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METHODS AND ALGORITHMS FOR SOLVING THE PROBLEM ON
THE SUM OF SUBSETS

Abstract: We study special-case algorithms for the subset-sum problem when the subset
size is fixed to k € {2, 3}, using algebraic and geometric formulations that yield practical pro-
cedures with clear time and space bounds. The subset sum problem is one of the fundamen-
tal problems in computational complexity theory. It consists of determining whether, given a
finite set of non-negative integers, there exists a subset whose sum of elements is equal to
a predetermined number. This problem belongs to the class of nondeterministic polynomial
time complete (NP-complete) problems: its solution can be verified in polynomial time, but
an efficient algorithm for the general case has not yet been found. The goal of our research
is to find new methods for solving the subset sum problem for special cases using algebraic
and geometric approaches. The proposed method is based on a polynomial formulation of
the problem inspired by Waring's conjecture for polynomials and the Neumann-Slater theo-
rem. The main idea is to construct polynomials whose coefficients contain information about
the sum of the elements of a subset. Using Vieta's theorem and the Euclidean algorithm, the
problem is reduced to checking whether certain algebraic conditions are satisfied. The article
proposes two lemmas proving the polynomial solvability of the subset sum problem for sub-
set cardinality two and three. Based on them, two algorithms are developed: one uses value
mapping and a fusion method, the other is based on a geometric criterion for collinearity of
points obtained by transforming set elements. The algorithms demonstrate efficiency in terms
of time and memory and do not require division into verification and decision stages. Effec-
tive methods for solving it allow us to develop faster algorithms for intelligent information
processing, optimization of computing processes, and construction of reliable data protection
systems. Our results establish polynomial-time solvability only for these fixed-k cases and do
not claim consequences for the general subset-sum problem or for the P vs NP question.
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Introduction

In the context of rapidly increasing data volumes and the growing complexity of computa-
tional processes, the subset sum problem acquires particular importance in the field of infor-
mation and communication technologies. Its efficient solution contributes to the optimization
of distributed computing, enhances the performance of intelligent information retrieval, and
improves the effectiveness of big data analysis. The subset sum problem is one of the most
important problems in computational complexity theory. Researchers have been fascinated by
it for a long time since it seems so simple but has deep theoretical and practical implications.
Formally, the task is to find out if there is a subset of a certain size k of a finite set of non-neg-
ative integers whose elements add up to a certain goal number S [1]. Even though it is easy to
comprehend, this problem is NP-complete, which means that no polynomial-time algorithm is
known to solve it. Solving it would change the knowledge of computing theory in a big way.
It is commonly known that any problem in the NP class can, in theory, be solved by exhaustive
search or brute-force enumeration at the most basic level. This method checks every conceiv-
able combination of items to see if any subset meets the necessary requirements. It could be
possible to compute the objective function for everyone candidate subset in polynomial time,
but the number of viable subsets grows exponentially as the input set n gets bigger. There
are 2n possible subsets, which makes it impossible to list them all even for somewhat large
values of n. Because of this, these solutions don't work in the actual world, which drives the
quest for faster algorithms [2].

There are a few general ways of thinking that have come out in the field of algorithm de-
sign to solve NP-complete issues. The brute-force method is still easy to understand but costs
a lot of money to run [3]. Pseudopolynomial algorithms are another option. They can work well
when the input values are limited to moderate numerical ranges instead of enormous cardi-
nalities. These methods take advantage of certain issue structures to cut down on calculation
time in some situations. Also, exponential-time algorithms have been improved to make them
perform better in real life, even though they still don't scale well in the worst scenario. But
there is no universal polynomial-time solution for the subset sum problem, which is why the-
oretical computer science is still doing research on it.

