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CHALLENGES IN GENERALIZING BREAST MRI TUMOR 
SEGMENTATION ACROSS MULTIPLE DATASETS

Abstract: Accurate segmentation of breast tumors in dynamic contrast-enhanced magnet-
ic resonance imaging (DCE-MRI) is essential for precise diagnosis, treatment planning, and 
quantitative analysis. While deep learning methods have achieved strong performance in con-
trolled research settings, their ability to generalize across diverse clinical datasets remains 
underexplored and poses a major barrier to clinical adoption. In this study, we evaluate the 
cross-dataset generalizability of a 3D Residual U-Net model using the multicenter MAMA-MIA 
benchmark, which consolidates four publicly available breast MRI collections annotated by 
expert radiologists. A leave-one-out experimental design is employed, with three datasets 
used for training and validation, and the remaining dataset held-out for independent testing 
to simulate real-world deployment scenarios. Model performance is assessed using Dice coef-
ficient, Precision, and Recall, alongside quantitative analysis of tumor volume estimation accu-
racy. The best Dice score achieved by our model was 0.683 when tested on the NACT subset. 
Results show a consistent degradation in segmentation accuracy when models are applied to 
unseen datasets, indicating that performance declines significantly outside the distribution 
of the training data. The most pronounced drop occurs when the DUKE dataset serves as the 
held-out test set, where the model struggles to adapt to differences in pre-release preproc-
essing strategies. A targeted qualitative review of 160 representative scans further reveals 
key factors contributing to both successful and failed segmentations, including variations in 
image field of view, temporal enhancement patterns, acquisition era, and artifact prevalence. 
Overall, these findings underscore the importance of accounting for dataset heterogeneity, 
domain shift, and standardized preprocessing in the development of robust, clinically deploy-
able breast MRI segmentation models capable of generalizing across institutions and imaging 
protocols.

Keywords: Breast Cancer, Magnetic Resonance Imaging, Tumor Segmentation, Deep Learn-
ing, Model Generalizability, Medical Image Analysis, Model Robustness.

Introduction
Breast cancer continues to be its most diagnosed variety and a leading cause of cancer-re-

lated deaths among women worldwide. According to the WHO [17], approximately 2.3 million 
new cases were recorded in 2022 alone, causing 670 000 deaths globally. Prompt detection, 
correct diagnosis and effective treatment are crucial in the fight against the disease, and med-
ical imaging plays a central role in this process.
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Magnetic resonance imaging in breast cancer
While mammography and ultrasound remain the standard tools for early detection and eval-

uation of breast tumors, magnetic resonance imaging (MRI) has emerged as a highly sensitive 
modality particularly useful for screening high-risk individuals, handling complex diagnostic 
scenarios and planning treatments. In practice, breast MRI is often performed using a dynamic 
contrast-enhanced (DCE) protocol, in which a gadolinium-based contrast is administered, and 
a series of scans is acquired over time. This approach visualizes the temporal enhancement 
patterns associated with tissue vascularity and permeability which are key indicators of ma-
lignancy.

 Another advantage of DCE-MRI is its ability to visualize not only the presence of a tumor 
but also its spatial dimensions, which enables the precise delineation of its boundaries. This 
process, known as segmentation, involves localizing the tumor and outlining its boundaries 
within the imaging volume. Accurate segmentation helps quantify tumor size and volume, as-
sess multifocality and make decisions about surgery and therapy, as well as enable the use of 
computational methods of analysis.

Segmentation can be performed manually, but it is time-consuming, labour-intensive and 
subject to significant inter-observer variability, especially in ambiguous cases. Automatic seg-
mentation methods, most often based on machine learning or deep learning algorithms, have 
been developed to address these limitations and produce fast, consistent and reproducible re-
sults. These tools not only support clinical decision-making at scale but also enable large-co-
hort studies and high-throughput analysis, which makes them increasingly valuable in clinical 
and research settings. 

