1 7 2 Scientific Journal of Astana IT University
ISSN (P): 2707-9031 ISSN (E): 2707-904X
VOLUME 23, SEPTEMBER 2025

DOI: 10.37943/23AA0F8219

Beibit Abdikenov

PhD, Director of Science and Innovation Center “Artificial Intelligence”
beibit.abdikenov@astanait.edu.kz, orcid.org/0000-0002-0284-0949
Astana IT University, Kazakhstan

Victor Suvorov

MSc, Researcher at Science and Innovation Center “Artificial Intelligence”
v.suvorov(@astanait.edu.kz, orcid.org/0009-0007-1128-8053

Astana IT University, Kazakhstan

CHALLENGES IN GENERALIZING BREAST MRI TUMOR
SEGMENTATION ACROSS MULTIPLE DATASETS

Abstract: Accurate segmentation of breast tumors in dynamic contrast-enhanced magnet-
ic resonance imaging (DCE-MRI) is essential for precise diagnosis, treatment planning, and
quantitative analysis. While deep learning methods have achieved strong performance in con-
trolled research settings, their ability to generalize across diverse clinical datasets remains
underexplored and poses a major barrier to clinical adoption. In this study, we evaluate the
cross-dataset generalizability of a 3D Residual U-Net model using the multicenter MAMA-MIA
benchmark, which consolidates four publicly available breast MRI collections annotated by
expert radiologists. A leave-one-out experimental design is employed, with three datasets
used for training and validation, and the remaining dataset held-out for independent testing
to simulate real-world deployment scenarios. Model performance is assessed using Dice coef-
ficient, Precision, and Recall, alongside quantitative analysis of tumor volume estimation accu-
racy. The best Dice score achieved by our model was 0.683 when tested on the NACT subset.
Results show a consistent degradation in segmentation accuracy when models are applied to
unseen datasets, indicating that performance declines significantly outside the distribution
of the training data. The most pronounced drop occurs when the DUKE dataset serves as the
held-out test set, where the model struggles to adapt to differences in pre-release preproc-
essing strategies. A targeted qualitative review of 160 representative scans further reveals
key factors contributing to both successful and failed segmentations, including variations in
image field of view, temporal enhancement patterns, acquisition era, and artifact prevalence.
Overall, these findings underscore the importance of accounting for dataset heterogeneity,
domain shift, and standardized preprocessing in the development of robust, clinically deploy-
able breast MRI segmentation models capable of generalizing across institutions and imaging
protocols.

Keywords: Breast Cancer, Magnetic Resonance Imaging, Tumor Segmentation, Deep Learn-
ing, Model Generalizability, Medical Image Analysis, Model Robustness.

Introduction

Breast cancer continues to be its most diagnosed variety and a leading cause of cancer-re-
lated deaths among women worldwide. According to the WHO [17], approximately 2.3 million
new cases were recorded in 2022 alone, causing 670 000 deaths globally. Prompt detection,
correct diagnosis and effective treatment are crucial in the fight against the disease, and med-
ical imaging plays a central role in this process.
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Magnetic resonance imaging in breast cancer

While mammography and ultrasound remain the standard tools for early detection and eval-
uation of breast tumors, magnetic resonance imaging (MRI) has emerged as a highly sensitive
modality particularly useful for screening high-risk individuals, handling complex diagnostic
scenarios and planning treatments. In practice, breast MR is often performed using a dynamic
contrast-enhanced (DCE) protocol, in which a gadolinium-based contrast is administered, and
a series of scans is acquired over time. This approach visualizes the temporal enhancement
patterns associated with tissue vascularity and permeability which are key indicators of ma-
lignancy.

Another advantage of DCE-MRI is its ability to visualize not only the presence of a tumor
but also its spatial dimensions, which enables the precise delineation of its boundaries. This
process, known as segmentation, involves localizing the tumor and outlining its boundaries
within the imaging volume. Accurate segmentation helps quantify tumor size and volume, as-
sess multifocality and make decisions about surgery and therapy, as well as enable the use of
computational methods of analysis.