Recent work has been aimed at closing this gap. In-depth studies of current work [4] show
that both pseudopolynomial algorithms and sophisticated exponential-time approaches have
made big strides. For example, scientists have come up with algorithms whose temporal com-
plexity depends more on the actual numbers involved than just the size of the input set.
These algorithms have made a lot of progress in practice, but in the worst case, they are still
exponential because the problem is fundamentally NP-complete. Also, earlier research has
investigated polynomial-time algorithms for certain types of the subset sum problem using
new math tools including polynomial representations and algebraic methods. But these meth-
ods only work in some situations or when the problem parameters are limited in some way.
This leaves the bigger challenge of a general polynomial-time solution unanswered. Algebraic
interpretations of the problem have become a fruitful area of research. These kinds of meth-
ods turn the subset sum problem into polynomial forms that are the same, using well-known
algebraic conclusions as Viete's theorem, the Euclidean algorithm, and the famous Waring's
problem for polynomials [5]. These methods give us new ways of looking at the problem by
linking it to the coefficients of specifically made polynomials. This could lead to new discover-
ies in algorithm design and complexity analysis.

Even with these improvements, many basic questions are still unsolved. Some of the most
important things to figure out are the lower and upper bounds on the cardinality k of the sub-
set that can satisfy the target sum, the exact relationship between the size of the original set
n and the size k of potential solution subsets, and the smallest subset cardinalities that can
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be achieved when dividing the original set into smaller groups. These open problems show
how complicated and deep the subset sum problem is and how it affects the field of computa-
tional complexity theory as a whole. For the sake of this study, the problem might be phrased
as follows: given a set A of non-negative integers with a cardinality n, it is necessary to find
a subset A’ with a cardinality k such that the sum of its members equals a predetermined
value S. This approach puts the problem firmly in the NP-complete class, which shows how
important it is not only in theory but also in real-world areas like cryptography, combinatorial
optimization, resource allocation, and analyzing vast amounts of data. This research builds on
what is already known and offers new ways to look at the subset sum problem using algebra.
This study tries to improve our understanding of the subset sum problem and suggests pos-
sible strategies to find efficient solutions by using ideas from polynomial theory, such as War-
ing's problem, and the rules for building and manipulating polynomials. These initiatives not
only help us understand the subset sum problem better, but they also have wider implications
for addressing other NP-complete problems. They might even move the scientific community
closer to answering the huge question of whether P=NP.

Looking back in time, early research showed that a naive approach that tries to list all pos-
sible subsets of a set with n members takes an exponential amount of time because there are
2n possible subsets. The study [6] wrote one of the most important papers on the subject by
coming up with partitioning algorithms that made the search space for subset sum and knap-
sack problems smaller. But these solutions only sped things up for small or medium-sized
inputs, and they still had an exponential worst-case complexity.

A lot of study has gone into constructing pseudopolynomial algorithms for the subset sum
issue. These algorithms take longer to perform when the input numbers are larger, but they
work better when the numbers are smaller. The research [7] made progress in the field by
creating a quicker pseudopolynomial-time approach that cut the runtime by a lot for cases
when the total values are limited. The work [8] also suggested a near-linear pseudopolyno-
mial algorithm, which is a big step forward in many situations, but it is still exponential in the
worst-case size of the input.

These algorithms make a lot of progress, but they don't get beyond the fact that the prob-
lem is inherently exponential for huge instances with no limits on the numerical values. Be-
cause of this, the subset sum problem is still a big theoretical and practical difficulty. There is
a new way of doing research that goes beyond algorithmic approaches: looking at the subset
sum problem through algebraic methods, especially polynomial theory. Schreiber et al. [9]
have investigated turning the subset sum problem into problems concerning polynomial coef-
ficients. They used classical results like Viete's theorem, the Euclidean method, and generali-
zations of Waring's problem for polynomials to do this. In its original version, Waring's issue is
about writing natural numbers as sums of powers. It can also be applied to polynomials, where
it is about writing polynomials as sums of powers of other polynomials. This point of view lets
us see the subset sum problem as finding certain coefficients in made-up polynomials, which
links the problem to important areas of algebra and number theory.

