑒&"&'( 	(𝑠) as the full end-to-end interaction time including manual correction, 
 

                    𝑇𝑖𝑚𝑒&"&'( 	= 	𝑇𝑖𝑚𝑒&'()*+, 	+ 	𝑇𝑖𝑚𝑒'%# 	+ 	𝑇𝑖𝑚𝑒-$*&,                            (2) 
 

Using these quantities, we computed multiple throughput measures. 𝑾𝑷𝑴𝒂𝒔𝒓 is defined as 
  

                                               𝑊𝑃𝑀'%# 	= 	
2!"#$%

3*4-&%#	/	60
,                                               (3) 

 
capturing the instantaneous decoding rate of the ASR system alone. 𝑾𝑷𝑴𝒔𝒆𝒓𝒗𝒆𝒓 reflects 
effective speech-to-text throughput including speaking and inference, 
 

                                            𝑊𝑃𝑀%-#.-# 	= 	
2!"#$%

3*4-%'#('#	/	60
,                                            (4) 

 
and 𝑾𝑷𝑴𝒖𝒔𝒆𝒓 reflects the end-to-end effective text entry rate experienced by the participant after 
corrections, 

                                       𝑊𝑃𝑀:%-# 	= 	
3!"#$%

3*4-)")&*	/	60
,                                                      (5) 

In parallel, we computed 𝑪𝑷𝑴𝒔𝒆𝒓𝒗𝒆𝒓 and 𝑪𝑷𝑴𝒖𝒔𝒆𝒓 as the number of produced characters (in the 
ASR hypothesis for 𝐶𝑃𝑀%-#.-# and in the final corrected text for 𝐶𝑃𝑀:%-#) divided by 
𝑇𝑖𝑚𝑒%-#.-# 	/	60 and 𝑇𝑖𝑚𝑒&"&'( 	/	60, respectively, yielding character-level entry speed in 
characters per minute. 

Transcription accuracy was quantified at both the system and user levels. 𝑾𝑬𝑹𝒂𝒔𝒓	(%) and 
𝑪𝑬𝑹𝒂𝒔𝒓	(%) are the word error rate and character error rate, respectively, between 𝑆 and 𝑃, 
multiplied by 100. 𝑾𝑬𝑹𝒖𝒔𝒆𝒓	(%) and 𝑪𝑬𝑹𝒖𝒔𝒆𝒓	(%) are the same metrics computed between 𝑇 
and 𝑃, multiplied by 100. 𝑊𝐸𝑅 and 𝐶𝐸𝑅 follow standard edit-distance definitions, i.e., 

              𝑊𝐸𝑅	 = 	 2	;	<	;	=
>

	× 	100%, 𝐶𝐸𝑅	 = 	 2+	;	<+	;	=+
>+

	× 	100%,	                                  (6), (7) 



 

 

where 𝑆, 𝐷, and 𝐼 are word-level substitutions, deletions, and insertions with respect to the 
reference, and 𝑁 is the total number of reference words; 𝑆? , 𝐷@ , 𝐼? , and 𝑁? are the analogous 
quantities at the character level. Finally, we recorded 𝐵𝑎𝑐𝑘𝑠𝑝𝑎𝑐𝑒𝑠, defined as the number of 
backspace keypresses during the edit phase of that trial. This serves as a proxy for manual 
correction effort. 

Results  
The study involved 38 participants with an average age of 26.89 ± 5.81 years, randomly 

assigned to three groups (A, B, C) to perform speech-based typing tasks in Kazakh, Russian, and 
English in varied orders. One-way ANOVA showed no significant differences in age 
(F(2,35)=0.85, p=0.44) or gender distribution (F(2,35)=2.53, p=0.09) across groups. 

Typing performance, measured in WPM, differed significantly across languages. System 
WPM (typing without editing) showed significant variation (F(2,111)=101.61, p<0.001), as did 
user WPM (including editing time) (F(2,111)=51.01, p<0.001). According to Tukey HSD, 
Kazakh WPM values were significantly lower than both Russian and English. Mean system 
WPM was 90.87 ± 16.48 for Kazakh, 130.07 ± 16.41 for Russian, and 144.56 ± 18.01 for English. 
Corresponding user WPM values were 40.31 ± 16.06, 68.81 ± 17.4, and 76.98 ± 16.37, 
respectively (Fig. 3a–b). 

Typing performance, measured in CPM, also showed significant differences across 
languages. System CPM was significantly different across groups (F(2,111)=7.3, p<0.001), 
particularly between Kazakh and Russian. User CPM differences were significant for Kazakh-
Russian and Kazakh-English pairs (F(2,111)=11.5, p<0.001). Mean system CPM values were 
667.96 ± 118.02 (Kazakh), 759.49 ± 99.92 (Russian), and 716.94 ± 94.14 (English), while user 
CPM values were 264.55 ± 98.25, 362.22 ± 96.93, and 335.06 ± 78.32, respectively (Fig. 3c–d). 

