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NUMERICAL SIMULATION OF WATER FLOW THROUGH A POROUS
MEDIUM: VERIFICATION BY THE LIN 1999 EXPERIMENT

Abstract: The presented study verifies a numerical model of fluid flow through a porous
structure based on the experiment by Lin (1999). Water flows through porous media with a
free surface are common in hydraulic engineering applications, such as dam breaks, seepage
through dams, and the operation of wave protection structures. For a more accurate forecast,
numerical modeling and verification should be performed using reliable experimental data.
The experiment studied flow motion after a sudden removal of a partition (analogous to a dam
break) in a rectangular channel with a porous obstacle. The laboratory setup had dimensions
0of 0.892 m x 0.37 m x 0.44 m, and the porous insert of 0.29 m x 0.37 m x 0.44 m was placed
in a section of 0.3-0.59 m along the X-axis. Thus, the porous barrier blocked the cross-section
of the channel, and water could flow only through its pores. This work helps to convey the
forecast and allows to adequately simulate natural "jams” of branches and stones. This work
demonstrates how, using such a verified model, it is possible to predict the flow dynamics in
real conditions: water level changes, velocity field and coastal sediment accumulation zones.
In addition, obtained data can serve as a basis for early warning of environmental risks and
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development of measures to protect water resources. In the future, it is planned to apply the
model to a real section of the Talas River for a more detailed and reliable assessment of water
pollution processes.

Keywords: porous media; numerical simulation; damb break, river pollution, water level.

Introduction

Water is one of the vital resources of the environment. The daily aggravation of the problem
of water shortage provides for the introduction of state-of-the-art methods aimed at increas-
ing water productivity in agriculture, which results in an increase in the amount of crop yield
while reducing the amount of water used [1]. Other important problems related to water re-
sources are floods and breakthroughs of hydraulic structures [2], siltation, water pollution, etc.
Floods caused by breakthroughs of hydraulic structures are of particular interest, since such a
natural disaster is associated with a complex geographical landscape of rivers and lakes. The
main cause of the increasing frequency of floods at the global level is global climate change
and human activities [3], [4].

Despite the high cost and expense of the process, there are experimental data on water
resources in the literature [5], [6], [7]. Such works allow us to verify the numerical studies
conducted, the developed numerical models, and also provide an opportunity to better under-
stand the dynamics of the fluid flow. Laboratory experiments allow us to study the propagation
of flood waves. For example, in the study [8], the authors conducted an experiment consisting
of the propagation of three types of Newtonian fluid (water, water with salt, and sunflower
oil) along a rectangular installation. Conducting laboratory experiments made it possible to
determine the difference between bottom sediments of different and the same diameters [9],
[10] experimentally investigated the erosion process to accurately and quickly predict the out-
flow rate of water after the break of landslide dams. In the paper [11], field experiments were
conducted on flushing a reservoir covered with bottom sediments.

Over the past decade, forecasting various events and outcomes has become possible thanks
to numerical modeling. The choice of numerical modeling is explained by its availability, low
resource consumption and relatively low costs. To obtain the most reliable results, artificial
intelligence, remote sensing (ERS), Unmanned Aerial Vehicles (UAVs) and real data obtained
from hydroposts jointly with the republican state enterprise "Kazhydromet” and the republican
state enterprise "Kazvodkhoz" are also actively used. The reasonableness, accuracy and relia-
bility of the developed models are tested by comparing the obtained results with experimental
data [12].

The presented process of the system functioning is an end-to-end sequence of operations,
ensuring the transition from the collection of initial information to the formation of analytical
conclusions and their provision to end users (Figure 1). At the first stage, a comprehensive
collection of data is carried out, including physical parameters, geographic information and
hydrological indicators. The obtained information undergoes integration and preliminary pro-
cessing in order to bring it to a single format and structure necessary for further modeling.