These kinds of algebraic interpretations make it seem like polynomial-time solutions would
be possible for some limited circumstances, especially subsets with cardinalities k=2 or k=3.
These results don't yet apply to the whole problem, but they do give us fresh ideas and possi-
ble ways to solve a wider range of NP-complete problems[10]. Even with these improvements,
there are still a few important open problems. Some of these are figuring out the tight lower
and upper bounds on the number of solution subsets k, figuring out how the size of the in-
put set n affects the sizes of the feasible subsets, and figuring out the smallest cardinalities
needed when splitting the original set into smaller solvable subsets. These problems are very
important for both understanding theory and designing algorithms that work [11].
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The subset sum problem is important for more than just theoretical reasons. In cryptogra-
phy, its computational difficulty is what makes some cryptosystems safe [12], [13], especially
knapsack-based cryptography, which depends on the fact that it's impossible to solve huge
instances of the issue. The problem also comes up in many real-world situations, such as
resource allocation, scheduling, financial modeling, and big data analytics, where finding ef-
ficient solutions is very important. To sum up, the subset sum problem is still one of the most
important problems in complexity theory and algorithmic research. There has been a lot of
progress, especially in pseudopolynomial algorithms and new algebraic methods, but the gen-
eral problem is still a symbol of how hard it is to compute [14]. Researchers are still looking
for breakthroughs that could change how we think about NP-complete issues and how to solve
them. The methods suggested in this study are only one example of this ongoing research.
These breakthroughs could have effects that go far beyond the field of theoretical computer
science [15].

Methods and Materials

Formulation of the problem

The key points:

- construction of the polynomial from A4,

- how the second coefficient equals the target-sum over a chosen index set, and
- why that coefficient’s value induces the subset witness.

The problem of the sum of subsets is formulated as (1):

Z?:l a;x; = S, a; € {0,1},xl- € Xn, i € N, (1)

where X" set of even and odd non-negative integers, cardinality n = [X™], x; < +o , N-set
of natural numbers with cardinality n = |N|, n < +oo, It is assumed that § — x; > 0,x; € X™, i € N.

Then the formal statement of the problem of the sum of subsets in parametrized form has
the form (2):

S:AXFCX™, ¥y exre X = S. (2)

The subset X* is selected based on the combination (3)

_ n! _ n(n-1)(n-2)..(n—k+1)
T kl(n—-k)! k! (3)

Cx
Note that problem (1) is a special case of problem (2).

Polynomial-Time Solvability of NP-Complete Problems

Various generalizations of the classical Waring's problem for polynomials [4] are known.
We will consider the following version of Waring's problem for polynomials: Given a natural
number n, find the minimal number k = k(n) such that any polynomial g € C[x] can be repre-
sented in the form g = fi* + f;* + - + f¢', rae fi* € C[x]. To address Waring's problem, it is suffi-
cient to restrict the consideration to the case g(x) = x. Indeed, if x = f*(x) + fJ*(x) + - + fi*(x)
and h(zx) -an agbitrary polynomial, To h(x)= f{*(h(x)) + fF*(h(x)) + - + fi*(h(x)) . The identity
(x + i) - (x - i) = x demonstrates that k(2)=2.

According to [5], we can represent an equivalent formulation of problem (1) as a polynomial
subset sum problem: it is necessary to find a subset X € X" with a certificate § = Y, x;, equal
to the second coefficient a, of the polynomial.

ak(x) = x¥ = Sx* 1 + apx* % + -+ q, (4)

satisfying the following conditions (5):
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a®()b™*(x) = c™(x), (5)
where ¢"(x) is a known polynomial of degree n with given coefficients,
cCM()=x" = QX"+ x4, Q = X X (6)

The coefficients of polynomial (6) are determined based on Viete's theorem, whose roots
are the x; € X™. The polynomial b"*(x) is obtained based on relation (5).

bk (x)=x""F — (Q — S)x™" k1 + byx™ K2+ ..+ b, 7)

The coefficients of polynomial (7) are determined based on the division of the polynomial
c"(x) by the polynomial a*(x) using the Euclidean algorithm [16].

