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AN INFORMATION TECHNOLOGY APPROACH TO PREDICT BREAST CANCER
USING MACHINE LEARNING

Abstract: Breast cancer continues to be the most encountered malignancy in women globally
and a leading cause of cancer-related mortality. This study describes an Information Technology
approach to evaluate interpretable machine-learning methods for breast cancer prediction using
routine clinical data and to situate performance against prior literature. All calculations are based
on the Breast Cancer Wisconsin Diagnostic dataset (569 instances; malignant/benign labels)
hosted by the UCI Machine Learning Repository. Each sample corresponds to a breast mass
classified as malignant or benign. Four supervised machine learning models were applied:
Logistic Regression with L1 penalty, Random Forest, Decision Tree, and Naive Bayes, and
compared the area under the ROC curve (AUC), accuracy, sensitivity, and specificity using
DeLong’s test with Holm correction. The reproducible pipeline consisted of preprocessing,
recursive feature elimination for feature selection, and a 5-fold cross-validation for
hyperparameter tuning. Among the four models, the L1-penalized Logistic Regression yielded
the best results, with an AUC indicating accuracy, sensitivity, and specificity of 99.6% (97.3%,
95.2%, 98.6%) on the test sets, respectively. This study illustrates the effective integration of
supervised machine learning methods into diagnostic systems to produce early, accurate,
interpretable diagnoses of disease. This study reinforces the proposed information technology
approach for breast cancer prognosis. Limitations of the study are a moderately sized,
homogeneous cohort, and restricted focus on structured variables, which may enhance internal
validity while restricting generalizability. Our findings contribute to an emerging body of
literature that well-tuned, regularized logistic regression provides a reasonable baseline against
which breast cancer risk and other study outcomes can be compared, and a pragmatic route
toward trustworthy Al in oncology.

Keywords: information technology; breast cancer; machine learning; model and feature
selection; 5-fold cross-validation.
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Introduction

Breast cancer remains one of the leading causes of cancer-related morbidity and mortality
among women worldwide, with early detection playing a critical role in improving survival rates
[1]. In recent years, the active development of information technology (IT) and the emergence of
accessible computing resources have facilitated the widespread use of machine learning methods
in medicine. These methods have become especially promising for analyzing large datasets of
clinical and biomedical data to create effective prognostic models [2]. These technologies offer
new opportunities for analyzing large volumes of clinical and biomedical data, facilitating the
development of robust predictive models. Early detection of breast cancer is crucial because it
significantly improves the chances of successful treatment. Yet, traditional diagnostic methods
like mammography, histopathological analysis, and genetic testing face challenges such as
variability in interpretation, high costs, and the need for specialized expertise [1], [3]. Machine
learning (ML), supported by modern information technology, offers a promising solution by
quickly analyzing large sets of clinical and biological data to find meaningful patterns [2], [4].
This approach makes diagnoses more accurate and quicker, allows for tailored treatments, eases
pressure on healthcare systems, and helps doctors make better, faster decisions.

Recently, artificial intelligence (Al) and ML have improved our ability to distinguish
malignant tumors from benign ones with high sensitivity and specificity. Techniques such as
support vector machines (SVM), random forests, and convolutional neural networks (CNN) have
shown success in medical imaging, histopathological analysis, and molecular data [5]. However,
significant challenges exist with variability in the data used, lack of consistent standards, and
limited interpretability produced by machine learning methods [6]. Many research studies remain
limited to using a single data type. It limits the generalizability of their results to more diverse
patient populations [7]. For example, models based solely on mammographic images may not
account for features of tumor heterogeneity revealed by histopathological or genomic data.
Conversely, approaches centered on genomic information may overlook important structural or
morphological features captured through imaging [8], [9].

Our research aims to develop a robust approach that integrates multiple medical data
sources to improve breast cancer detection accuracy and clinical utility. A multimodal method is
important in precision medicine, where individualized risk assessment and targeted therapies
improve patient outcomes.

Recent research, including Lu et al. [10], demonstrates that integrating histopathological
imagery with genomic data enhances the accuracy of cancer subtype classification. Similarly,
other investigations have effectively combined radiomics and transcriptomics to facilitate early
cancer detection [11]. These cases underscore the importance of synthesizing varied data sources
while prioritizing model interpretability and clinical relevance.