Figure 4a-d presents speech-based typing accuracy metrics, including system and user 
WER and CER. System WER was highest for Kazakh (26.32 ± 8.34), followed by Russian 
(11.86 ± 2.38) and English (9.65 ± 2.52) (Fig. 4a). User WER followed a similar trend: Kazakh 
(3.40 ± 6.33), Russian (1.29 ± 6.25), and English (0.95 ± 2.11) (Fig. 4b). One-way ANOVA 
showed significant differences for system WER (F(2,111)=114.63, p<0.001) and user WER 
(F(2,111)=3.88, p=0.023). Tukey HSD confirmed significant differences between Kazakh-
Russian and Kazakh-English for system WER, and between Kazakh-English for user WER. 
 



 

 

 
 

Figure 3.  Typing speed: a) system WPM not edit case, b) user WPM edit case, c) system CPM not edit case, and d) user CPM edit case 

 System CER was highest for Kazakh (5.28 ± 2.7), compared to English (3.85 ± 1.29) and 
Russian (3.80 ± 1.39) (Fig. 4c). User CER values were lower overall, Kazakh (0.52 ± 0.98), 
Russian (0.40 ± 0.80), and English (0.33 ± 0.82) (Fig. 4d). One-way ANOVA revealed a 
significant difference in system CER across languages (F(2,111)=7.33, p=0.001), with Tukey 
HSD indicating significant differences for Kazakh-Russian and Kazakh-English pairs. However, 
user CER differences were not statistically significant (F(2,111)=0.43, p=0.65). 
 

Figure 5a-f presents cognitive load ratings across six NASA-TLX dimensions (i.e., 
mental, physical, and temporal demand; effort; frustration; and perceived performance) for 
Kazakh, Russian, and English. One-way ANOVA revealed no statistically significant differences 
across languages for any dimension. While Kazakh showed slightly higher average scores in 
mental demand (29 ± 30.26), effort (34 ± 27.43), and frustration (17 ± 22.20), these differences 
were not statistically significant. Performance ratings were comparable across languages: 
66 ± 28.13 (Kazakh), 73 ± 22.30 (Russian), and 69 ± 21.62 (English). 
 
 



 

 

 
 

Figure 4.  Typing accuracy: a) system WER not edit case, b) user WER edit case, c) system CER not edit case, and d) user CER edit case 

 
As shown in Fig. 6, usability ratings for speech-based typing were high across all 

languages: 86.58 ± 14.29 (Kazakh), 86.91 ± 10.97 (Russian), and 88.95 ± 9.54 (English). One-
way ANOVA revealed no significant differences between languages (F(2,111)=0.45, p=0.64), 
indicating similarly high usability (>80%) among the Kazakhstani population.   

Demographic results are summarized in Fig. 7a-d. Most participants rated their typing 
experience in all three languages as “very comfortable” or “somewhat comfortable,” with Kazakh 
receiving slightly higher “somewhat comfortable” ratings (34.21%) and a higher “neutral” 
response rate (10.53%) compared to Russian and English (5.26%) (Fig. 7a). In terms of language 
background (Fig. 7b), 57.89% reported Kazakh as their first language and 42.11% Russian; none 
reported English. Fluency was highest in Russian (73.68%), followed by English (13.16%) and 
Kazakh. Intermediate proficiency was lowest in Russian, being 5-6 times lower than in Kazakh 
or English. 

Daily language use (Fig. 7c) showed limited use of English, with 65.79% using it 0–25% 
of the time. Russian and Kazakh were used more frequently: 55.26% and 60.53% reported using 
them 26–50% of the time, respectively. Only 2.63% reported using Kazakh 76–100% of the time; 
no participants reported this level of use for Russian or English. Educational levels (Fig. 7d) were 
predominantly at the Master’s level (44.74%), followed by graduate students (21.05%), 
undergraduates (18.42%), and smaller proportions of Bachelor’s and PhD holders (7.89% each). 

 



 

 

 
 

Figure 5.  RTLX ratings: a) mental demand, b) effort, c) temporal demand, d) frustration, e) physical demand, and f) performance 

 

 
 

Figure 6.  SUS ratings for Kazakh, Russian, and English language speech-based typing  

 



 

 

 
Figure 7.  Demographic questionnaire results expressed in percentage: a) speech-based typing experience, b) language proficiency in three 

languages, c) how often participants type in each of the three languages during the day, and d) educational level 

 
Discussion 

 
In the era of AI, new interaction and communication modalities with AI and LLMs can 

further impact the usability of languages. In general, in our times of AI and technological 
development, speech has become an essential modality of embodiment, communication, and 
interaction between humans and AI-enhanced social robots, conversational agents, and voice 
assistants [9]. While one set of languages becomes more popular, accessible, and tech-supported, 
the others become less popular. This could disadvantage people who speak native languages with 
less support from the global tech community. Individuals who speak native languages may be 
hindered from integrating AI technologies and innovations into their daily lives due to the 
language barrier.  