Related work
CNNs are widely used in computer vision, especially for medical image segmentation. Yue 

et al. [19] enhanced U-Net [14] with residual blocks for breast tumor segmentation. Khaled et 
al. [9] used an ensemble of three U-Net models trained on different inputs to capture varied 
lesion features. Rahimpour et al. [13] combined three 3D U-Nets with manual selection by 
radiologists to better handle outliers and scan variability. Guo et al. [5] improved CNN results 
using an SVM post-processing step to refine boundaries and reduce noise.

The rise of deep learning in medical imaging has led to adaptable frameworks like nnU-
Net, introduced by Isensee et al. [8], which automates preprocessing, hyperparameter tuning, 
training, and inference using established heuristics. Xu et al. [18] applied nnU-Net to segment 
triple-negative breast cancer (TNBC) in DCE-MRI scans.

Attention mechanisms [1] and Transformers [16] have gained traction in medical image seg-
mentation for their ability to highlight relevant regions and capture complex patterns. Huang 
et al. [7] introduced a joint-phase attention approach that integrates pre- and post-contrast 
MRI features. Zhang et al. [21] and He et al. [6] incorporated multiscale and spatial-temporal 
attention to enhance tumor detection in dynamic imaging. Meanwhile, Transformers—origi-
nally developed for NLP—have shown strong performance in segmentation tasks by modeling 
long-range dependencies. Qin et al. [12] embedded Transformers into a U-Net-based frame-
work for better feature representation, and Zhang et al. [20] used a spatial-temporal Trans-
former model to track contrast changes across MRI phases.

Despite their strong reported performance, most of the cited studies share common limita-
tions that constrain their applicability beyond the research setting. Many rely on single-insti-
tution or in-house datasets, which restrict the diversity of imaging conditions and patient pop-
ulations encountered during training. External validation on independent datasets is seldom 
performed, limiting evidence of robustness in unseen clinical environments. Furthermore, few 
works provide in-depth analyses of failure cases or explore how variations in data distribution 
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affect performance. These gaps raise critical questions about the generalizability of current 
breast MRI segmentation approaches to broader, real-world scenarios.

To address these limitations, we conduct a systematic evaluation of model generalizabil-
ity using the publicly available MAMA-MIA dataset [4], which consolidates four pre-existing 
breast MRI datasets annotated by a single team of experts. Using a consistent ResUNet ar-
chitecture similar to [19] and fixed hyperparameters, we adopt a leave-one-out experimental 
design, where three datasets are used for training and validation, and the remaining dataset 
is reserved exclusively for testing. Model performance is assessed across Dice, Precision, and 
Recall metrics on both validation and held-out test sets to reveal differences between in-dis-
tribution and out-of-distribution performance. To gain finer insight into the sources of seg-
mentation difficulty, we manually examine 160 randomly selected scans, identifying imaging 
and lesion characteristics that challenge model fitting and cross-dataset generalization.

This paper makes several contributions:
Conducts a systematic cross-dataset evaluation of breast DCE-MRI tumor segmentation 

using the multicenter MAMA-MIA benchmark.
Provides an in-depth quantitative and qualitative characterization of domain shift effects in 

breast MRI segmentation, linking performance drops to concrete factors.
Offers actionable guidelines for improving model generalizability.
The remainder of this paper is organized as follows: Section 2 describes the materials and 

methods used in this study, including the composition of the dataset, preprocessing steps, 
model architecture, and training procedure. Section 3 presents the evaluation results, report-
ing quantitative performance metrics for all experimental configurations. Section 4 provides 
a detailed discussion of the results, supported by qualitative analysis of selected cases, and 
examines factors that influence model generalization across datasets.

Methods and Materials
This section describes the materials and methods used in this study, including the compo-

sition and characteristics of the dataset, preprocessing steps, model architecture, experimen-
tal design, and implementation details. Together, these elements define the framework used 
to investigate the generalizability of breast MRI segmentation models across heterogeneous 
data sources.

Dataset
The MAMA-MIA dataset [4] is a large-scale, multicenter benchmark resource designed to 

address the scarcity of expert-labeled breast DCE-MRI data. It includes 1,506 pre-treatment 
T1-weighted DCE-MRI cases with expert-verified segmentations of primary tumors and non-
mass-enhanced regions.