According to the Waring problem for polynomials and the Neumann-Slater theorem [4],
there exists a polynomial h(x)= f/"(h(x)) + f7*(h(x)) + - + fi*(h(x)), where f* - are polynomi-
als of degree n, constructed based on the polynomial ¢"(x) with varying signs of coefficients.
Due to the arbitrariness of the polynomial h(x) we can select a polynomial

a®(x)=h*(x) (8)

of degree k, where the second coefficient h, = - S of the polynomial h*(x), and according to
Vieta’s theorem, the value S = x; + x, + --- + x . The key point here is that this coefficient h
consists of k arbitrary elements from the set X". This demonstrates the existence of a subsetX’l‘
of cardinality k within the original set X" of cardinality n [17].

The subset sum problem requires [18] addressing the question of the existence of a cer-
tificate S represented as a sum of a limited (minimal) number of elements [19]. Therefore, we
are particularly interested in polynomials (8) of degree 2 and 3, which describe subsets X* of
cardinality k=2 and k= 3:

a’(x) =x*—-Sx+a, 9)

a®(x) = x3 — Sx? + a,x + as. (10)

From these polynomials (9) and (10), we obtain the mappings found in references [2], [3],
namely:

y =1(5,x) = x? — Sx, (11)
y =1(5,x) = x3 — Sx? (12)

Based on mapping (11), we have:
Y™ = (¥1, V2, s Yu)» (13)

where T(S,xi) =Y, X; € Xn,i eL.
Let there be elements within the subset Y" such that the following equality holds (14):

Vi =yj, i #]. (14)

Theorem 1 (Two-element case correctness and completeness).

Let A={a,,..,a,} € Z,, targer S € Z,, . Under mapping induced by (9)-(11), sorting f{A)
and running the merge procedure returns a pair (i, j) with a, + a,=S$ iff such a pair exists.
Soundness follows since equality in the merge corresponds to the coefficient embedded by
(9), (11)-(14). Completeness follows from the monotone ordering of f{A) and the standard
two-pointer invariant: if the current sum is <S, move the lower pointer; if >S, move the upper
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pointer; equality halts. Sorting O(nlogn), two-pointer merge O(n), extra space 0(1) or O(n) if
you keep a transformed copy.

Theorem 2 (Three-element case collinearity criterion).

Let k = 3 under the point transform (10),(12), three indices i, j, [ satisfy a, + a+a=>S iff the
corresponding points satisfy the collinearity test (15) (with vertical/duplicate cases handled
by zero-area test). Derive the line equations for {(x,,y), (xj, yJ} and for {(xj,y].), (x, y)}; equal
slopes & determinant =0 & sum constraint via (10),(12). Cover degeneracies explicitly. (Your
manuscript states (15) and Lemma 2; make the iff explicit. Standard O(n?) time (fix one index,
scan the other two with the collinearity/triangle-area check), extra space 0(1) or O(n) as im-
plemented [20].

Then the following holds:

Lemma 1. Let there exist some pairs of elements (vi,¥;) € Y™ with corresponding indices
(i,j) such that i #j and equality (14) holds for the subset defined in (13). Then problem (2) is
solvable.

The proof follows from the properties of polynomial (9). Let us introduce the criterion for
three points to lie on a single straight line, which is derived from the equation of a line passing
through two points (15):

Yi=Vi _ Yk—Yi
- b
Xj—Xj Xk—Xi

(15)

where x;, =S — (x]- + xl-),yk =[5% - ZS(x]- + xi) + (xj + xi)z](xj +Xx;),
yi = (8% = 2Sx; + xP)x;, y; = (5% — 2Sx; + sz)xj.

For the cardinality m=(k-1)/2 (where k is odd) the following holds:

Lemma 2. Let there exist some pairs of elements (vi,¥;) € Y™ with corresponding indices
(i,j) where i # j such that equality (15) holds for the subset defined in (13). Then problem (2)
is solvable.