In our previous study [26], we found that keyboard typing in Kazakh was slower and less 
accurate than in Russian and English, with higher cognitive load. Kazakh typing speed averaged 
23.04 ± 6.59 WPM, which was 1.27 times and 1.41 times lower than Russian (29.15 ± 7.58) and 
English (32.53 ± 8.31), respectively. Kazakh typing also had a higher character error rate 
(CER = 5.73 ± 5.00) compared to Russian (5.24 ± 5.27) and English (3.22 ± 3.59). Participants 
reported lower comfort and frequency of use when typing in Kazakh. In the current study, speech-
based typing outperformed keyboard input across all languages. For Kazakh, participants 
achieved 90.87 ± 16.48 WPM (no edits) and 40.31 ± 16.06 WPM (with edits), which is 3.94× and 
1.75× faster than keyboard typing. For Russian, the speed was 130.07 ± 16.41 WPM (no edits) 
and 68.81 ± 17.4 WPM (with edits), i.e., 4.48 times and 2.36 times faster. In English, users 
reached 144.56 ± 18.01 WPM and 76.98 ± 16.37 WPM, showing 4.44 times and 2.37 times 
improvements over keyboard input. Despite the speed advantage, Kazakh showed significantly 
higher word error rates (WER), being 2.22 vs. 2.64 times higher than Russian and 2.73 vs. 3.58 
times higher than English (no edits/with edits). CER was also elevated for Kazakh, 1.39 vs. 1.30 
times higher than Russian and 1.37 vs. 1.58 times higher than English. Nonetheless, speech-



 

 

based typing resulted in lower reported effort and higher perceived performance compared to 
keyboard input, particularly in Kazakh. 

Our study has certain limitations concerning the diversity of the participant sample: 38 
participants were recruited from NU. In the future these limitations can be addressed by involving 
more participants of various domains from different regions. Further works might be focused on 
expanding the Kazakh speech corpus with more diverse data, advancing research in emotional 
speech recognition, and deploying the system in real-world human-AI interaction scenarios to 
assess its practical applicability.  

Overall, communication with LLMs in the Kazakh language via keyboard typing could 
become much less effective over time. ASR offers a faster alternative. Prior studies [26] have 
shown that voice input on smartphones allows significantly faster text entry, nearly 3 times faster 
than typing, when users are certain of what they want to say. However, users often prefer text in 
uncertain situations due to easier message editing and greater comfort. Similar findings were 
reported by Ruan et al. [27], where speech input was 2.93 and 2.87 times faster than typing in 
English and Mandarin, respectively. 

Despite speed advantages, speech input poses challenges: editing is time-consuming, and 
users may feel uncomfortable speaking aloud in public or noisy settings. Therefore, designing 
audio-based interfaces requires attention to both technical performance and human factors. Deep 
learning systems like Deep Speech 2 [28] show promise in handling spontaneous speech, accents, 
and background noise, making speech-based interaction with LLMs more feasible across 
languages, including Kazakh. 

ASR technology plays a key role in speaker identification and authentication, enabling 
speaker-independent and multi-speaker recognition systems. Target-speaker ASR, which 
identifies and responds to a specific user’s voice, presents a promising direction for future 
research in the Kazakh language. Investigating its development and evaluating usability in terms 
of cognitive load and performance could be particularly valuable. 
 

Conclusion  

In this paper, we presented a multilingual ASR system and applied it in a speech-based 
typing user study in three languages: Kazakh, Russian, and English. The system was able to 
transcribe read speech into written text and was evaluated with 38 participants (17 female and 21 
male), including students, researchers, faculty, and staff from NU in Astana, Kazakhstan. We 
investigated typing speed with and without editing the ASR-transcribed text, measured in WPM 
and CPM. In addition, we assessed participants’ cognitive load and usability through NASA-
RTLX and SUS. 
            The results indicate that users could type via speech in Kazakh at 90.87±16.48 WPM 
without editing and 40.31±16.06 WPM with editing, which is 3.94 and 1.75 times faster than 
keyboard typing speeds reported in our previous study. Russian and English also showed higher 
results, with speech-based typing being 4.48 and 2.36 times faster in Russian and 4.44 and 2.37 
times faster in English compared to keyboard typing. Across all three languages, participants 
reported low cognitive load and high usability, with SUS scores above 80%. These findings 
suggest that the developed system can serve as a foundation for practical voice interfaces and 
educational applications in the Kazakh language and can be scaled to real-world multilingual 
services requiring fast and accessible text entry. As part of this work, we additionally employed 
ISSAI’s fine-tuned Whisper model (issai/whisper-turbo) to support the system. This model 
significantly improves recognition accuracy in Kazakh (8.84% WER vs. 21.55% baseline) while 
maintaining comparable performance in English (5.82% vs. 5.15 baseline) and Russian (6.15% 
vs. 5.89 baseline). While not the central focus of this study, these improvements demonstrate the 
feasibility of enhancing ASR for low-resource languages without sacrificing performance in 
high-resource ones. 
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