We propose that a multimodal, ML-based predictive model can predict breast cancer
more accurately than traditional diagnostic methods alone. To test this, our methodology
includes preparing the data, selecting important features, training models, and evaluating their
performance carefully. Specifically, we will: 1) test four supervised ML models L1-regularized
Logistic Regression, Random Forest, Decision Tree, and Naive Bayes using the Breast Cancer
Wisconsin Diagnostic dataset; 2) use recursive feature elimination (RFE) to select the best
diagnostic features; 3) compare model performance through cross-validation and testing,
measuring accuracy, sensitivity, specificity, and AUC; and 4) demonstrate the value of
interpretable ML models in clinical environments.

Methods and Materials

Data information

All calculations are based on the Breast Cancer Wisconsin (Diagnostic) dataset curated
by Wolberg et al. and hosted by the UCI Machine Learning Repository. The dataset is the
publicly available from the UCI Machine Learning Repository [12]. This dataset initially
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contains 569 samples, each representing a breast mass that has been classified as either
malignant (M) or benign (B). For each sample thirty numerical features were extracted from each
digitized fine-needle aspiration (FNA) image of breast tissue. These numerical features reflect
ten key morphological characteristics of the cell nuclei represented in the images. In particular,
they include metrics describing radius, texture, perimeter, area, smoothness, compactness, and
degree of concavity, number of concave points, symmetry, and fractal dimension. Each of the ten
characteristics is presented as three statistics: the mean, the standard error, and the worst value
(defined as the largest observed value). Together, these features form a comprehensive
morphological profile of each tumor sample, providing a basis for constructing prognostic
models aimed at distinguishing benign from malignant cases. No external clinical or imaging
data were used. We follow the original feature definitions (mean, standard error, and “worst” of
the ten morphology descriptors) and labels. All preprocessing (standardization) was performed
within cross-validation folds to prevent information leakage.

Data Preprocessing

At the data preparation stage, we cleaned the data: irrelevant columns, including patient
identifiers, and variables with missing values were excluded. During preprocessing stage, only
patient identifiers and variables with missing values were excluded. All remaining features were
preserved for subsequent feature selection. To form the target variable, categorical diagnosis
values were converted to a binary numeric format: malignant tumors (“M”) were coded as 1, and
benign tumors (“B”) were coded as 0. Then, we standardized all numerical features using the z-
normalization method using the StandardScaler tool from the scikit-learn library. This allowed us
to bring the data to a single scale and avoid the influence of differences in the scale of features
on the model training results. This preprocessing step was critical in logistic regression
algorithms, which are sensitive to feature magnitude.

Machine Learning Models

Four widely recognized supervised machine learning (ML) classification algorithms,
which are logistic regression with L1-regularized penalty (LR) [13] were applied, random forest
[14], decision tree [15] and naive Bayes [16] to determine the most accurate method. These
models were selected based on their proven effectiveness in prior breast cancer prediction
studies, as well as their general reputation within the machine learning community for handling
structured datasets efficiently. Random forest and logistic regression are identified as performing
well among models submitted to structured data competitions and applied in real practice in
healthcare. For instance, Shwartz-Ziv and Armon reported evidence that logistic regression,
random forest, and gradient boosting outperform neural networks in ‘tabular data applications’
where it is important to remained interpretable, exhibit robustness to overfitting, and are easy to
implement [17]. The choice to include logistic regression, tree-based (random forest and decision
tree), and naive Bayes models, different learning paradigms within a single framework and
assess which algorithm class is most effective for breast cancer prediction were aimed to be
exploreed. In this section, we presented a short description of a mathematical model of these
algorithm designs.

L1-regularized logistic regression (LR)

We modeled the probability of malignancy with LR by the L1 norm to promote sparsity
and interpretability. Let x; = (x;;, ..., x;) € RP be standardized features for sample i and y; €
{0, 1} the label (malignant=1, benign=0). We model the conditional probability of malignancy by
logistic (sigmoid) link:

Prob(y; = 1|x;) = a(,b’o + Z?=1ﬁjxij),a(z) =

1
1+e~%

1)

We estimate parameters S by minimizing the penalized negative log-likelihood
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with hyperparameter A = 1/C controls sparsity (larger A-stronger shrinkage) and selected by
cross-validation to balance bias-variance and encourage sparse, interpretable solutions. We use
an L1-capable solver (saga, max_iter=1000). Features are z-scored within CV folds and the L1
penalty mitigates multicollinearity and performs embedded feature selection.