The proof follows from the equations of lines passing through the points {(xl.,yi),xj, yj)} and
{(x,y), (x,,¥,)}. In the case where the slopes of these lines are equal, equality (15) is satisfied,
and problem (2) becomes solvable.

Subset Selection Algorithms for X",

Algorithm 1 for constructing the desired subset X* based on Lemma 1:

Step 1. Input the values of n, k, S, and the set X"

Step 2. Generate the set Y™ = {y; ¥, ... y,} based on mapping (11).

Step 3. Sort the set Y" in ascending order.

Step 4. Automatically construct subsets relative to the value y* = max 7(z,5) = S%/4 , which
is defined based on Fermat’s theorem:

Yh =(y;<y*, i €L, =(12,..,1), y; € Y") sorted in ascending order,

Ye=((y;=zy" i€l =(12..,1), y; €Y™) sorted in descending order,

Wheren=1 +1,.

Step 5. Check the condition y, = / using the merge method and fix the indices i, j.

Step 6. Output the desired subset X".

Two-sum via mapping and merge which is shown in figure 1.
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Input: A[1l..n] c Z=0, target S

1: Compute T[i] « f(A[i])  mapping from (9),(11)

2: Sort T in nondecreasing order; keep back-pointers to indices in A
3:1«1; j«n

4: while i < j:

5: if Alidx(i)] + Aldidx(j)] == S: return {idx(i), idx(j)}

6: if Alidx(i)] + Aldidx(j)] < S: i« i+ 1

7: else: je«j -1

8:

return “no solution”
Figure 1. Two-sum via mapping + merge

In figure 1, in the following code we implement the algorithm constructs a subset of two
elements whose sum is equal to a given number. To reduce the computational complexity, the
original set is transformed into a new set through a special mapping, where each element is
assigned a new value. This allows the set to be divided into two parts relative to a thresh-
old value determined based on Fermat's theorem. Next, the merging method is used to find
matching values in the two subsets and check whether the corresponding elements of the
original set satisfy the problem condition. This approach provides an efficient solution to the
subset sum problem with a small subset cardinality and avoids complete enumeration.

Algorithm 2 for constructing the desired subset X* based on Lemma 2:

Step 1. Input the values of n, k, S, X".

Step 2. Generate the set Y™ = {y, ¥, ... y»} based on mapping (12).

Step 3. Sort both sets X" and Y" in ascending order.

Step 4. Compute the following values: x;, = S — (x; + x;)

yie =[5%—2S(x;+ x;) + (% + xl-)z](x]- +x;), Vi = (8% = 28x; + xP)x, y; = (S? — 28x; + x7)x;

Step 5. Check the condition (y; — y:)(xx — x:) = (7 — ¥:)(x; — x;) and fix the indices i, j, k.

Step 6. Output the desired subset X*.

The time complexity and required memory of the algorithm are T = 0(n?), M = 0(n), re-
spectively.

Algorithm 2 (Three-sum via transform + collinearity), which is shown in figure 2.

Input: A[1..n] c Z=0, target S

For each i, compute point P[i] = g(A[i]) > transform from (10),(12)

: Sort A (optional for pruning); initialize solutions « @

for j in 2..n-1:

for i in 1..j-1:

Let needed = S - (A[i] + A[j])
Find 1 > j with A[1l] = needed (hash or binary search if sorted)
If found, test collinearity(P[il, P[j], P[l]) b zero-area test
If collinear: add {i,j,1} to solutions (or return one)

return solutions or “no solution”

O 0O ~NOOU S WNPR

Figure 2. Implementation of Algorithm 2

In figure 2, the following code implements an algorithm that searches for three numbers
from a given set whose sum is equal to a predetermined number. To narrow the search, each
number is converted to a point using a special rule. The algorithm then iterates through all
possible triplets of numbers and checks whether the corresponding points lie on the same
line. If such a triple is found, it is returned as a solution. This approach allows one to efficiently
solve special cases of the subset sum problem using geometric properties.
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Results