Segmentation can be performed manually, but it is time-consuming, labour-intensive and
subject to significant inter-observer variability, especially in ambiguous cases. Automatic seg-
mentation methods, most often based on machine learning or deep learning algorithms, have
been developed to address these limitations and produce fast, consistent and reproducible re-
sults. These tools not only support clinical decision-making at scale but also enable large-co-
hort studies and high-throughput analysis, which makes them increasingly valuable in clinical
and research settings.

Related work

CNNs are widely used in computer vision, especially for medical image segmentation. Yue
et al. [19] enhanced U-Net [14] with residual blocks for breast tumor segmentation. Khaled et
al. [9] used an ensemble of three U-Net models trained on different inputs to capture varied
lesion features. Rahimpour et al. [13] combined three 3D U-Nets with manual selection by
radiologists to better handle outliers and scan variability. Guo et al. [5] improved CNN results
using an SVM post-processing step to refine boundaries and reduce noise.

The rise of deep learning in medical imaging has led to adaptable frameworks like nnU-
Net, introduced by Isensee et al. [8], which automates preprocessing, hyperparameter tuning,
training, and inference using established heuristics. Xu et al. [18] applied nnU-Net to segment
triple-negative breast cancer (TNBC) in DCE-MRI scans.

Attention mechanisms [1] and Transformers [16] have gained traction in medical image seg-
mentation for their ability to highlight relevant regions and capture complex patterns. Huang
et al. [7] introduced a joint-phase attention approach that integrates pre- and post-contrast
MRI features. Zhang et al. [21] and He et al. [6] incorporated multiscale and spatial-temporal
attention to enhance tumor detection in dynamic imaging. Meanwhile, Transformers—origi-
nally developed for NLP—have shown strong performance in segmentation tasks by modeling
long-range dependencies. Qin et al. [12] embedded Transformers into a U-Net-based frame-
work for better feature representation, and Zhang et al. [20] used a spatial-temporal Trans-
former model to track contrast changes across MRI phases.

Despite their strong reported performance, most of the cited studies share common limita-
tions that constrain their applicability beyond the research setting. Many rely on single-insti-
tution or in-house datasets, which restrict the diversity of imaging conditions and patient pop-
ulations encountered during training. External validation on independent datasets is seldom
performed, limiting evidence of robustness in unseen clinical environments. Furthermore, few
works provide in-depth analyses of failure cases or explore how variations in data distribution
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affect performance. These gaps raise critical questions about the generalizability of current
breast MRI segmentation approaches to broader, real-world scenarios.

To address these limitations, we conduct a systematic evaluation of model generalizabil-
ity using the publicly available MAMA-MIA dataset [4], which consolidates four pre-existing
breast MRI datasets annotated by a single team of experts. Using a consistent ResUNet ar-
chitecture similar to [19] and fixed hyperparameters, we adopt a leave-one-out experimental
design, where three datasets are used for training and validation, and the remaining dataset
is reserved exclusively for testing. Model performance is assessed across Dice, Precision, and
Recall metrics on both validation and held-out test sets to reveal differences between in-dis-
tribution and out-of-distribution performance. To gain finer insight into the sources of seg-
mentation difficulty, we manually examine 160 randomly selected scans, identifying imaging
and lesion characteristics that challenge model fitting and cross-dataset generalization.

This paper makes several contributions:

Conducts a systematic cross-dataset evaluation of breast DCE-MRI tumor segmentation
using the multicenter MAMA-MIA benchmark.

Provides an in-depth quantitative and qualitative characterization of domain shift effects in
breast MRI segmentation, linking performance drops to concrete factors.

Offers actionable guidelines for improving model generalizability.

The remainder of this paper is organized as follows: Section 2 describes the materials and
methods used in this study, including the composition of the dataset, preprocessing steps,
model architecture, and training procedure. Section 3 presents the evaluation results, report-
ing quantitative performance metrics for all experimental configurations. Section 4 provides
a detailed discussion of the results, supported by qualitative analysis of selected cases, and
examines factors that influence model generalization across datasets.