Decision Tree (DT)

A decision tree model is a popular approach for classification and prediction in machine
learning. A decision tree partitions the feature space into axis-aligned regions {R;}}—; and
predicts the majority class in each region. Splits are chosen to minimize impurity where impurity
is the entropy or Gini (as specified in Table 1):

Impurity(x) = Entropy(x) = — Xcefo,13 Pe (X)logp,(x) Or Gini(t)=1-Ycg03 0. ()%  (3)

selecting a feature and a threshold that minimizes the weighted post-split impurity.
Hyperparameters include maximum depth and minimum samples per leaf.

Random Forest (RF)

Random Forest is a machine learning technique that is used for classification and
regression tasks. This model builds many decision trees taking the different subsets of training
data. RF is an ensemble of B trees {T},}5_, trained on bootstrap samples. At each split a random
subset of features of size max-features is considered.

5]\1. = mOde (Tl(xi)l ---JTB(xi))J I/j\l = % g:l 1{Tb(xl) = 1} (4)
This reduces relative to a single tree. Out-of-bag estimates provide internal validation and
variable importance diagnostics.

Naive Bayes (NB)
Naive Bayes is a useful machine leaning method for classification tasks. NB assumes
conditional independence of features given the class ce{0, 1}. With Gaussian conditionals for
each feature,
p(xle) = [T7_ N(x;; wjc, 02 ), p(c) = m, (5)
and by Bayes’ rule
eIy N e )

p 2
Yl eqo,y e =g N("J' HjerOjer )

Prob(clx) =

(6)

using per-class means and variances estimated from the training data.

Machine Learning Pipeline

Figure 1 depicts the primary architecture of the ML pipeline developed for this study. We
designed the workflow with a systematic, data-driven approach to support thorough evaluation
and reliable model selection. A stratified random split was used to first divide the dataset into
training (80%) and test (20%) subsets, ensuring that the percentage of benign and malignant
cases in each subgroup remained constant. The feature selection, model training, and
hyperparameter tuning were performed on the training set via 5-fold cross-validation. Recursive
feature elimination (RFE) was used to find the most informative features in this set and enhance
model focus. Following feature selection, 5-fold cross-validation was used to hyperparameter
tune the logistic regression (with L1 regularization), random forest, and decision tree classifiers.
Naive Bayes was excluded from the hyperparameter tuning step because it does not have
adjustable hyperparameters in the optimization techniques. Its performance is primarily



determined by data distribution and the independence assumption, rather than by parameters that
can be systematically adjusted through cross-validation. The model performance of each
configuration was evaluated using the area under the ROC curve (AUC) as the primary selection
criterion metric for selecting the best-performing configuration. Analyses were run in Python
(scikit-learn package for models/metrics; an implementation of DelLong’s test for AUC
comparisons).

We assume that treats samples as independent and identically distributed. To avoid
information leakage, every preprocessing step is confined to the cross-validation folds. The
Naive Bayes classifier is used under its standard assumptions of conditional feature
independence and approximate normality after standardization. Del.ong’s test is applied under
the regularity conditions required for consistent estimation of the asymptotic variance of AUC
differences.

The model that achieved the highest cross-validated AUC on the training set was the one
that performed the best. This selected model was then retrained using the full training set with
optimal hyperparameters and features. Finally, the held-out test set was used to evaluate the
trained model's predicted performance in the real world.

Model
training via cross-

validation and

selection
Data splitting
Y
Model
Test set evaluating the final

20% trained model

Figure 1. Machine learning pipeline diagram

Model and Feature Selection

A hybrid model and feature selection process to optimize performance and enhance
interpretability were used a. This approach allowed us to simultaneously analyze the relationship
between individual features and model behavior. The integration of feature selection and model
tuning into a single process was aimed at identifying the most informative set of characteristics,
as well as the optimal classifier for accurate breast cancer prognosis.

We applied recursive feature elimination (RFE) to feature selection. This embedded
feature selection method [18] ranks features according to their importance to the model and
progressively removes the least important characteristics. In order to maintain consistency
between models and offer a respectable range of predictive power, we selected ten features. For
comparability, the same set of 10 features selected by RFE was used to train all classifiers.

