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AN INFORMATION TECHNOLOGY APPROACH TO PREDICT BREAST CANCER 

USING MACHINE LEARNING 
 

Abstract: Breast cancer continues to be the most encountered malignancy in women globally 

and a leading cause of cancer-related mortality. This study describes an Information Technology 

approach to evaluate interpretable machine-learning methods for breast cancer prediction using 

routine clinical data and to situate performance against prior literature. All calculations are based 

on the Breast Cancer Wisconsin Diagnostic dataset (569 instances; malignant/benign labels) 

hosted by the UCI Machine Learning Repository. Each sample corresponds to a breast mass 

classified as malignant or benign. Four supervised machine learning models were applied: 

Logistic Regression with L1 penalty, Random Forest, Decision Tree, and Naïve Bayes, and 

compared the area under the ROC curve (AUC), accuracy, sensitivity, and specificity using 

DeLong’s test with Holm correction. The reproducible pipeline consisted of preprocessing, 

recursive feature elimination for feature selection, and a 5-fold cross-validation for 

hyperparameter tuning. Among the four models, the L1-penalized Logistic Regression yielded 

the best results, with an AUC indicating accuracy, sensitivity, and specificity of 99.6% (97.3%, 

95.2%, 98.6%) on the test sets, respectively. This study illustrates the effective integration of 

supervised machine learning methods into diagnostic systems to produce early, accurate, 

interpretable diagnoses of disease. This study reinforces the proposed information technology 

approach for breast cancer prognosis. Limitations of the study are a moderately sized, 

homogeneous cohort, and restricted focus on structured variables, which may enhance internal 

validity while restricting generalizability. Our findings contribute to an emerging body of 

literature that well-tuned, regularized logistic regression provides a reasonable baseline against 

which breast cancer risk and other study outcomes can be compared, and a pragmatic route 

toward trustworthy AI in oncology.  

Keywords: information technology; breast cancer; machine learning; model and feature 

selection; 5-fold cross-validation. 
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Introduction  

Breast cancer remains one of the leading causes of cancer-related morbidity and mortality 

among women worldwide, with early detection playing a critical role in improving survival rates 

[1]. In recent years, the active development of information technology (IT) and the emergence of 

accessible computing resources have facilitated the widespread use of machine learning methods 

in medicine. These methods have become especially promising for analyzing large datasets of 

clinical and biomedical data to create effective prognostic models [2]. These technologies offer 

new opportunities for analyzing large volumes of clinical and biomedical data, facilitating the 

development of robust predictive models. Early detection of breast cancer is crucial because it 

significantly improves the chances of successful treatment. Yet, traditional diagnostic methods 

like mammography, histopathological analysis, and genetic testing face challenges such as 

variability in interpretation, high costs, and the need for specialized expertise [1], [3]. Machine 

learning (ML), supported by modern information technology, offers a promising solution by 

quickly analyzing large sets of clinical and biological data to find meaningful patterns [2], [4]. 

This approach makes diagnoses more accurate and quicker, allows for tailored treatments, eases 

pressure on healthcare systems, and helps doctors make better, faster decisions.  

Recently, artificial intelligence (AI) and ML have improved our ability to distinguish 

malignant tumors from benign ones with high sensitivity and specificity. Techniques such as 

support vector machines (SVM), random forests, and convolutional neural networks (CNN) have 

shown success in medical imaging, histopathological analysis, and molecular data [5]. However, 

significant challenges exist with variability in the data used, lack of consistent standards, and 

limited interpretability produced by machine learning methods [6]. Many research studies remain 

limited to using a single data type. It limits the generalizability of their results to more diverse 

patient populations [7]. For example, models based solely on mammographic images may not 

account for features of tumor heterogeneity revealed by histopathological or genomic data. 

Conversely, approaches centered on genomic information may overlook important structural or 

morphological features captured through imaging [8], [9].  

Our research aims to develop a robust approach that integrates multiple medical data 

sources to improve breast cancer detection accuracy and clinical utility. A multimodal method is 

important in precision medicine, where individualized risk assessment and targeted therapies 

improve patient outcomes.  