Methods and Materials

This section describes the materials and methods used in this study, including the compo-
sition and characteristics of the dataset, preprocessing steps, model architecture, experimen-
tal design, and implementation details. Together, these elements define the framework used
to investigate the generalizability of breast MRI segmentation models across heterogeneous
data sources.

Dataset

The MAMA-MIA dataset [4] is a large-scale, multicenter benchmark resource designed to
address the scarcity of expert-labeled breast DCE-MRI data. It includes 1,506 pre-treatment
T1-weighted DCE-MRI cases with expert-verified segmentations of primary tumors and non-
mass-enhanced regions.

Data was collected from four publicly available TCIA collections: I-SPY1 [3], I-SPY2 [11],
NACT-Pilot [10] and Duke-Breast-Cancer-MRI [15]. Selection focused on pre-treatment cases
with available clinical outcome data, especially pathological complete response (pCR) and
five-year survival status. As most of the original datasets lacked high-quality segmentation
masks, additional annotation was provided by 16 expert radiologists.

The MAMA-MIA dataset exhibits substantial diversity in imaging characteristics, making it
particularly valuable for the development and evaluation of robust breast MRl segmentation
methods. It includes both bilateral and unilateral scans, acquired using axial and sagittal
planes, thereby capturing variability in clinical imaging practices. The MRIs were obtained
using scanners with magnetic field strengths of 1.5T (72% of cases) and 3.0T (28%), and
the number of DCE-MRI phases per case ranges from 3 to 11, with significant variability in
inter-phase timing (e.g., mean time between pre- and first post-contrast: 203 seconds, range:
27-922 seconds). Additionally, the dataset encompasses a wide range of acquisition parame-
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ters such as slice thickness, pixel spacing, image matrix size, and scanner manufacturers (GE,
Siemens, Philips).

Preprocessing

As a first step in our pipeline, we preprocess the DCE-MRI data to ensure consistency across
patients. For each patient, the structural (pre-contrast) and first post-contrast MRI scans are
load. Since scans differ in acquisition plane (axial or sagittal) and spatial resolution, we per-
form anisotropic resampling to standardize voxel spacing across samples. Intensity normaliza-
tion is carried out using within-sample z-score normalization, where the mean and standard
deviation are computed jointly across both phases maintain consistency in intensity scaling.
During training, we randomly extract smaller cubic patches from the volumes to reduce GPU
memory usage and to handle differences in image dimensions between patients. To further
enhance model robustness and reduce overfitting, we apply random flipping as a form of spa-
tial data augmentation.

Model architecture

We employ a 3D Residual U-Net (ResUNet) segmentation network for all experiments,
keeping the architecture and hyperparameters fixed across runs to ensure comparability. This
choice is motivated by its widespread adoption in medical image segmentation and its close
similarity to the U-Net variant implemented in the widely used nnU-Net framework [8], which
has consistently demonstrated performance on par with state-of-the-art methods across di-
verse datasets.

The network takes two input channels (one for the pre-contrast MRI and one for the first
post-contrast MRI) and produces a single-channel tumor probability map. The encoder path
consists of six downsampling stages. Each stage contains two residual convolutional units,
where the output is computed as

y = F(x; 0) + x, (1)

with x denoting the input feature map and F(x; 6) representing two consecutive 3D convo-
lution - instance normalization - PReLU operations with 3x3x3 kernels. Explicitly,

F(x; 0) = a(IN (W, * o(IN(W, *x)))) , (2)

where IN is instance normalization, ¢ is the PReLU activation, and = denotes 3D convolu-
tion.
Downsampling is performed at the start of each encoder stage using a strided convolution:

Xq =X *s=p Wqy, (3)

which reduces the spatial resolution by a factor of two. The number of feature channels in-
creases with depth, starting at 32 and progressing through 64, 128, 256, 380 and again 380
channels. The decoder path mirrors the encoder with four upsampling stages implemented via
transpose convolutions:

Xy = X *g=p W, 4)

where « _ denotes a transposed convolution with stride 2. Skip connections link each en-
coder stage to its corresponding decoder stage, concatenating the features before further
processing. Instance normalization and PReLU activation are applied throughout the network.
The complete network architecture is shown in Figure 1.
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Figure 1. Architecture of the segmentation model used in this study

Methodology

To investigate cross-dataset generalizability, we adopt a leave-one-out experimental de-
sign. At each iteration, three of the four constituent MAMA-MIA sub-datasets are used for
model development, while the remaining dataset is held out entirely for independent testing.
The combined development set is randomly partitioned into 80% for training and 20% for
validation, without regard to sub-dataset membership. For example, one configuration trains
on I-SPY1, I-SPY2, and NACT-Pilot (split 80-20) and evaluates on Duke-Breast-Cancer-MRI.
This process is repeated so that each sub-dataset serves as the held-out test set exactly once,
yielding a total of four trained models.

After training, each model is evaluated on both its validation set (in-distribution) and its
held-out test set (out-of-distribution). Segmentation performance is quantified using the Dice
similarity coefficient, Precision, and Recall. In addition, we compute the absolute tumor vol-
ume in mm? for both the ground-truth and predicted masks to analyse systematic biases in
lesion size estimation.

To obtain a deeper understanding of factors affecting generalization, we perform a targeted
manual review of selected cases. For each model and each evaluation set (validation and test),
we sample 20 scans according to the following scheme:

- 5 scans from the lowest 10% of Dice scores

- 5 scans from the highest 10% of Dice scores

- 10 scans from the remaining 80%

This procedure results in 4x2x20=160 unique scans for detailed visual inspection. The se-
lected cases are then examined qualitatively to identify imaging characteristics, anatomical
variations, and lesion features that may contribute to segmentation success or failure.
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Implementation details

All experiments were conducted on a workstation running Ubuntu 22.04, equipped with an
NVIDIA GeForce GTX 1080 Ti GPU with 11 GB of VRAM. The neural network was trained with
PyTorch, with the model architecture sourced from MONAI’s [2] library of pre-implemented
neural network classes. Data loading and preprocessing were also handled using MONAI's
medical imaging framework.

The training configuration was as follows:

e Batchsize: 12

e Patch size: 128x128x128 voxels

e Optimizer: Adam with an initial learning rate of 0.01

e Learning rate scheduler: PolynomialLR with a power of 1.5

e Maximum number of epochs: 100

e Loss function: Dice loss

e Validation sliding window patch overlap: 50%

e Early stopping tolerance: 20 epochs

These settings were kept constant across all experiments to ensure that performance dif-
ferences arose solely from dataset composition rather than training variability.

Results

Table 1 summarizes the performance of the four trained models, each identified by the
dataset that was excluded from training and used as the held-out test set. For example, the
row labeled "DUKE" corresponds to the model trained on ISPY1, ISPY2, and NACT, with DUKE
reserved exclusively for testing. For each model, metrics are reported separately for the held-
out test set and for the corresponding validation set. Validation results are presented both as
an aggregate across all three training sub-datasets and individually for each sub-dataset to
capture in-distribution variability. Reported metrics include the mean Dice coefficient, Preci-
sion, and Recall, along with the mean ground-truth and predicted tumor volumes (in mm?),
computed per patient. Precision and Recall are calculated voxel-wise, and all reported values
represent averages over individual patient scores.
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Table 1. Performance of models identified by the held-out test dataset. Metrics are shown for the test
set and for validation (aggregate and per sub-dataset), including mean Dice, Precision, Recall, and
ground-truth and predicted volumes (mm?) averaged per patient.