After selecting the features, for the model selection we performed hyperparameter tuning
for each model using GridSearchCV over the selected features with 5-fold cross-validation (CV).
The search space of hyperparameter for each classifier is given in Table 1. We did not tune any



hyperparameters for Naive Bayes because this model has no significant adjustable parameters in
its default form.

Table 1. The hyperparameters space explored via GridSearch as part of model selection using
cross-validation

Classification models Hyperparameter Hyperparameter Space
Logistic Regression Penalty L1
Regularization parameter C {0.01,0.1, 1}
Random Forest Number of estimators {10, 100, 1000}
Maximum Features ‘auto’, ’sqrt’, ‘log2’
Maximum depth {2, 5, 10, 20, 50}
Decision Tree Maximum depth {1, 2, 10}
Criterion ‘gini’, ‘entropy’
Minimum samples per leaf {1, 2,10}
Naive Bayes - -

Only the features chosen through the RFE procedure were used to train each model. Then, using
the highest AUC score obtained after 5-fold cross-validation, we determined which configuration
of each algorithm performed the best. By using this method, we were able to compare classifiers
while maintaining feature relevance in the final prediction models.

Model Evaluation

The best model performance on training set was evaluated based on the held-out test set
(20%). This final step was essential for understanding how well the models generalized beyond
the training environment. We used the following evaluation metrics in terms of the AUC,
accuracy, sensitivity and specificity.

Results

Performance of ML models: We used 5-fold cross-validation to estimate how well each
model could separate benign from malignant cases, and those AUC scores are shown in Table 2.
These values helped us get a clearer idea of each model's behavior during training and were one
of the key things we looked at when comparing their overall performance.

Table 2. AUC results from 5-fold cross-validation for each classifier, across different
hyperparameter settings

Models AUC | Accuracy | Selected Hyperparameters
Logistic Regression | 0.994 | 0.964 {'C" 1, 'penalty": 'L1}
Random Forest 0.987 | 0.962 {'max_depth": 5,

'n_estimators": 10',
'max_features": 'sqrt'}
Decision Tree 0.942 |0.938 {'criterion": 'entropy’,
'max_depth": 10,
'min_samples_leaf': 2}
Naive Bayes 0.985 | 0.938 -

The results in Table 2 shows that the logistic regression classifier achieving an AUC of
0.994 and an accuracy of 0.964, which reflects strong predictive capability. The random forest
classifier follows with a slightly lower AUC of 0.987. Naive Bayes and the decision tree
classifiers achieved AUC scores of 0.985 and 0.942, respectively. Although up to 1000
estimators were tested, the best results were achieved with 10 trees. We found out that adding
more trees did not improve performance. This indicates excellent ability to discriminate between



benign and malignant cases at different classification thresholds. These results highlight the
effectiveness of linear and ensemble-based methods in medical datasets.

Feature statistics for benign and malignant classes: Table 3 lists the average values for
the ten features we picked out in our analysis, shown separately for benign and malignant
tumors. The numbers make it pretty clear that the two groups differ quite a bit. In most cases,
malignant tumors tend to have higher average values than benign ones, which show a clear and
pretty consistent difference between the two groups. For example, features such as concave
points_mean, radius_worst, perimeter_worst, and concave points_worst stand out the gaps in
their values between benign and malignant cases are particularly large difference. These kinds of
shifts help the model figure out which features really matter during classification. In general,
these results show that the features are highly informative and contribute model’s ability to make
reliable distinctions between benign and malignant tumors.

Table 3. Mean values of selected features in benign and malignant tumor groups

Feature Benign Mean | Mlignant Mean
concave points_mean | -0.598465 1.007793
radius_se -0.437038 0.735956
area_se -0.422475 0.711432
compactness_se -0.225788 0.380218
radius_worst -0.598342 1.007585
texture_worst -0.352093 0.592912
perimeter_worst -0.603320 1.015969
area_worst -0.565492 0.952267
concavity worst -0.508301 0.855960
concave points_worst | -0.611529 1.029791

Statistical Analysis: Differences between AUCs were evaluated using DeLong’s test with
Holm correction for correlated ROC curves. It helps us to compare correlated ROC AUCs on the
same test set. Pairwise statistical comparisons using DeLong’s test with Holm correction for
multiple testing indicated that the differences between logistic regression and random forest
(p=0.21) or naive Bayes (p=0.19) were not statistically significant (adjusted p-value>0.05). In
contrast, the decision tree demonstrated a significantly lower AUC compared with logistic
regression (adjusted p=0.04, p-value<0.05). These findings confirm the suitability of models
such as logistic regression, which achieved state-of-the-art performance. Table 4 summarizes the
area under the ROC curve (AUC) with 95% confidence intervals for each classifier, together
with the results of pairwise statistical comparisons against logistic regression using DeLong’s
test with Holm correction.