Data was collected from four publicly available TCIA collections: I-SPY1 [3], I-SPY2 [11], 
NACT-Pilot [10] and Duke-Breast-Cancer-MRI [15]. Selection focused on pre-treatment cases 
with available clinical outcome data, especially pathological complete response (pCR) and 
five-year survival status. As most of the original datasets lacked high-quality segmentation 
masks, additional annotation was provided by 16 expert radiologists.

The MAMA-MIA dataset exhibits substantial diversity in imaging characteristics, making it 
particularly valuable for the development and evaluation of robust breast MRI segmentation 
methods. It includes both bilateral and unilateral scans, acquired using axial and sagittal 
planes, thereby capturing variability in clinical imaging practices. The MRIs were obtained 
using scanners with magnetic field strengths of 1.5T (72% of cases) and 3.0T (28%), and 
the number of DCE-MRI phases per case ranges from 3 to 11, with significant variability in 
inter-phase timing (e.g., mean time between pre- and first post-contrast: 203 seconds, range: 
27–922 seconds). Additionally, the dataset encompasses a wide range of acquisition parame-
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ters such as slice thickness, pixel spacing, image matrix size, and scanner manufacturers (GE, 
Siemens, Philips).

Preprocessing
As a first step in our pipeline, we preprocess the DCE-MRI data to ensure consistency across 

patients. For each patient, the structural (pre-contrast) and first post-contrast MRI scans are 
load. Since scans differ in acquisition plane (axial or sagittal) and spatial resolution, we per-
form anisotropic resampling to standardize voxel spacing across samples. Intensity normaliza-
tion is carried out using within-sample z-score normalization, where the mean and standard 
deviation are computed jointly across both phases maintain consistency in intensity scaling. 
During training, we randomly extract smaller cubic patches from the volumes to reduce GPU 
memory usage and to handle differences in image dimensions between patients. To further 
enhance model robustness and reduce overfitting, we apply random flipping as a form of spa-
tial data augmentation.

Model architecture
We employ a 3D Residual U-Net (ResUNet) segmentation network for all experiments, 

keeping the architecture and hyperparameters fixed across runs to ensure comparability. This 
choice is motivated by its widespread adoption in medical image segmentation and its close 
similarity to the U-Net variant implemented in the widely used nnU-Net framework [8], which 
has consistently demonstrated performance on par with state-of-the-art methods across di-
verse datasets.

The network takes two input channels (one for the pre-contrast MRI and one for the first 
post-contrast MRI) and produces a single-channel tumor probability map. The encoder path 
consists of six downsampling stages. Each stage contains two residual convolutional units, 
where the output is computed as

 (1)

with x denoting the input feature map and F(x; θ) representing two consecutive 3D convo-
lution – instance normalization – PReLU operations with 3×3×3 kernels. Explicitly,

 (2)

where IN is instance normalization, σ is the PReLU activation, and ⁎ denotes 3D convolu-
tion.

Downsampling is performed at the start of each encoder stage using a strided convolution:

 (3)

which reduces the spatial resolution by a factor of two. The number of feature channels in-
creases with depth, starting at 32 and progressing through 64, 128, 256, 380 and again 380 
channels. The decoder path mirrors the encoder with four upsampling stages implemented via 
transpose convolutions:

 (4)

where ⁎s=2 denotes a transposed convolution with stride 2. Skip connections link each en-
coder stage to its corresponding decoder stage, concatenating the features before further 
processing. Instance normalization and PReLU activation are applied throughout the network. 
The complete network architecture is shown in Figure 1.
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Figure 1. Architecture of the segmentation model used in this study

Methodology
To investigate cross-dataset generalizability, we adopt a leave-one-out experimental de-

sign. At each iteration, three of the four constituent MAMA-MIA sub-datasets are used for 
model development, while the remaining dataset is held out entirely for independent testing. 
The combined development set is randomly partitioned into 80% for training and 20% for 
validation, without regard to sub-dataset membership. For example, one configuration trains 
on I-SPY1, I-SPY2, and NACT-Pilot (split 80–20) and evaluates on Duke-Breast-Cancer-MRI. 
This process is repeated so that each sub-dataset serves as the held-out test set exactly once, 
yielding a total of four trained models.