Recent research, including Lu et al. [10], demonstrates that integrating histopathological 

imagery with genomic data enhances the accuracy of cancer subtype classification. Similarly, 

other investigations have effectively combined radiomics and transcriptomics to facilitate early 

cancer detection [11]. These cases underscore the importance of synthesizing varied data sources 

while prioritizing model interpretability and clinical relevance. 

We propose that a multimodal, ML-based predictive model can predict breast cancer 

more accurately than traditional diagnostic methods alone. To test this, our methodology 

includes preparing the data, selecting important features, training models, and evaluating their 

performance carefully. Specifically, we will: 1) test four supervised ML models L1-regularized 

Logistic Regression, Random Forest, Decision Tree, and Naïve Bayes using the Breast Cancer 

Wisconsin Diagnostic dataset; 2) use recursive feature elimination (RFE) to select the best 

diagnostic features; 3) compare model performance through cross-validation and testing, 

measuring accuracy, sensitivity, specificity, and AUC; and 4) demonstrate the value of 

interpretable ML models in clinical environments.  

 

Methods and Materials 

Data information 

All calculations are based on the Breast Cancer Wisconsin (Diagnostic) dataset curated 

by Wolberg et al. and hosted by the UCI Machine Learning Repository. The dataset is the 

publicly available from the UCI Machine Learning Repository [12]. This dataset initially 

https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic


 

contains 569 samples, each representing a breast mass that has been classified as either 

malignant (M) or benign (B). For each sample thirty numerical features were extracted from each 

digitized fine-needle aspiration (FNA) image of breast tissue. These numerical features reflect 

ten key morphological characteristics of the cell nuclei represented in the images. In particular, 

they include metrics describing radius, texture, perimeter, area, smoothness, compactness, and 

degree of concavity, number of concave points, symmetry, and fractal dimension. Each of the ten 

characteristics is presented as three statistics: the mean, the standard error, and the worst value 

(defined as the largest observed value). Together, these features form a comprehensive 

morphological profile of each tumor sample, providing a basis for constructing prognostic 

models aimed at distinguishing benign from malignant cases. No external clinical or imaging 

data were used. We follow the original feature definitions (mean, standard error, and “worst” of 

the ten morphology descriptors) and labels. All preprocessing (standardization) was performed 

within cross-validation folds to prevent information leakage. 

 

Data Preprocessing 

 At the data preparation stage, we cleaned the data: irrelevant columns, including patient 

identifiers, and variables with missing values were excluded. During preprocessing stage, only 

patient identifiers and variables with missing values were excluded. All remaining features were 

preserved for subsequent feature selection. To form the target variable, categorical diagnosis 

values were converted to a binary numeric format: malignant tumors (“M”) were coded as 1, and 

benign tumors (“B”) were coded as 0. Then, we standardized all numerical features using the z-

normalization method using the StandardScaler tool from the scikit-learn library. This allowed us 

to bring the data to a single scale and avoid the influence of differences in the scale of features 

on the model training results. This preprocessing step was critical in logistic regression 

algorithms, which are sensitive to feature magnitude. 

 

Machine Learning Models 

Four widely recognized supervised machine learning (ML) classification algorithms, 

which are logistic regression with L1-regularized penalty (LR) [13] were applied, random forest 

[14], decision tree [15] and naïve Bayes [16] to determine the most accurate method. These 

models were selected based on their proven effectiveness in prior breast cancer prediction 

studies, as well as their general reputation within the machine learning community for handling 

structured datasets efficiently. Random forest and logistic regression are identified as performing 

well among models submitted to structured data competitions and applied in real practice in 

healthcare. For instance, Shwartz-Ziv and Armon reported evidence that logistic regression, 

random forest, and gradient boosting outperform neural networks in ‘tabular data applications’ 

where it is important to remained interpretable, exhibit robustness to overfitting, and are easy to 

implement [17]. The choice to include logistic regression, tree-based (random forest and decision 

tree), and naïve Bayes models, different learning paradigms within a single framework and 

assess which algorithm class is most effective for breast cancer prediction were aimed to be 

exploreed. In this section, we presented a short description of a mathematical model of these 

algorithm designs. 