The following work led to the development of two polynomial-time algorithms aimed at
solving the subset sum problem in specific cases where the cardinality of the subset is limited
to k=2 or k= 3. In the first case, an algorithm based on algebraic mapping was implement-
ed, where each element of the initial set was assigned a value according to the formula. This
transformation allowed the data to be split into two ordered parts, after which the merging
method was applied to find pairs of elements whose sum is equal to a given value. Experimen-
tal tests showed that the algorithm successfully finds admissible subsets with low time and
memory consumption, which confirms its effectiveness in processing large amounts of data.

The second algorithm uses a geometric approach based on checking whether three trans-
formed points lie on the same line. The method involves enumerating all possible pairs of
elements and calculating the third element that completes the sum to a given value. Then
the geometric condition for the obtained points is checked. The test results confirmed that
the algorithm is able to effectively find such triplets in polynomial time when the necessary
conditions are met.

Both algorithms demonstrated correctness on test examples and confirmed the theoretical
possibility of a polynomial solution to the subset sum problem with limited cardinality. The
simplicity of implementation and high efficiency make them promising tools for use in limited
cases of NP-complete problems, especially when working with large data sets, where process-
ing speed and optimal use of resources are critical.

The results validate theoretical expectations in Figure 3: the 2-element case admits
near-linear performance, while the 3-element case incurs quadratic costs. Algorithm 1 pro-
vides a novel algebraic formulation without significant efficiency loss compared to standard
baselines, whereas Algorithm 2 demonstrates correctness but requires optimization for large-
scale datasets.

—o— Algl (k=2) A
—m— Alg2 (k=3) A
3| Baseline two-pointer i
10 /./
/l/
O] .
™
@
g 107 4
"
E
w
E
=
5
@ 101 o
100 ..
10? 103 10*

Input size n (log scale)

Figure 3. Runtime and input size

While both Algorithm 1 and the baseline remain memory-efficient, Algorithm 2 demon-
strates a clear trade-off: correctness and generality for k = 3 subsets come at the cost of sig-
nificantly higher space consumption. This further underscores that Algorithm 2 is suitable only
for smaller datasets unless additional optimizations are introduced in Figure 4.
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Figure 4. Runtime and input size

All methods trend toward near-perfect reliability as input size increases, but their behav-
ior at smaller scales differs: the baseline is consistently strong, Algorithm 1 is close behind,
and Algorithm 2 requires larger datasets to achieve comparable success. This highlights the
scalability of correctness in each method: Algorithm 1 is dependable for both small and large
inputs, whereas Algorithm 2 demonstrates delayed but steady improvement in Figure 5.
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100 200 300 400 500 600 700 800 900
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Figure 5. Runtime and input size

The relative speedup analysis underscores the practical implications of complexity. Algo-
rithm 1 achieves nearly baseline-level efficiency, validating it as a feasible alternative that
brings theoretical novelty without sacrificing performance. Algorithm 2, in contrast, incurs a
significant runtime penalty, restricting its applicability to small problem sizes or theoretical
exploration in Figure 6.
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Relative Speedup of Baseline vs Qur Algorithms
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Figure 6. Relative speedup of baseline and our algorithms

The experimental evaluation confirms the theoretical expectations of the proposed meth-
ods. Algorithm 1 (k=2) demonstrates runtime and memory performance comparable to the
classical two-pointer/hash baseline. Although it introduces a slight overhead at smaller input
sizes, its efficiency remains competitive across all tested scales, and its success rate converges
to near-perfect reliability. This validates algebraic formulation as a sound alternative to tradi-
tional methods, offering structural insights without sacrificing practical performance.

In contrast, Algorithm 2 (k = 3), based on geometric collinearity, exhibits significantly high-
er runtime and memory requirements due to its quadratic complexity. While its success prob-
ability improves steadily with larger inputs, its relative speed against the baseline decreases
sharply, indicating limited scalability. These results suggest that Algorithm 2 is most suitable
for small- to medium-scale problems or as a conceptual foundation for further optimization,
rather than for large-scale practical deployment.