After training, each model is evaluated on both its validation set (in-distribution) and its 
held-out test set (out-of-distribution). Segmentation performance is quantified using the Dice 
similarity coefficient, Precision, and Recall. In addition, we compute the absolute tumor vol-
ume in mm3 for both the ground-truth and predicted masks to analyse systematic biases in 
lesion size estimation.

To obtain a deeper understanding of factors affecting generalization, we perform a targeted 
manual review of selected cases. For each model and each evaluation set (validation and test), 
we sample 20 scans according to the following scheme:

- 5 scans from the lowest 10% of Dice scores
- 5 scans from the highest 10% of Dice scores
- 10 scans from the remaining 80%
This procedure results in 4×2×20=160 unique scans for detailed visual inspection. The se-

lected cases are then examined qualitatively to identify imaging characteristics, anatomical 
variations, and lesion features that may contribute to segmentation success or failure.
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Implementation details
All experiments were conducted on a workstation running Ubuntu 22.04, equipped with an 

NVIDIA GeForce GTX 1080 Ti GPU with 11 GB of VRAM. The neural network was trained with 
PyTorch, with the model architecture sourced from MONAI’s [2] library of pre-implemented 
neural network classes. Data loading and preprocessing were also handled using MONAI’s 
medical imaging framework.

The training configuration was as follows:
•	 Batch size: 12
•	 Patch size: 128×128×128 voxels
•	 Optimizer: Adam with an initial learning rate of 0.01
•	 Learning rate scheduler: PolynomialLR with a power of 1.5
•	 Maximum number of epochs: 100
•	 Loss function: Dice loss
•	 Validation sliding window patch overlap: 50%
•	 Early stopping tolerance: 20 epochs
These settings were kept constant across all experiments to ensure that performance dif-

ferences arose solely from dataset composition rather than training variability.

Results
Table 1 summarizes the performance of the four trained models, each identified by the 

dataset that was excluded from training and used as the held-out test set. For example, the 
row labeled "DUKE" corresponds to the model trained on ISPY1, ISPY2, and NACT, with DUKE 
reserved exclusively for testing. For each model, metrics are reported separately for the held-
out test set and for the corresponding validation set. Validation results are presented both as 
an aggregate across all three training sub-datasets and individually for each sub-dataset to 
capture in-distribution variability. Reported metrics include the mean Dice coefficient, Preci-
sion, and Recall, along with the mean ground-truth and predicted tumor volumes (in mm3), 
computed per patient. Precision and Recall are calculated voxel-wise, and all reported values 
represent averages over individual patient scores.

DOI: 10.37943/23AAOF8219
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Table 1. Performance of models identified by the held-out test dataset. Metrics are shown for the test 
set and for validation (aggregate and per sub-dataset), including mean Dice, Precision, Recall, and 

ground-truth and predicted volumes (mm3) averaged per patient.

Dataset val / test Dice Precision Recall True volume 
(mm3)

Pred volume 
(mm3)

DUKE

val overall 0.743 0.751 0.802 24919 24395
val ISPY1 0.760 0.765 0.812 46545 34639
val ISPY2 0.745 0.754 0.803 20667 22392
val NACT 0.670 0.652 0.758 29912 26555

test 0.260 0.191 0.743 21120 63494

ISPY1

val overall 0.724 0.739 0.795 19616 19755
val DUKE 0.512 0.483 0.737 12914 23851
val ISPY2 0.772 0.798 0.802 20943 18440
val NACT 0.670 0.619 0.889 21585 28239

test 0.629 0.641 0.727 35257 24802

ISPY2

val overall 0.497 0.520 0.691 32510 35413
val DUKE 0.382 0.386 0.659 30218 43399
val ISPY1 0.639 0.647 0.759 28707 29056
val NACT 0.602 0.737 0.648 51185 19360