 

L1-regularized logistic regression (LR) 

We modeled the probability of malignancy with LR by the L1 norm to promote sparsity 

and interpretability. Let 𝐱𝐢 = (𝑥𝑖1, … , 𝑥𝑖𝑝) ∈ ℝp be standardized features for sample 𝑖 and 𝑦𝑖 ∈
{0, 1} the label (malignant=1, benign=0). We model the conditional probability of malignancy by 

logistic (sigmoid) link:  

𝑃𝑟𝑜𝑏(𝒚𝑖 = 1|𝒙𝑖) = 𝝈(𝛽0 + ∑ 𝛽𝑗𝑥𝑖𝑗
𝑝
𝑗=1 ), 𝜎(𝑧) =

1

1+𝑒−𝑧
                         (1) 

 

We estimate parameters  𝜷 by minimizing the penalized negative log-likelihood  



 

min
𝛽

𝓛(𝜷) = −∑ [𝑦𝑖log⁡𝑝𝑖̂ +
𝑛
𝑖=1 (1 − 𝑦𝑖)log⁡(1 − 𝑝𝑖̂)] + 𝜆‖𝜷‖1                (2) 

 

with hyperparameter 𝜆 = 1/𝐶 controls sparsity (larger 𝜆-stronger shrinkage) and selected by 

cross-validation to balance bias-variance and encourage sparse, interpretable solutions. We use 

an L1-capable solver (saga, max_iter=1000). Features are z-scored within CV folds and the L1 

penalty mitigates multicollinearity and performs embedded feature selection. 

 

Decision Tree (DT) 

A decision tree model is a popular approach for classification and prediction in machine 

learning. A decision tree partitions the feature space into axis-aligned regions {𝑅𝑙}𝑙=1
𝐿  and 

predicts the majority class in each region. Splits are chosen to minimize impurity where impurity 

is the entropy or Gini (as specified in Table 1): 

𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦(𝑥) = 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝑥) = −∑ 𝑝𝑐̂(𝑥)𝑙𝑜𝑔𝑝𝑐̂(𝑥)с∈{0,1}  Or Gini(t)=1-∑c∈{0,1}⁡𝑝𝑐̂(𝑡)
2    (3) 

 

selecting a feature and a threshold that minimizes the weighted post-split impurity. 

Hyperparameters include maximum depth and minimum samples per leaf.   

 

Random Forest (RF) 

Random Forest is a machine learning technique that is used for classification and 

regression tasks. This model builds many decision trees taking the different subsets of training 

data. RF is an ensemble of B trees {𝑇𝑏}𝑏=1
𝐵  trained on bootstrap samples. At each split a random 

subset of features of size max-features is considered.  

𝑦𝑖̂ = 𝑚𝑜𝑑𝑒⁡(𝑇1(𝒙𝒊),… , 𝑇𝐵(𝒙𝒊)), 𝑝𝑖̂ =
1

𝐵
∑ 1{𝑇𝑏(𝒙𝑖) = 1}𝐵
𝑏=1                   (4) 

This reduces relative to a single tree. Out-of-bag estimates provide internal validation and 

variable importance diagnostics.   

 

Naïve Bayes (NB) 

Naïve Bayes is a useful machine leaning method for classification tasks. NB assumes 

conditional independence of features given the class c∈{0, 1}. With Gaussian conditionals for 

each feature, 

𝑝(𝒙|𝒄) = ∏ 𝑁(𝑥𝑗; ⁡𝜇𝑗𝑐 , 𝜎𝑗𝑐
2 ⁡),⁡⁡⁡𝑝(𝑐) = 𝜋𝑐

𝒑
𝒋=𝟏 ,                                (5) 

and by Bayes’ rule  

𝑃𝑟𝑜𝑏(𝑐|𝒙) =
𝜋
𝑐∏ 𝑁(𝑥𝑗;⁡𝜇𝑗𝑐,𝜎𝑗𝑐

2 ⁡)
𝒑
𝒋=𝟏

∑ 𝜋𝑐′ ∏ 𝑁(𝑥𝑗;⁡𝜇𝑗𝑐′,𝜎𝑗𝑐′
2 ⁡)

𝒑
𝒋=𝟏𝑐′∈{0,1}

                                             (6) 

 
using per-class means and variances estimated from the training data.  