The second stage is implemented within the backend system, where data is received by
the recording service and stored in the PostgreSQL relational database. Here, key analytical
processing is performed, including multi-scale assessment and numerical modeling of hy-
drodynamic processes using k-¢ and k-o turbulence models. Based on the obtained results, a
comparison with experimental data is performed, verification of calculation models and an as-
sessment of their adequacy are carried out. The constructed CFD models undergo a post-pro-
cessing stage, including analysis of contour distributions, profiles and multivariate statistical
analysis.
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The final stage involves publishing the results via API Gateway, making them available to
both external systems and frontend interfaces. The client side includes functions for monitor-
ing indicators in real time, conducting analytics, and generating reports [13].
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Figure 1. Integrated architecture for data acquisition, validation and CFD modeling

Research area and data

This paper examines the verification of a numerical model of fluid flow through a porous
structure based on an experiment, which is planned to be applied in the future to the Talas
River flowing through the Zhambyl region of Kazakhstan. It is worth noting that the Talas River
is one of the most polluted water bodies in the country (Figure 2). According to the Ministry of
Water Resources and Irrigation of the Republic of Kazakhstan, Talas is one of the rivers whose
water quality does not meet sanitary standards and is not suitable for most activities. As is
known, the main pollutants of the river are suspended matter, salt ions (magnesium, chlorides,
calcium, sulfates) and heavy metals (cadmium, manganese, copper, zinc). Thus, pollutants have
a negative impact on the river ecosystem, interfere with the photosynthesis of aquatic plants
and can cause corrosion of equipment.

One of the reasons for the deterioration of water quality is the ineffectiveness of waste-
water treatment facilities in the cities along the river. The deplorable state of these facilities
leads to the discharge of untreated wastewater into the river, which exacerbates the pollution
problem. In addition, the transboundary nature of the Talas River complicates water manage-
ment, since water comes from Kyrgyzstan, and any changes in water supply from there directly
affect the situation in Kazakhstan.

Improving the water quality in the Talas River requires a comprehensive solution, including
upgrading treatment facilities, effective water management, and international cooperation
with neighboring countries. Regular water quality monitoring and the development of pro-
grams to restore the river's ecosystem are also important steps.
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Figure 2. Pollution map of the Shu and Talas rivers [14]

As is known, the Talas River and the Chu River are transboundary watercourses flowing
through the territory of Kyrgyzstan and Kazakhstan. The Talas River originates on the northern
slopes of the Talas Alatau ridge, its length is about 661 km, and the basin area is over 52,000
km?2. The river is subject to anthropogenic impact along most of its course, especially in the
lower reaches, where there is a partial or complete loss of flow due to intensive water intake
for irrigation purposes.

The Chu River, over 1,060 km long, is formed at the confluence of the Dzhuungart and
Chon-Kemin rivers in the foothills of the Tien Shan and crosses the Chui Valley, one of the
most populated and economically developed regions of Kyrgyzstan and southern Kazakhstan.
In the lower reaches, on the territory of Kazakhstan, a significant part of the river's waters is
lost in the sands of the Moiynkum Desert, before reaching its final reservoir.

Both rivers have a pronounced flood regime caused by the melting of snow and glaciers in
the spring and summer, which significantly affects the concentrations of pollutants in different
seasons. Moreover, the main sources of pollution of the Talas River are the former sources of
pollution and as a result greatly affect the flow of water, changing its channel and leading to
marfological changes.

Based on the study area and the need to take measures to improve transboundary wa-
tercourse management, a detailed description of the conceptual framework of the study is
provided below (Figure 3). It highlights five key stages, each of which plays its role in build-
ing a reliable and verified numerical model and subsequent analysis of the results. Thus, the
proposed conceptual framework provides a systematic approach from collecting field data to
developing practical recommendations, combining experimental studies, numerical modeling
and statistical analysis.
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Figure 3. Conceptual diagram
VOF method

The Volume of Fluid Method (VOF) [14],[15],[16],[17] is used to track the movement and
deformation of the interface between phases in multicomponent flows. This technique intro-
duces a scalar function of the volume fraction of liquid, a, which indicates what part of the
grid cell volume is filled with water (or another liquid). The value a.=1 means that the cell
is completely occupied by liquid, a = 0 — completely by gas, and 0 <a <1 indicates interface
cells. The evolution of a is described by the transport equation

da _
T V(auw) =0 (1)
which ensures the transfer of the volume fraction of liquid along with the flow. The physical
properties of the mixture (density p and viscosity ) are calculated as weighted by a:

P = APwater T (1- a)pair (2)

U = Clyater T 1- a).uair (3)

The VOF model allows the shape and motion of the free surface to be accurately reproduced
and also takes into account surface tension effects where necessary.