test 0.499 0.624 0.515 22352 15187

NACT

val overall 0.709 0.731 0.772 22520 20119
val DUKE 0.574 0.564 0.733 17404 21086
val ISPY1 0.682 0.720 0.764 34686 34111
val ISPY2 0.759 0.792 0.787 22833 18054

test 0.683 0.686 0.804 30741 27940

In most configurations, model performance was higher on the validation sets than on the 
held-out test sets, reflecting a clear drop in accuracy when applied to unseen data. The largest 
decline was observed when DUKE served as the test set, with the Dice score falling from 0.743 
on the aggregated validation set to 0.260 on the test set, suggesting a substantial distribution 
shift between DUKE and the other datasets. Even within the in-distribution validation data, 
performance varied notably across individual sub-datasets. For example, when ISPY1 was ex-
cluded from training, validation Dice scores ranged from 0.512 on DUKE to 0.772 on ISPY2, 
indicating heterogeneity in difficulty even among datasets used for training.

Precision–Recall balance also varied by configuration: in some cases, such as DUKE as the 
test set, models exhibited high Recall but low Precision (0.743 vs. 0.191), consistent with 
over-segmentation; in others, such as ISPY2 as the test set, higher Precision relative to Recall 
(0.624 vs. 0.515) suggested under-segmentation. Tumor volume estimates showed similar 
variability, with the largest overestimation again occurring for DUKE in the test split (21,120 
mm3 ground truth vs. 63,494 mm3 predicted), while marked underestimation was observed 
in several validation subsets, such as NACT in the ISPY2 model (51,185 mm3 ground truth vs. 
19,360 mm3 predicted). Overall, DUKE emerged as the most challenging dataset for cross-da-
taset generalization, while ISPY1 and NACT were comparatively less affected by the domain 
shift when used as held-out test sets.
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Discussion
To better understand the factors influencing model generalization, we performed a quali-

tative review of a representative subset of scans from each validation and test set. This visual 
inspection of individual cases, spanning a range of segmentation performances, revealed sev-
eral recurring patterns and dataset-specific characteristics that help explain the quantitative 
results. Key observations from this analysis are presented below.

A key finding of this study is the markedly poor perfomance of models when DUKE was 
used as the held-out test set, with Dice scores dropping sharply compared to all other config-
urations. This can be traced to a fundamental difference in the way the source datasets were 
preprocessed prior to inclusion in MAMA-MIA. The MRI scans in MAMA-MIA do not retain their 
raw, originally acquired form; instead, they are the result of preprocessing pipelines applied 
before public release. While ISPY1, ISPY2, and NACT contain images that are often cropped to 
include only the breast with the tumor (in unilateral cases), DUKE scans consistently include 
the full MRI field of view. Figure 2 illustrates this difference in coverage.

Figure 2. Example from the ISPY2 dataset in its publicly released form, cropped to include 
only the breast containing the tumor. The cropping was performed prior to release 

of the dataset and is not part of this study’s preprocessing.

This disparity is quantitatively reflected in Table 2, which reports the median total scan 
volume for each sub-dataset. DUKE’s median volume is 21,513 cm3, while the other three 
datasets are all around 5,000 cm3 or less, indicating a high prevalence of cropping in ISPY1, 
ISPY2, and NACT. As a result, models trained on cropped images encounter a substantial dis-
tribution shift when exposed to DUKE: sliding-window inference produces a large number of 
patches containing only healthy tissue, a scenario rarely seen during training. This mismatch 
likely drives both the low Dice scores and the systematic overestimation of tumor volumes, as 
the model tends to generate false-positive segmentations in regions of healthy parenchymal 

DOI: 10.37943/23AAOF8219
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enhancement where it “expects” to find abnormalities. An example of this phenomenon is 
shown in Figure 3, where widespread false-positive masks appear in otherwise normal tissue. 
This issue can be addressed by including whole breast segmentation into the preprocessing 
pipeline.