 

Machine Learning Pipeline 

Figure 1 depicts the primary architecture of the ML pipeline developed for this study. We 

designed the workflow with a systematic, data-driven approach to support thorough evaluation 

and reliable model selection. A stratified random split was used to first divide the dataset into 

training (80%) and test (20%) subsets, ensuring that the percentage of benign and malignant 

cases in each subgroup remained constant. The feature selection, model training, and 

hyperparameter tuning were performed on the training set via 5-fold cross-validation. Recursive 

feature elimination (RFE) was used to find the most informative features in this set and enhance 

model focus. Following feature selection, 5-fold cross-validation was used to hyperparameter 

tune the logistic regression (with L1 regularization), random forest, and decision tree classifiers. 

Naïve Bayes was excluded from the hyperparameter tuning step because it does not have 

adjustable hyperparameters in the optimization techniques. Its performance is primarily 



 

determined by data distribution and the independence assumption, rather than by parameters that 

can be systematically adjusted through cross-validation. The model performance of each 

configuration was evaluated using the area under the ROC curve (AUC) as the primary selection 

criterion metric for selecting the best-performing configuration. Analyses were run in Python 

(scikit‑learn package for models/metrics; an implementation of DeLong’s test for AUC 

comparisons). 

We assume that treats samples as independent and identically distributed. To avoid 

information leakage, every preprocessing step is confined to the cross-validation folds. The 

Naïve Bayes classifier is used under its standard assumptions of conditional feature 

independence and approximate normality after standardization. DeLong’s test is applied under 

the regularity conditions required for consistent estimation of the asymptotic variance of AUC 

differences. 

The model that achieved the highest cross-validated AUC on the training set was the one 

that performed the best. This selected model was then retrained using the full training set with 

optimal hyperparameters and features. Finally, the held-out test set was used to evaluate the 

trained model's predicted performance in the real world.  

 

 

 
 

Figure 1. Machine learning pipeline diagram 
 

 

Model and Feature Selection 

A hybrid model and feature selection process to optimize performance and enhance 

interpretability were used a. This approach allowed us to simultaneously analyze the relationship 

between individual features and model behavior. The integration of feature selection and model 

tuning into a single process was aimed at identifying the most informative set of characteristics, 

as well as the optimal classifier for accurate breast cancer prognosis. 

We applied recursive feature elimination (RFE) to feature selection. This embedded 

feature selection method [18] ranks features according to their importance to the model and 

progressively removes the least important characteristics. In order to maintain consistency 

between models and offer a respectable range of predictive power, we selected ten features. For 

comparability, the same set of 10 features selected by RFE was used to train all classifiers.   

  After selecting the features, for the model selection we performed hyperparameter tuning 

for each model using GridSearchCV over the selected features with 5-fold cross-validation (CV). 

The search space of hyperparameter for each classifier is given in Table 1. We did not tune any 



 

hyperparameters for Naïve Bayes because this model has no significant adjustable parameters in 

its default form. 

 

Table 1. The hyperparameters space explored via GridSearch as part of model selection using 

cross-validation 

Classification models Hyperparameter Hyperparameter Space 

Logistic Regression  Penalty 

Regularization parameter C 

L1 

{0.01, 0.1, 1} 

Random Forest Number of estimators 

Maximum Features 
Maximum depth 

{10, 100, 1000} 

‘auto’, ’sqrt’, ‘log2’ 

{2, 5, 10, 20, 50} 

Decision Tree Maximum depth 

Criterion 
Minimum samples per leaf 

{1, 2, 10} 

‘gini’, ‘entropy’ 
{1, 2, 10} 

Naive Bayes - - 

  

Only the features chosen through the RFE procedure were used to train each model. Then, using 

the highest AUC score obtained after 5-fold cross-validation, we determined which configuration 

of each algorithm performed the best. By using this method, we were able to compare classifiers 

while maintaining feature relevance in the final prediction models. 