Dataset val / test Dice Precision Recall Tru(emv;l;)me Pre(crin\::;u)me
val overall 0.743 0.751 0.802 24919 24395
val ISPY1 0.760 0.765 0.812 46545 34639
DUKE val ISPY2 0.745 0.754 0.803 20667 22392
val NACT 0.670 0.652 0.758 29912 26555
test 0.260 0.191 0.743 21120 63494
val overall 0.724 0.739 0.795 19616 19755
val DUKE 0.512 0.483 0.737 12914 23851
ISPY1 val ISPY2 0.772 0.798 0.802 20943 18440
val NACT 0.670 0.619 0.889 21585 28239
test 0.629 0.641 0.727 35257 24802
val overall 0.497 0.520 0.691 32510 35413
val DUKE 0.382 0.386 0.659 30218 43399
ISPY2 val ISPY1 0.639 0.647 0.759 28707 29056
val NACT 0.602 0.737 0.648 51185 19360
test 0.499 0.624 0.515 22352 15187
val overall 0.709 0.731 0.772 22520 20119
val DUKE 0.574 0.564 0.733 17404 21086
NACT val ISPY1 0.682 0.720 0.764 34686 34111
val ISPY2 0.759 0.792 0.787 22833 18054
test 0.683 0.686 0.804 30741 27940

In most configurations, model performance was higher on the validation sets than on the
held-out test sets, reflecting a clear drop in accuracy when applied to unseen data. The largest
decline was observed when DUKE served as the test set, with the Dice score falling from 0.743
on the aggregated validation set to 0.260 on the test set, suggesting a substantial distribution
shift between DUKE and the other datasets. Even within the in-distribution validation data,
performance varied notably across individual sub-datasets. For example, when ISPY1 was ex-
cluded from training, validation Dice scores ranged from 0.512 on DUKE to 0.772 on ISPY2,
indicating heterogeneity in difficulty even among datasets used for training.

Precision-Recall balance also varied by configuration: in some cases, such as DUKE as the
test set, models exhibited high Recall but low Precision (0.743 vs. 0.191), consistent with
over-segmentation; in others, such as ISPY2 as the test set, higher Precision relative to Recall
(0.624 vs. 0.515) suggested under-segmentation. Tumor volume estimates showed similar
variability, with the largest overestimation again occurring for DUKE in the test split (21,120
mm?* ground truth vs. 63,494 mm? predicted), while marked underestimation was observed
in several validation subsets, such as NACT in the ISPY2 model (51,185 mm?* ground truth vs.
19,360 mm? predicted). Overall, DUKE emerged as the most challenging dataset for cross-da-
taset generalization, while ISPY1 and NACT were comparatively less affected by the domain
shift when used as held-out test sets.
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Discussion

To better understand the factors influencing model generalization, we performed a quali-
tative review of a representative subset of scans from each validation and test set. This visual
inspection of individual cases, spanning a range of segmentation performances, revealed sev-
eral recurring patterns and dataset-specific characteristics that help explain the quantitative
results. Key observations from this analysis are presented below.

A key finding of this study is the markedly poor perfomance of models when DUKE was
used as the held-out test set, with Dice scores dropping sharply compared to all other config-
urations. This can be traced to a fundamental difference in the way the source datasets were
preprocessed prior to inclusion in MAMA-MIA. The MRI scans in MAMA-MIA do not retain their
raw, originally acquired form; instead, they are the result of preprocessing pipelines applied
before public release. While ISPY1, ISPY2, and NACT contain images that are often cropped to
include only the breast with the tumor (in unilateral cases), DUKE scans consistently include
the full MRI field of view. Figure 2 illustrates this difference in coverage.

Figure 2. Example from the ISPY2 dataset in its publicly released form, cropped to include
only the breast containing the tumor. The cropping was performed prior to release
of the dataset and is not part of this study’s preprocessing.

This disparity is quantitatively reflected in Table 2, which reports the median total scan
volume for each sub-dataset. DUKE’s median volume is 21,513 cm?, while the other three
datasets are all around 5,000 cm?® or less, indicating a high prevalence of cropping in ISPY1,
ISPY2, and NACT. As a result, models trained on cropped images encounter a substantial dis-
tribution shift when exposed to DUKE: sliding-window inference produces a large number of
patches containing only healthy tissue, a scenario rarely seen during training. This mismatch
likely drives both the low Dice scores and the systematic overestimation of tumor volumes, as
the model tends to generate false-positive segmentations in regions of healthy parenchymal
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enhancement where it ‘expects” to find abnormalities. An example of this phenomenon is
shown in Figure 3, where widespread false-positive masks appear in otherwise normal tissue.
This issue can be addressed by including whole breast segmentation into the preprocessing
pipeline.