Figure 3. Example from the DUKE dataset showing the predicted mask (red) and 
the ground-truth mask (green). While the model accurately segments the true tumor, 
multiple false-positive regions outside the breast substantially reduce the Dice score.

Table 2. Median total scan volume for each sub-dataset in MAMA-MIA.

Dataset Median volume (cm3)
DUKE 21513
ISPY1 5120
ISPY2 5119
NACT 3888

Bright imaging artifacts and non-tumorous enhancements within the breast are also a 
frequent source of false positives, as illustrated in Figure 4. This issue could potentially be 
mitigated by providing more DCE-MRI phases as input. In our design, only the pre-contrast 
anatomical reference and the first post-contrast scan are used. Access to additional phases 
would allow reconstruction of the kinetic enhancement curve of the lesion, enabling better 
differentiation between malignancies, healthy tissue, and consistently bright artifacts. How-
ever, incorporating more temporal information is challenging: the number of available phases 
varies significantly within the dataset, and restricting analysis to the lowest common number 
discards a substantial amount of potentially informative data. Furthermore, in some cases, lat-
er post-contrast phases provide greater lesion enhancement and improved background con-
trast compared to the first post-contrast scan, as shown in Figure 5.
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Figure 4. Examples of false positives caused by non-tumorous regions. 
The left panel shows an MRI artifact along the breast boundary, while the right panel 

shows an area of benign enhancement within the breast parenchyma.

Figure 5. Example illustrating delayed enhancement effects. The top row shows the first post-
contrast image, without masks (left) and with predicted (red) and ground-truth (green) masks (right). 
The bottom row shows the corresponding fourth post-contrast image. In the later phase, the lower 
section of the tumor—missed by the prediction in the first post-contrast image—exhibits greater 

enhancement and improved contrast with surrounding tissue.

The drop in performance metrics with ISPY1 as the test set is also noticeable and signifi-
cant, even if not as severe as the drop observed for DUKE. One contributing factor may be the 
age of the imaging in ISPY1, as most scans were acquired in the mid-1980s. Figure 6 shows 
an example scan from 1986 in which the model, trained on the other three datasets, failed to 
segment a large visible tumor. This failure is likely due to the lower image quality and greater 



182 Scientific Journal of Astana IT University
ISSN (P): 2707-9031   ISSN (E): 2707-904X

VOLUME 23, SEPTEMBER 2025

noise levels in these older scans, especially when compared to the more recent imaging found 
in the other datasets, which primarily includes acquisitions from the late 1990s, 2000s, and 
later.

Figure 6. Example from the ISPY1 dataset acquired in 1986. The model trained on the other three 
datasets failed to segment the large tumor visible in the image, likely due to the lower quality and 

higher noise levels of older scans compared to the more recent imaging in the other datasets.

Overall, the case-level analysis highlights how differences in dataset preprocessing, im-
aging protocols, acquisition eras, and inherent anatomical or physiological variability can 
substantially impact segmentation performance. While some of these limitations may be ad-
dressed through harmonization of preprocessing pipelines, richer temporal information, and 
targeted augmentation strategies, others reflect fundamental shifts in data distribution that 
are more challenging to overcome. These findings underscore the importance of considering 
dataset composition and heterogeneity when developing and evaluating models intended for 
broad clinical deployment.

Conclusion 
In summary, this study highlights the challenges of achieving robust cross-dataset gener-

alization in breast DCE-MRI tumor segmentation. By systematically evaluating models across 
four diverse public datasets and performing targeted case reviews, we identified key sources of 
performance degradation, including differences in field of view, presence of bright non-tumor-
ous enhancements, temporal enhancement patterns, and historical variations in image qual-
ity. These findings emphasize that models can suffer substantial drops in performance when 
confronted with domain shifts inherent to multi-institutional imaging data. Addressing such 
challenges will require not only improved modeling strategies, but also greater harmonization 
of acquisition protocols, preprocessing approaches, and annotation standards across datasets. 
Ultimately, bridging these gaps is essential for translating automated breast MRI analysis into 
reliable, clinically deployable tools.