 

Model Evaluation 

The best model performance on training set was evaluated based on the held-out test set 

(20%). This final step was essential for understanding how well the models generalized beyond 

the training environment. We used the following evaluation metrics in terms of the AUC, 

accuracy, sensitivity and specificity.  

 

Results 

Performance of ML models: We used 5-fold cross-validation to estimate how well each 

model could separate benign from malignant cases, and those AUC scores are shown in Table 2. 

These values helped us get a clearer idea of each model's behavior during training and were one 

of the key things we looked at when comparing their overall performance.  

 

Table 2. AUC results from 5-fold cross-validation for each classifier, across different 

hyperparameter settings  

Models AUC Accuracy  Selected Hyperparameters 

Logistic Regression  0.994 0.964 {'C': 1, 'penalty': 'L1'} 

Random Forest 0.987 0.962 {'max_depth': 5, 

'n_estimators': 10', 

'max_features': 'sqrt'} 

Decision Tree 0.942 0.938 {'criterion': 'entropy', 

'max_depth': 10, 

'min_samples_leaf': 2} 

Naive Bayes 0.985 0.938 - 

 

The results in Table 2 shows that the logistic regression classifier achieving an AUC of 

0.994 and an accuracy of 0.964, which reflects strong predictive capability. The random forest 

classifier follows with a slightly lower AUC of 0.987. Naïve Bayes and the decision tree 

classifiers achieved AUC scores of 0.985 and 0.942, respectively. Although up to 1000 

estimators were tested, the best results were achieved with 10 trees. We found out that adding 

more trees did not improve performance. This indicates excellent ability to discriminate between 



 

benign and malignant cases at different classification thresholds. These results highlight the 

effectiveness of linear and ensemble-based methods in medical datasets.  

Feature statistics for benign and malignant classes: Table 3 lists the average values for 

the ten features we picked out in our analysis, shown separately for benign and malignant 

tumors. The numbers make it pretty clear that the two groups differ quite a bit. In most cases, 

malignant tumors tend to have higher average values than benign ones, which show a clear and 

pretty consistent difference between the two groups. For example, features such as concave 

points_mean, radius_worst, perimeter_worst, and concave points_worst stand out the gaps in 

their values between benign and malignant cases are particularly large difference. These kinds of 

shifts help the model figure out which features really matter during classification. In general, 

these results show that the features are highly informative and contribute model’s ability to make 

reliable distinctions between benign and malignant tumors. 

 

Table 3. Mean values of selected features in benign and malignant tumor groups   

Feature Benign Mean Mlignant Mean 

concave points_mean -0.598465 1.007793 

radius_se -0.437038 0.735956 

area_se -0.422475 0.711432 

compactness_se -0.225788 0.380218 

radius_worst -0.598342 1.007585 

texture_worst -0.352093 0.592912 

perimeter_worst -0.603320 1.015969 

area_worst -0.565492 0.952267 

concavity_worst -0.508301 0.855960 

concave points_worst -0.611529 1.029791 

 

Statistical Analysis: Differences between AUCs were evaluated using DeLong’s test with 

Holm correction for correlated ROC curves. It helps us to compare correlated ROC AUCs on the 

same test set. Pairwise statistical comparisons using DeLong’s test with Holm correction for 

multiple testing indicated that the differences between logistic regression and random forest 

(p=0.21) or naïve Bayes (p=0.19) were not statistically significant (adjusted p-value>0.05). In 

contrast, the decision tree demonstrated a significantly lower AUC compared with logistic 

regression (adjusted p=0.04, p-value<0.05). These findings confirm the suitability of models 

such as logistic regression, which achieved state-of-the-art performance. Table 4 summarizes the 

area under the ROC curve (AUC) with 95% confidence intervals for each classifier, together 

with the results of pairwise statistical comparisons against logistic regression using DeLong’s 

test with Holm correction. 

