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RECOGNITION OF THE WATER SURFACE ACCORDING TO ICEYE 
DATA USING MACHINE LEARNING

Abstract: The growing frequency of floods and the resulting socio-economic losses high-
light the need for accurate and automated tools for detecting and monitoring water surfaces. 
This study presents a methodology for automatic water surface recognition based on high-res-
olution ICEYE synthetic aperture radar (SAR) data. The algorithm is implemented in the Goog-
le Earth Engine environment and uses the Random Forest machine-learning model trained on 
manually labeled “water” and “land” classes derived directly from the radar imagery. Preproc-
essing, performed in ESA SNAP, included radiometric calibration, Range-Doppler terrain cor-
rection, and speckle filtering to ensure accurate backscatter representation. The trained model 
was applied to ICEYE VV-polarized images acquired over Uralsk, Kazakhstan, on April 20–21, 
2024, during a major regional flood.

To validate the results, the Random Forest–derived masks were compared with those ob-
tained using traditional methods such as Otsu and fixed-threshold classification, as well as 
optical masks generated from Sentinel-2 NDWI and MNDWI indices. Quantitative evaluation 
showed an overall accuracy of 76.8 % and a kappa coefficient of 0.535, while the area under 
the ROC curve (AUC = 0.91) indicated strong discriminatory capability. The Random Forest 
model demonstrated greater spatial precision and reduced false-positive mapping compared 
to threshold-based methods, confirming its suitability for operational flood monitoring.
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The proposed approach highlights the potential of ICEYE data for near-real-time water 
surface mapping, especially under cloud-covered conditions where optical sensors are inef-
fective. Moreover, the developed workflow ensures reproducibility and can be integrated into 
automated flood-response systems for rapid situation assessment. In the future, incorporating 
additional polarimetric and texture features is expected to further enhance model perfor-
mance and extend its applicability to diverse hydrological environments.

Keywords: ICEYE, synthetic aperture radar, machine learning, Random Forest, decision trees, 
water recognition

Introduction
The rapid increase in the frequency of hydrometeorological disasters, including floods, ne-

cessitates the development of accurate, timely, and automated methods for monitoring water 
surfaces [1]. Satellites equipped with Synthetic Aperture Radar (SAR) are among the most 
promising data sources for such tasks due to their high spatial resolution and independence 
from cloud cover and illumination conditions. In particular, the use of data from the private 
X-band sensor ICEYE significantly enhances monitoring capabilities through frequent revisit 
times and robustness against atmospheric disturbances.

A key challenge in processing radar imagery is accurate detection of water surfaces, which 
is complicated by speckle noise, radar shadows, and ambiguous reflections from urban areas 
or marshy soils. Traditional methods based on thresholding radar intensity values can achieve 
high accuracy in homogeneous areas but often lack flexibility and adaptability compared to 
machine learning algorithms. Within this context, the Random Forest algorithm has proven 
effective for binary classification with a limited number of features, demonstrating resilience 
to noise and overfitting.

The objective of this study is to develop and test an automated water surface recognition 
algorithm based on ICEYE VV-polarization data, implemented in the Google Earth Engine envi-
ronment using the Random Forest algorithm. The study region encompasses the city of Uralsk 
in the West Kazakhstan region, which systematically experiences floods during spring thaw 
periods. The most devastating recent flood occurred in spring 2024. The satellite images used 
in this study were acquired within the framework of the Program-Targeted Financing project 
for the purpose of monitoring flooding in the vicinity of Uralsk. The images were purchased 
due to the lack of radar sensor observations over this region. This circumstance somewhat lim-
its the dataset to only two scenes; however, each image covers an area of approximately 2,900 
square kilometers, which compensates for the restricted number of acquisitions. The objective 
of the study is to develop and test an algorithm for water surface detection using radar data, 
which in the future will allow the approach to be extrapolated to larger datasets of scenes as 
well as to other types of sensors.

The model was trained in manually labeled "water" and "land" classes and validated on two 
consecutive images from April 20 and April 21, 2024. To evaluate the effectiveness of the 
method, water masks were also obtained using more traditional methods, such as the Otsu 
method and the threshold method. Additionally, classification results were compared with 
optical water masks generated using NDWI and MNDWI indices derived from Sentinel-2 im-
agery captured on the same dates, as well as assessed quantitatively using Out-of-Bag (OOB) 
accuracy metrics.

Methods and Materials
A significant tool for flood forecasting and monitoring is water surface detection using Syn-

thetic Aperture Radar (SAR) data. Optical sensors often prove less useful for flood monitoring 
due to persistent cloud coverage accompanying precipitation events, which substantially con-
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tribute to excessive runoff. In contrast, radar satellites demonstrate robustness against cloud 
cover and effectively differentiate water surfaces due to their distinctive reflectivity.