183

Acknowledgements 
This research was funded by the Committee of Science of the Ministry of Science and Higher 

Education of the Republic of Kazakhstan, grant number BR24993145.

References

[1]	 Bahdanau, D., Cho, K., & Bengio, Y. (2016). Neural machine translation by jointly learning to align and 
translate. https://arxiv.org/abs/1409.0473

[2]	 Cardoso, M. J., Li, W., Brown, R., Ma, N., Kerfoot, E., Wang, Y., Murrey, B., Myronenko, A., Zhao, C., 
Yang, D., Nath, V., He, Y., Xu, Z., Hatamizadeh, A., Myronenko, A., Zhu, W., Liu, Y., Zheng, M., Tang, Y., . .  
Feng, A. (2022). Monai: An open-source framework for deep learning in healthcare. https://arxiv.org/
abs/2211.02701

[3]	 Chitalia, R., Pati, S., Bhalerao, M., Thakur, S., Jahani, N., Belenky, J. V., McDonald, E. S., Gibbs, J., New-
itt, D., Hylton, N., Kontos, D., & Bakas, S. (2021). Expert tumor annotations and radiomic features for 
the ISPY1/Acrin 6657 trial data collection. https://doi.org/10.7937/TCIA.XC7A-QT20

[4]	 Garrucho, L., Kushibar, K., Reidel, C.-A., Joshi, S., Osuala, R., Tsirikoglou, A., Bobowicz, M., Riego, J. 
d., Catanese, A., Gwo´zdziewicz, K., Cosaka, M.-L., Abo-Elhoda, P.M., Tantawy, S.W., Sakrana, S.S., 
Shawky-Abdelfatah, N.O., Salem, A.M.A., Kozana, A., Divjak, E., Ivanac, G., . . . Lekadir, K. (2025). 
A large-scale multicenter breast cancer DCE-MRI benchmark dataset with expert segmentations. Sci-
entific Data, 12 (1), 453. https://doi.org/10.1038/s41597-025-04707-4

[5]	 Guo, Y. Y., Huang, Y. H., Wang, Y., Huang, J., & ... (2022). Breast MRI tumor automatic segmentation 
and triple-negative breast cancer discrimination algorithm based on deep learning [Publisher: Wiley 
Online Library]. . . . Methods in Medicine. https://doi.org/10.1155/2022/2541358

[6]	 He, J., Zhao, X., Luo, Z., Su, S., Li, S., & Zhang, G. (2024). TSESNet: Temporal-spatial enhanced 
breast tumor segmentation in DCE-MRI using feature perception and separability. Proceedings of 
the Thirty-Third International Joint Conference on Artificial Intelligence, 803–811. https://doi.
org/10.24963/ijcai.2024/89

[7]	 Huang, R., Xu, Z., Xie, Y., Wu, H., Li, Z., Cui, Y., Huo, Y., Han, C., Yang, X., Liu, Z., & Wang, Y. (2023). 
Joint-phase attention network for breast cancer segmentation in DCE-MRI [Publisher: Elsevier BV]. 
Expert Systems with Applications, 224, 119962. https://doi.org/10.1016/j.eswa.2023.119962

[8]	 Isensee, F., Jaeger, P. F., Kohl, S. A. A., Petersen, J., & Maier-Hein, K. H. (2020). nnU-Net: A self-con-
figuring method for deep learning-based biomedical image segmentation. Nature Methods, 18 (2), 
203–211. https://doi.org/10.1038/s41592-020-01008-z

[9]	 Khaled, R., Vidal, J., Vilanova, J. C., & Mart´ı, R. (2022). A u-net ensemble for breast lesion segmenta-
tion in DCE MRI. [Place: United States]. Computers in biology and medicine, 140, 105093. https://
doi.org/10.1016/j.compbiomed.2021.105093

[10]	Newitt, D., & Hylton, N. (2016). Single site breast DCE-MRI data and segmentations from patients 
undergoing neoadjuvant chemotherapy. https://doi.org/10.7937/K9/TCIA.2016.QHSYHJKY