Mathematical model

To build a mathematical model, the laws of conservation of mass and momentum are used
for an incompressible viscous isothermal fluid in the absence of mass and surface forces, as
well as a system of Reynolds-averaged Navier-Stokes equations [18]:

Vu=20 (4)
] a(pujyy) ap = 0t
g () + =58 = = oA 24 ST + pgy (5)

where, u = (u, v, w) - is velocity components, p - is fluid pressure; p - is dynamic viscosity,
duj . 0y . .
- is liquid density, 7;; = u( + 5) - is the mean tensor of viscous stresses, g. - compo-

nents of gravity.

1
Sfor = %ui — > PG luly; (6)

where, K - permeability (Darcy), C, - is the Forchheimer coefficient.
Turbulence kinetic energy k and velocity and ¢ rate of dissipation are determined from the

transfer equation:
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260+ (pku) = V|(1+E) vk| + G — pe (7)

d(pe) _ i € g2
289 + Vpeu = v [(u + G—t) Vs] + Cre s Gy — pCae = (8)

2 N A .
where, u, = pCuk? is turbulent viscosity, G, = p, (‘”i + %)ﬂ is the rate of turbulence energy

G_X]' 0xi 0Xi
generation in the middle current. The coefficients of the model have the following standard
values: C, = 0.09, Ca = 1.44, Cz = 1.92,0, = 1.0, o, = 1.3,

Numerical simulation algorithm

As is known, the PISO (Pressure-Implicit with Splitting of Operators) algorithm is used to
solve unstable hydrodynamic problems in ANSYS Fluent [19], which is widely used in numer-
ical integration of the Navier-Stokes equations. The PISO numerical algorithm allows for ef-
fective and stable coupling of pressure and velocity fields, which is especially important when
modeling rapidly changing non-stationary flows [20]. This algorithm consists of two cycles,
such as predictor and corrector steps, in the following form:

Predictor Step: The expected pressure field p* is specified. Then, given this value of the
solution to the discretized momentum equation, the preliminary velocities (u™* = u"*, v/\¥)
are calculated.

Corrector Step 1: Corrections to the pressure field u* = (u*, v*) are calculated based on the
violation of the continuity equation by the obtained velocities. Next, the pressure p** = p*, op
is updated and then the velocity components u*= u*, +ou'”, where ou'V are related to op‘".

Corrector Step 2: At this stage, additional corrections are made to eliminate the remaining
discrepancies:

5p® = p*, +p®, 9)
u™ = u*, +ou'?,

where, ou® are calculated similarly to the first correction step.

Therefore, after completing both steps, the required accuracy of the continuity equation
and the equations of motion is achieved. If necessary, PISO iterations can be repeated until
the specified convergence criteria for the residuals are achieved. Thus, this approach helps to
provide a faster and more reliable matching of pressure and velocity fields than the classical
SIMPLE scheme, which is why PISO is the standard for unsteady flow calculations in ANSYS
Fluent.

Numerical test case validation Lin, 1999

The presented test problem is to check the numerical model by comparing the results with
the experimental data given in the work (Lin, 1999, [13]). The experimental studies were car-
ried out in a setup with dimensions of 0.892 m x 0.37 m x 0.44 m, and the dimension of the
porous structure was 0.29 m x 0.37 m x 0.44 m and was located at a distance of 0.3-0.59 m
along the X-axis. The numerical simulation begins with the opening of the vertical gate, after
which the water flow moves along the channel. Other details of the experiment can be found
in the study (Lin, 1999, [13]). Figure 4 shows the complete scheme of the computational do-
main. In order to prevent water splashes from falling on the porous region, the height of the
water reservoir was 25 cm. In order to compare the computational results and the experiment,
1.4 seconds were enough for the simulation.
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Figure 4. Computational domain of the test case

The boundary conditions were set as follows for the physical model: on the solid walls of
the channel - non-slip walls, the upper boundary of the region was considered open and at-
mospheric pressure was set.