 

Table 4. ROC AUC (95% CI) by model and DeLong test p-values vs logistic regression (Holm-

adjusted) 

Model AUC (95% CI) p-value vs LR (Holm-adj) 

Logistic Regression  0.996 (0.983-0.999) - 

Random Forest 0.987 (0.969–0.998) 0.21 

Decision Tree 0.942 (0.899–0.974) 0.04* 

Naïve Bayes 0.985 (0.966–0.996) 0.19 

(* - statistically significant difference after Holm's correction) 

 

Best performing model: We selected the best logistic regression (LR) model based on 

training results and then tested it on a held-out dataset to see how well it would perform on new 



 

cases. According to Table 5, the LR model handled results quite well across all evaluation 

metrics. The model reached an AUC of 0.996 and a high accuracy of 0.973. Also, it 

demonstrates excellent sensitivity and high specificity. It is reflecting its effectiveness in 

correctly classifying benign cases.    

 

Table 5. Best performing LR model on the test set 

Models AUC Accuracy Sensitivity Specificity 

Logistic Regression  0.996 0.973 0.952 0.986 

 

Receiver Operating Characteristic (ROC) curves was plotted for all the models to get a clearer 

sense of how well they separate the two classes. Figure presents the ROC curves used to 

compare model performance based on 5-fold cross-validation applied on the training set. 

 

 
Figure 2. ROC curves comparing the performance of each classifier based on 5-fold cross-validation on the training 

data 

 

The ROC curves revealed strong discriminative performance, with Logistic Regression 

(L1-Regularized) achieving the highest area under the curve (AUC=0.9943), Random Forest 

(AUC=0.9878), Naïve Bayes (AUС=0.9855), and Decision Tree (AUC=0.9420). The ROC 

curves highlight the superior predictive ability of the L1-regularized Logistic Regression model 

compared to the other classifiers. 

Figure 3 represents a confusion matrix that we plotted only for best best-performing 

logistic regression model to understand the insight into the prediction outcomes. We can 

interpret not only the model’s overall accuracy but also the frequency of correct and incorrect 

predictions to understand its practical diagnostic potential.  

 



 

 
Figure 3. Confusion matrix for the L1-requlararized logistic regression model evaluated on the independent test set   

The classification results of the confusion matrix confirmed its robust performance, where true 

positives (TP) show 40 malignant tumors, true negatives (TN) - 71 of benign tumors, false 

positives (FP) - 1 of benign tumors, and false negatives (FN) - 2 of malignant tumors. High 

sensitivity and specificity indicate that the model can be trusted to distinguish benign from 

malignant breast cancer cases in clinical applications.  

Discussion 

In this study, machine learning techniques show real promise in detecting breast cancer 

earlier and more accurately. We focused on interpretable models, particularly L1-regularized 

logistic regression, which was valuable and critical to predict breast cancer. Among the four 

classifiers we evaluated, logistic regression with L1 regularization turned out to perform best 

overall. It consistently showed both high sensitivity and specificity, with AUC reaching 99.4% 

on the training data and 99.6% on the test set. These outcomes generally confirm our expectation 

that, when properly tuned and regularized, logistic regression can provide strong and 

generalizable diagnostic performance.  

Our results are not only consistent with our expectations but also consistent with previous 

studies using the same Breast Cancer Wisconsin (Diagnostic) dataset. For example, Agarap [19] 

tested models such as multilayer perceptron (MLP) [20] and support vector machines (SVM) 

[21], MLP algorithm is reaching test accuracies of  ≈ 99.04 % with a 70/30 train-test split. 

Similarly, Entezari [22] discovered that SVM achieved 98% of accuracy and AUC of 99%, 

outperforming other models such as k-nearest neighbours (KNN) [23] and Bayesian logistic 

regression [24]. Using higher-order probabilistic perceptrons, Cowsik and Clark [25] reported an 

accuracy of ~97%. Because the model assumes feature independence, which isn't always realistic 

in medical datasets, Naïve Bayes performed marginally worse in their experiments, at about 

95%. Ghosh et al. [26] employed XGBoost [27] in their more recent research and reported an 

accuracy of almost 97.7% on the same dataset. Murty et al. [28] used a hybrid deep learning 

framework and combined WDBC and CBIS-DDSM. The CNN model produced strong AUC 

values, reportedly above 0.96. In a similar vein, Aamir and Rahim [29] assessed several 

classifiers, including SVM, random forest, gradient boosting, and a hybrid MLP. Their hybrid 

model, which used a connection-based feature selection method and 5-fold cross-validation, 

performed the best, achieving 99.12% accuracy.  