[11]	Newitt, D.C., Partridge, S.C., Zhang, Z., Gibbs, J., Chenevert, T., Rosen, M., Bolan, P., Marques, H., 
Romanoff, J., Cimino, L., Joe, B.N., Umphrey, H., Ojeda-Fournier, H., Dogan, B., Oh, K.Y., Abe, H., 
Drukteinis, J., Esserman, L.J., & Hylton, N.M. (2021). Acrin 6698/I-SPY2 breast DWI. https://doi.
org/10.7937/TCIA.KK02-6D95

[12]	Qin, C., Wu, Y., Zeng, J., Tian, L., Zhai, Y., Li, F., & Zhang, X. (2022). Joint transformer and multi-scale 
CNN for DCE-MRI breast cancer segmentation [Publisher: Springer]. Soft Computing, 26 (17), 8317–
8334.

[13]	Rahimpour, M., Saint Martin, M.-J., Frouin, F., Akl, P., Orlhac, F., Koole, M., & Malhaire, C. (2022). 
Visual ensemble selection of deep convolutional neural networks for 3D segmentation of breast tumors 
on dynamic contrast enhanced MRI [Publisher: Springer Science and Business Media LLC]. European 
Radiology, 33 (2), 959–969. https://doi.org/10.1007/s00330-022-09113-7

[14]	Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image 
segmentation. https://arxiv.org/abs/1505.04597

DOI: 10.37943/23AAOF8219
© Beibit Abdikenov, Victor Suvorov



184 Scientific Journal of Astana IT University
ISSN (P): 2707-9031   ISSN (E): 2707-904X

VOLUME 23, SEPTEMBER 2025

[15]	Saha, A., Harowicz, M.R., Grimm, L.J., Weng, J., Cain, E.H., Kim, C.E., Ghate, S.V., Walsh, R., & 
Mazurowski, M.A. (2021). Dynamic contrast-enhanced magnetic resonance images of breast cancer 
patients with tumor locations. https://doi.org/10.7937/TCIA.E3SV-RE93

[16]	Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., & Polosukhin, I. 
(2023). Attention is all you need. https://arxiv.org/abs/1706.03762

[17]	World Health Organization. (2021). Breast cancer. Geneva, Switzerland: World Health Organization. 
Retrieved from https://www.who.int/news-room/fact-sheets/detail/breast-cancer

[18]	Xu, Z., Rauch, D.E., Mohamed, R.M., Pashapoor, S., Zhou, Z., & ... (2023). Deep learning for fully auto-
matic tumor segmentation on serially acquired dynamic contrast-enhanced MRI images of triple-neg-
ative breast cancer [Publisher: mdpi.com Type: HTML]. Cancers. https://www.mdpi.com/2072-
6694/15/19/4829

[19]	Yue, W., Zhang, H., Zhou, J., Li, G., Tang, Z., Sun, Z., & ... (2022). Deep learning-based automatic seg-
mentation for size and volumetric measurement of breast cancer on magnetic resonance imaging [Pub-
lisher: frontiersin.org Type: HTML]. Frontiers in . . . https://doi.org/10.3389/fonc.2022.984626

[20]	Zhang, J., Cui, Z., Shi, Z., Jiang, Y., Zhang, Z., Dai, X., Yang, Z., Gu, Y., Zhou, L., Han, C., Huang, X., Ke, C., 
Li, S., Xu, Z., Gao, F., Zhou, L., Wang, R., Liu, J., Zhang, J., . . . Shen, D. (2023). A robust and efficient AI 
assistant for breast tumor segmentation from DCE-MRI via a spatial-temporal framework. [Place: Unit-
ed States]. Patterns (New York, N.Y.), 4 (9), 100826. https://doi.org/10.1016/j.patter.2023.100826

[21]	Zhang, Q., Xiao, J., & Zheng, B. (2023). Image segmentation of triple-negative breast cancer by incor-
porating multiscale and parallel attention mechanisms (S. Hussain, Ed.) [Publisher: Wiley]. Scientific 
Programming, 2023, 1–13. https://doi.org/10.1155/2023/6629189