The total number of elements in the grid is 3,919,182. dmax=0.10612 m, and
dmin = 5.306e-004 m, time step dt = 0.01 s.

Results and Discussion

The obtained results of the numerical experiment showed that the developed model suc-
cessfully reproduces the main characteristics of the flow observed in the experiment [13].
The evolution of the free water surface height over time for the control points of the ex-
periment and calculation is shown (Figure 5). It is evident that the graphs of the numerical
and experimental level changes practically coincide, which indicates a high accuracy of the
model. In particular, the time of filling the porous insert with water and the rate of level rise
at the entrance to the porous region in the calculation corresponds to the measured values.
The maximum water height in front of the porous barrier, achieved after opening the gate, is
also close to that recorded in the experiment. Small discrepancies appear only at later stages,
can be noticed after 1 second of modeling and can be associated with turbulent pulsations,
measurement inaccuracy or the influence of three-dimensional effects. In general, the coinci-
dence of the calculated and experimental curves confirms the adequacy of the selected model
parameters and numerical methods.

Also shown are successive two-dimensional images of the flow movement process through
the porous insert, the presented images are obtained from a 3D calculation, displaying the
central section of the channel (Figure 6). These visualizations illustrate the propagation of the
breakthrough wave along the channel and its interaction with the porous obstacle. After the
gate opens, the water flow quickly fills the area in front of the porous obstacle, forming a surge
of water upstream from it. Then the water begins to leak through the porous structure: the
flow front inside the insert moves more slowly than in a free channel and is noticeably slowed
down due to the resistance of the material.
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Figure 5. Water height throughout the simulation process:
(a) t=0.8 sec, (b) t=1.0 sec, (c) t=1.0 sec, (d) t=1.4 sec.

By the end of the calculation, the water completely penetrates the porous barrier and flows
into the lower part of the channel, but its speed and depth are significantly reduced compared
to the case without a barrier. These numerical flow patterns are in qualitative agreement with
experimental observations [13]: in both cases, the porous block acts as an energy absorber,
reducing the height and speed of the wave due to filtration. Note that performing the calcu-
lation in a three-dimensional formulation made it possible to take into account the possible
uneven distribution of the flow across the width of the channel, which cannot be achieved in
2D models. Nevertheless, in this case, the flow turned out to be almost uniform in width, due
to which the two-dimensional sections quite fully reflect the nature of the process (Figure 5).
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Figure 6. Two-dimensional images of the process of water flow through a porous region
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Conclusion

In the presented work, a three-dimensional numerical model of water flow through a po-
rous medium was implemented and verified, where the reliability of the data is based on
a laboratory experiment [13]. Thus, a comparison of the change in water and velocity with
laboratory data showed that the discrepancies do not exceed 5%. Also, the selected methods
- the VOF model for the free surface, the RNG version of the turbulent k-¢ model and the PISO
algorithm for the pressure-velocity relationship — adequately describe the physical picture of
the experiment. The parameters of the porous zone - the porosity value ¢, the permeability k
and the inertial coefficient C2 - were also correctly selected.

The obtained results describe how the propagation of the shock wave of the penetration
and its interaction with the porous barrier are reproduced (Figures 5, 6). As a result, then
quickly fills the box before insertion and then only slows down, and the presence of a porous
medium partially filters through the pores and leads to a noticeable decrease in the depth and
flow velocity in the underlying part of the channel. Thus, this three-dimensional model made
it possible to verify the homogeneity of the flow across the width, confirming that two-dimen-
sional sections sufficiently fully reflect the key hydrodynamic mechanisms. This kind of labora-
tory tasks helps to create a solid basis for transferring the model to the real conditions of the
Talas River, which is planned to adapt the calculation area to the natural channel profile, set
field hydrographs and porosity parameters of the "jam" zones, and then conduct similar com-
parisons with field measurements of level and velocity. It is worth noting that the resulting
numerical platform will be useful for predicting flood processes, assessing erosion and sedi-
ment accumulation, as well as for developing an early warning system for environmental risks
and planning measures to protect water resources.

This integrated approach provides a robust tool for hydrologists, ecologists and engineers
to combine a detailed physical flow model with practical river monitoring and management
tasks.
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