 

SVM and a feature selection technique were combined in an earlier but noteworthy study 

by Akay [30], which demonstrated that up to 99.51% accuracy, could be attained using only five 

top features. This demonstrates how feature reduction can result in more effective models and 

better performance. 

While these studies highlight the power of ensemble methods. Our logistic regression 

model with L1 regularization was performed at the level of complex models but was easier to 

interpret. More interpretable models are also supported in the wider literature. For example, 

Shwartz-Ziv and Armon [17] showed that deep learning models often do not outperform linear 

ones when working with tabular data. Similarly, Gupta et al. [2] demonstrated that logistic 

regression and decision trees suggest competitive accuracy with the additional benefit of 

interpretability. Our model's ability to identify and focus on the most relevant features, facilitated 

by RFE, further reduced noise and overfitting, improving robustness and generalization.s, 

facilitated by RFE, further reduced noise and overfitting, enhancing robustness and 

generalization. 

Furthermore, we observed strong performance from the Random Forest and Naïve Bayes 

classifiers, although they lacked the diagnostic accuracy demonstrated by Logistic Regression. 

These observations are consistent with the conclusions drawn by Lu et al. [10], who found that 

Random Forest performed well when different data types were combined. However, they also 

pointed out that for datasets based purely on clinical variables, well-tuned linear models can be 

just as effective. 

In our case, using L1 regularization made the model stay sparse, so it became clearer 

which variables were affecting the predictions. However, in clinical practice, interpretability is 

important to ensure responsible use of AI.  

We applied an RFE approach to improve the performance of the model on relevant 

variables. This RFE method was proposed by Guyon et al. [18] to select genes. We were able to 

choose the top ten features in our case due to RFE. This reduced the number of less useful inputs 

and helped the model work better on unseen data. This not only reduced irrelevant input but also 

helped the model generalize better. Similar strategies have been used before in studies focused 

on cancer risk stratification [16]. To ensure that observed differences in performance were 

meaningful, we performed pairwise statistical comparisons of AUCs using DeLong’s test with 

Holm correction. These analyses confirmed that logistic regression performed significantly better 

than the decision tree, while differences between logistic regression and random forest or naïve 

Bayes were not statistically significant. 

The main limitations of this study are that the dataset used is relatively small and mostly 

includes patients from a similar demographic background. We do not know how the model 

would perform on more diverse or larger populations. These results obtained on a relatively 

small and homogeneous dataset. Performance may be lower when applied to larger, more diverse 

clinical populations, and further external validation is required. Our analysis only focused on 

structured variables. Using different types of data, such as imaging, genomic information, or 

even electronic health records, may help improve both the accuracy and the usefulness of the 

model. 

In the future, it would be important to test the model on data from different research 

clinics to assess whether it holds up in different settings. We also see potential in using ensemble 

methods or combining different models. It could make predictions more stable. Also, using 

explainability AI techniques could help clinicians better understand how the model makes its 

decisions and if such tools will be used in real practice. 

 

Conclusion  
In analysing breast cancer diagnostic data, various machine learning approaches can be 

applied. A key challenge is identifying accurate, interpretable, and clinically reliable models. In 

this study, we evaluated four classifiers as L1-regularized logistic regression, random forest, 



 

decision tree, and naïve bayes on the Breast Cancer Wisconsin (Diagnostic) dataset. We 

compared model performance in terms of AUC, accuracy, sensitivity, and specificity using 

recursive feature elimination and 5-fold cross-validation. 

Our results showed that the L1-regularized logistic regression did surprisingly well with 

an AUC that was close to perfect, and it even outperformed some of the more advanced models. 

We also found that using feature selection helped models built on selected features work better 

than those using everything. However, this study focused only on a small dataset of classifiers. It 

should try other types of models, maybe add imaging or genomic data, and also test on a larger 

dataset to see if the findings hold up. 

In conclusion, this work shows that when combined with explainable machine learning, 

information technology has real potential to help build smarter diagnostic tools for use in 

healthcare. 
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