Figure 3. Example from the DUKE dataset showing the predicted mask (red) and
the ground-truth mask (green). While the model accurately segments the true tumor,
multiple false-positive regions outside the breast substantially reduce the Dice score.

Table 2. Median total scan volume for each sub-dataset in MAMA-MIA.

Dataset Median volume (cm3)
DUKE 21513
ISPY1 5120
ISPY2 5119
NACT 3888

Bright imaging artifacts and non-tumorous enhancements within the breast are also a
frequent source of false positives, as illustrated in Figure 4. This issue could potentially be
mitigated by providing more DCE-MRI phases as input. In our design, only the pre-contrast
anatomical reference and the first post-contrast scan are used. Access to additional phases
would allow reconstruction of the kinetic enhancement curve of the lesion, enabling better
differentiation between malignancies, healthy tissue, and consistently bright artifacts. How-
ever, incorporating more temporal information is challenging: the number of available phases
varies significantly within the dataset, and restricting analysis to the lowest common number
discards a substantial amount of potentially informative data. Furthermore, in some cases, lat-
er post-contrast phases provide greater lesion enhancement and improved background con-
trast compared to the first post-contrast scan, as shown in Figure 5.
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Figure 4. Examples of false positives caused by non-tumorous regions.
The left panel shows an MRI artifact along the breast boundary, while the right panel
shows an area of benign enhancement within the breast parenchyma.

Figure 5. Example illustrating delayed enhancement effects. The top row shows the first post-
contrast image, without masks (left) and with predicted (red) and ground-truth (green) masks (right).
The bottom row shows the corresponding fourth post-contrast image. In the later phase, the lower
section of the tumor—missed by the prediction in the first post-contrast image—exhibits greater
enhancement and improved contrast with surrounding tissue.

The drop in performance metrics with ISPY1 as the test set is also noticeable and signifi-
cant, even if not as severe as the drop observed for DUKE. One contributing factor may be the
age of the imaging in ISPY1, as most scans were acquired in the mid-1980s. Figure 6 shows
an example scan from 1986 in which the model, trained on the other three datasets, failed to
segment a large visible tumor. This failure is likely due to the lower image quality and greater
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noise levels in these older scans, especially when compared to the more recent imaging found
in the other datasets, which primarily includes acquisitions from the late 1990s, 2000s, and
later.

Figure 6. Example from the ISPY1 dataset acquired in 1986. The model trained on the other three
datasets failed to segment the large tumor visible in the image, likely due to the lower quality and
higher noise levels of older scans compared to the more recent imaging in the other datasets.

Overall, the case-level analysis highlights how differences in dataset preprocessing, im-
aging protocols, acquisition eras, and inherent anatomical or physiological variability can
substantially impact segmentation performance. While some of these limitations may be ad-
dressed through harmonization of preprocessing pipelines, richer temporal information, and
targeted augmentation strategies, others reflect fundamental shifts in data distribution that
are more challenging to overcome. These findings underscore the importance of considering
dataset composition and heterogeneity when developing and evaluating models intended for
broad clinical deployment.

Conclusion

In summary, this study highlights the challenges of achieving robust cross-dataset gener-
alization in breast DCE-MRI tumor segmentation. By systematically evaluating models across
four diverse public datasets and performing targeted case reviews, we identified key sources of
performance degradation, including differences in field of view, presence of bright non-tumor-
ous enhancements, temporal enhancement patterns, and historical variations in image qual-
ity. These findings emphasize that models can suffer substantial drops in performance when
confronted with domain shifts inherent to multi-institutional imaging data. Addressing such
challenges will require not only improved modeling strategies, but also greater harmonization
of acquisition protocols, preprocessing approaches, and annotation standards across datasets.
Ultimately, bridging these gaps is essential for translating automated breast MRI analysis into
reliable, clinically deployable tools.
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