Overall, the experiments highlight a clear trade-off: Algorithm 1 provides both theoretical
novelty and practical efficiency, whereas Algorithm 2 emphasizes correctness and method-
ological innovation at the cost of performance. Together, the findings position the proposed
approaches as meaningful contributions to specialized cases of the subset-sum problem, with
the potential to inform future research on algebraic and geometric techniques in algorithm
design.

Discussion

The obtained results confirm the possibility of a polynomial solution to the subset sum
problem in cases of limited subset cardinality, which is of interest from both applied and the-
oretical perspectives. Unlike the classical formulation of the problem based on the separation
of the decision and verification algorithms, the proposed methods do not require such a sepa-
ration, which may indicate alternative approaches to the analysis of the class of NP-complete
problems. In particular, the use of mappings and geometric criteria, such as point collinearity,
opens new prospects in analyzing the structure of input data and constructing solutions based
on the properties of polynomials.
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Comparison with previously existing methods shows that most known solutions to the
subset sum problem are either based on an exhaustive search of options or use dynamic pro-
gramming, which imposes resource restrictions as the data volume increases. In contrast, the
proposed algorithms work in polynomial time for k = 2 and k = 3, demonstrating efficiency
under real constraints. These approaches are especially relevant in the context of big data
analysis, where processing speed, scalability, and resistance to changes in data structure are
important. For k = 2, our complexity matches the classic two-pointer O (nlogn) (sorting) +
0(n) scan; for k = 3, it matches the standard O(n?) approach. Our contribution is a structural
reformulation (algebraic/geometry-based certificates) that may improve engineering aspects
(e.g., cache-friendly transforms, SIMD-able operations) and sharpen theoretical understanding
of special-case subset-sum.

It is also worth noting the limitations: algorithms are applicable only for a small subset
cardinality, and their extension to an arbitrary k requires additional research. This opens up
prospects for further work - in particular, for analyzing the possibility of generalizing the map-
ping methods and geometric interpretation for problems with higher dimensionality and more
complex data structure.

The proposed algorithms are of interest in the applied field of ICT. In particular, it can be
integrated into big data processing systems (Hadoop, Spark) to speed up the search for sub-
sets in clustering tasks, intelligent transaction and log analysis. In addition, the algorithms are
directly related to cryptography, where the subset sum problem is used in the construction
of cryptosystems. In the field of machine learning, they can be used to select feature subsets
(feature selection), which allows reducing the dimensionality of data and accelerating model
training. Thus, the results of the study open opportunities for using algebraic and geometric
methods for solving NP-complete problems in modern ICT applications.

Conclusion

In conclusion, although the question of whether the complexity classes P and NP are equal
remains unresolved, many researchers tend to believe that they are not equal. This belief
aligns with Cook’s famous formulation of the problem, where the runtime of the verification
algorithm is always less than that of the decision algorithm for the subset sum problem. In this
study, lLemmas on the polynomial-time solvability of the subset sum problem have been pro-
posed. Notably, the proposed solution method does not separate the problem into verification
and decision algorithms, as is standard in Cook’s formulation. Our algorithms confirm that sub-
set-sum is polynomial-time solvable for fixed subset sizes k=2 and k=3 under our mappings,
without bearing on the status of P vs NP for the unrestricted problem. From a practical point
of view, the proposed methods find application in information and communication technolo-
gies: from cryptographic data protection and analysis of large data arrays to machine learning
tasks and optimization of computational processes. This emphasizes the significance of the
obtained results not only for the theory of computational complexity, but also for the practice
of developing ICT solutions. Finally, the proposed approach contributes to reducing process-
ing time in big data applications, especially in contexts defined by the key characteristics of
VWV (volume, velocity, variety). This work contributes to the field of computational complexity
theory by proposing new approaches to analyzing specific cases within the P vs. NP problem.
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