Table 4. ROC AUC (95% CI) by model and DelLong test p-values vs logistic regression (Holm-
adjusted)

Model AUC (95% CI) p-value vs LR (Holm-ad))
Logistic Regression 0.996 (0.983-0.999) -
Random Forest 0.987 (0.969-0.998) 0.21
Decision Tree 0.942 (0.899-0.974) 0.04"
Naive Bayes 0.985 (0.966-0.996) 0.19
(* - statistically significant difference after Holm's correction)

Best performing model: We selected the best logistic regression (LR) model based on
training results and then tested it on a held-out dataset to see how well it would perform on new



cases. According to Table 5, the LR model handled results quite well across all evaluation
metrics. The model reached an AUC of 0.996 and a high accuracy of 0.973. Also, it
demonstrates excellent sensitivity and high specificity. It is reflecting its effectiveness in
correctly classifying benign cases.

Table 5. Best performing LR model on the test set
Models AUC | Accuracy | Sensitivity | Specificity
Logistic Regression | 0.996 | 0.973 0.952 0.986

Receiver Operating Characteristic (ROC) curves was plotted for all the models to get a clearer
sense of how well they separate the two classes. Figure presents the ROC curves used to
compare model performance based on 5-fold cross-validation applied on the training set.

ROC Curves for All Models (5-fold CV)
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Figure 2. ROC curves comparing the performance of each classifier based on 5-fold cross-validation on the training
data

The ROC curves revealed strong discriminative performance, with Logistic Regression
(L1-Regularized) achieving the highest area under the curve (AUC=0.9943), Random Forest
(AUC=0.9878), Naive Bayes (AUC=0.9855), and Decision Tree (AUC=0.9420). The ROC
curves highlight the superior predictive ability of the L1-regularized Logistic Regression model
compared to the other classifiers.

Figure 3 represents a confusion matrix that we plotted only for best best-performing
logistic regression model to understand the insight into the prediction outcomes. We can
interpret not only the model’s overall accuracy but also the frequency of correct and incorrect
predictions to understand its practical diagnostic potential.
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Figure 3. Confusion matrix for the L1-requlararized logistic regression model evaluated on the independent test set

The classification results of the confusion matrix confirmed its robust performance, where true
positives (TP) show 40 malignant tumors, true negatives (TN) - 71 of benign tumors, false
positives (FP) - 1 of benign tumors, and false negatives (FN) - 2 of malignant tumors. High
sensitivity and specificity indicate that the model can be trusted to distinguish benign from
malignant breast cancer cases in clinical applications.

Discussion

In this study, machine learning techniques show real promise in detecting breast cancer
earlier and more accurately. We focused on interpretable models, particularly L1-regularized
logistic regression, which was valuable and critical to predict breast cancer. Among the four
classifiers we evaluated, logistic regression with L1 regularization turned out to perform best
overall. It consistently showed both high sensitivity and specificity, with AUC reaching 99.4%
on the training data and 99.6% on the test set. These outcomes generally confirm our expectation
that, when properly tuned and regularized, logistic regression can provide strong and
generalizable diagnostic performance.

Our results are not only consistent with our expectations but also consistent with previous
studies using the same Breast Cancer Wisconsin (Diagnostic) dataset. For example, Agarap [19]
tested models such as multilayer perceptron (MLP) [20] and support vector machines (SVM)
[21], MLP algorithm is reaching test accuracies of ~ 99.04 % with a 70/30 train-test split.
Similarly, Entezari [22] discovered that SVM achieved 98% of accuracy and AUC of 99%,
outperforming other models such as k-nearest neighbours (KNN) [23] and Bayesian logistic
regression [24]. Using higher-order probabilistic perceptrons, Cowsik and Clark [25] reported an
accuracy of ~97%. Because the model assumes feature independence, which isn't always realistic
in medical datasets, Naive Bayes performed marginally worse in their experiments, at about
95%. Ghosh et al. [26] employed XGBoost [27] in their more recent research and reported an
accuracy of almost 97.7% on the same dataset. Murty et al. [28] used a hybrid deep learning
framework and combined WDBC and CBIS-DDSM. The CNN model produced strong AUC
values, reportedly above 0.96. In a similar vein, Aamir and Rahim [29] assessed several
classifiers, including SVM, random forest, gradient boosting, and a hybrid MLP. Their hybrid
model, which used a connection-based feature selection method and 5-fold cross-validation,
performed the best, achieving 99.12% accuracy.



SVM and a feature selection technique were combined in an earlier but noteworthy study
by Akay [30], which demonstrated that up to 99.51% accuracy, could be attained using only five
top features. This demonstrates how feature reduction can result in more effective models and
better performance.

While these studies highlight the power of ensemble methods. Our logistic regression
model with L1 regularization was performed at the level of complex models but was easier to
interpret. More interpretable models are also supported in the wider literature. For example,
Shwartz-Ziv and Armon [17] showed that deep learning models often do not outperform linear
ones when working with tabular data. Similarly, Gupta et al. [2] demonstrated that logistic
regression and decision trees suggest competitive accuracy with the additional benefit of
interpretability. Our model's ability to identify and focus on the most relevant features, facilitated
by RFE, further reduced noise and overfitting, improving robustness and generalization.s,
facilitated by RFE, further reduced noise and overfitting, enhancing robustness and
generalization.

Furthermore, we observed strong performance from the Random Forest and Naive Bayes
classifiers, although they lacked the diagnostic accuracy demonstrated by Logistic Regression.
These observations are consistent with the conclusions drawn by Lu et al. [10], who found that
Random Forest performed well when different data types were combined. However, they also
pointed out that for datasets based purely on clinical variables, well-tuned linear models can be
just as effective.

In our case, using L1 regularization made the model stay sparse, so it became clearer
which variables were affecting the predictions. However, in clinical practice, interpretability is
important to ensure responsible use of Al.

We applied an RFE approach to improve the performance of the model on relevant
variables. This RFE method was proposed by Guyon et al. [18] to select genes. We were able to
choose the top ten features in our case due to RFE. This reduced the number of less useful inputs
and helped the model work better on unseen data. This not only reduced irrelevant input but also
helped the model generalize better. Similar strategies have been used before in studies focused
on cancer risk stratification [16]. To ensure that observed differences in performance were
meaningful, we performed pairwise statistical comparisons of AUCs using DeLong’s test with
Holm correction. These analyses confirmed that logistic regression performed significantly better
than the decision tree, while differences between logistic regression and random forest or naive
Bayes were not statistically significant.

The main limitations of this study are that the dataset used is relatively small and mostly
includes patients from a similar demographic background. We do not know how the model
would perform on more diverse or larger populations. These results obtained on a relatively
small and homogeneous dataset. Performance may be lower when applied to larger, more diverse
clinical populations, and further external validation is required. Our analysis only focused on
structured variables. Using different types of data, such as imaging, genomic information, or
even electronic health records, may help improve both the accuracy and the usefulness of the
model.

In the future, it would be important to test the model on data from different research
clinics to assess whether it holds up in different settings. We also see potential in using ensemble
methods or combining different models. It could make predictions more stable. Also, using
explainability Al techniques could help clinicians better understand how the model makes its
decisions and if such tools will be used in real practice.

Conclusion

In analysing breast cancer diagnostic data, various machine learning approaches can be
applied. A key challenge is identifying accurate, interpretable, and clinically reliable models. In
this study, we evaluated four classifiers as L1-regularized logistic regression, random forest,



decision tree, and naive bayes on the Breast Cancer Wisconsin (Diagnostic) dataset. We
compared model performance in terms of AUC, accuracy, sensitivity, and specificity using
recursive feature elimination and 5-fold cross-validation.

Our results showed that the L1-regularized logistic regression did surprisingly well with
an AUC that was close to perfect, and it even outperformed some of the more advanced models.
We also found that using feature selection helped models built on selected features work better
than those using everything. However, this study focused only on a small dataset of classifiers. It
should try other types of models, maybe add imaging or genomic data, and also test on a larger
dataset to see if the findings hold up.

In conclusion, this work shows that when combined with explainable machine learning,
information technology has real potential to help build smarter diagnostic tools for use in
healthcare.
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