Several key approaches can be identified among contemporary methods for water detection 
on radar imagery [2]. The first relies on pixel-based thresholding of σ⁰ (backscatter coefficient), 
as smooth water surfaces typically exhibit low backscatter, allowing rapid identification of wa-
ter bodies. This method underpins WaMaPro and other simple algorithms. The second direc-
tion employs object-oriented image analysis, incorporating multi-level segmentation, hydro-
logically consistent refinement based on Digital Elevation Models (DEMs), and the generation 
of accurate water masks, even in heterogeneous scenes. An example of this approach is imple-
mented in the RaMaFlood algorithm. The third approach integrates automatic classification 
with probabilistic frameworks, fuzzy post-processing, and the incorporation of multiple auxil-
iary datasets, such as slopes, land-cover types, and others. In all the methods described, overall 
accuracy typically exceeds 90% under simple scene conditions with high contrast and smooth 
water surfaces. However, factors complicating water-land classification, such as wind-induced 
waves or radar shadows from mountain ranges, necessitate incorporating additional datasets 
and increasing system complexity to mitigate unfavorable imaging conditions and artifacts.

Remote sensing literature on flood delineation from SAR has evolved from threshold-based 
segmentation toward fully automated processing pipelines and learning-based schemes that 
cope better with scene heterogeneity and acquisition variability. Early operational frameworks 
(e.g., the DLR “Water Suite”) combine simple backscatter thresholds, object-based post-pro-
cessing, and hydrologic constraints, enabling near-real-time (NRT) products but still relying 
on scene-specific tuning in complex settings. Comparative analyses across these operational 
approaches show that while thresholding can excel in homogeneous, smooth-water scenes, 
its performance degrades with wind-roughening, emergent or floating vegetation, and ur-
ban double-bounce, leading to commission and omission errors that are not trivially removed 
without ancillary data [3].

 A widely used Otsu threshold maximizes between-class variance under an implicit bimo-
dality assumption of the image histogram, which often breaks down in mixed land covers and 
heterogeneous incidence angles typical of wide-swath SAR acquisitions. As a result, Otsu can 
over-map “water-like” low-backscatter surfaces (e.g., damp soils, shadows) unless constrained 
by morphology or topography[4]. To improve robustness and timeliness, fully automated Sen-
tinel-1 chains fuse radiometric normalization, terrain correction, and context-aware threshold-
ing/change-detection to deliver flood extents within tens of minutes after data publication. Ev-
idence from an operational NRT system shows high reliability across diverse European floods, 
yet residual weaknesses persist in urban areas (layover/shadow), forests (volume scattering), 
and mountainous terrain without thorough radiometric terrain correction [5]. Time-series and 
anomaly-based detection further mitigate single-scene biases by comparing events against 
local baselines; these approaches report markedly improved stability across incidence angles 
and seasons, but they require dense historical archives and careful handling of multi-annual 
land-cover dynamics [6].

Learning-based methods span classical ensembles to modern deep networks. Random For-
ests (RF) have proven attractive for low-feature, small-sample regimes because they are resil-
ient to speckle-induced outliers and capture non-linear class boundaries without distribution-
al assumptions; however, they can be conservative (high precision, lower recall) when trained 
on limited feature sets (e.g., intensity only), and their transferability across sensors, polari-
zations, and incidence angles is not guaranteed without re-calibration. Comparative studies 
that benchmark ML/DL models on Sentinel-1 indicate that deeper architectures (e.g., U-Net 
variants and nested U-Nets) can achieve higher recall and better shape fidelity – particularly 
in complex urban scenes – provided domain shifts are addressed via curated training and aug-
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mentation. Nonetheless, these gains come with higher data/compute demand and potentially 
reduced interpretability relative to RF [2], [7]. In parallel, coherence-based change metrics 
complement intensity thresholds by revealing inundation beneath vegetation and in built-up 
areas, but they require SLC data and are sensitive to temporal decorrelation from non-flood 
processes [8].

Optical indices (NDWI, MNDWI, AWEI) remain essential comparators in flood studies. NDWI 
(green – NIR) is sensitive to open water but overestimates in urban shadows and dark sur-
faces; MNDWI (green – SWIR) better suppresses built-up/vegetation confusion; AWEI targets 
shadow-related false positives. These indices, however, are fundamentally constrained by 
cloud cover and illumination, making them complementary rather than substitutive for SAR in 
time-critical response. Multi-sensor assessments over Europe conclude that operational flood 
detection benefits from the synergy of Sentinel-1 and Sentinel-2 but remains limited by revisit 
geometry and event duration; systematic detection is not guaranteed for short-lived floods or 
under persistent cloud [9], [10], [11].

Across all SAR methods, rigorous pre-processing is pivotal. Radiometric terrain correction 
(flattening γ⁰) reduces topography-induced backscatter biases; omission of this step can induce 
false “drying/wetting” patterns along slopes and in layover/shadow zones, which thresholding 
and ML alike may mistake for inundation. Even with terrain correction, residual incidence-an-
gle trends, speckle, and textural ambiguity (e.g., roads, airstrips) persist, motivating multi-fea-
ture designs (texture, slope, distance-to-hydrography) and post-filters (morphology/CRF) [12].

 In high-resolution constellations (e.g., X-band), these issues are amplified by finer-scale 
heterogeneity; consequently, model portability and calibration strategies are an active re-
search area for operational adoption [13].

This study is centered on developing a machine learning model for water surface detec-
tion using two consecutive ICEYE sensor images acquired in VV (vertical-vertical) polarization 
on April 20 and 21, 2024. The area of interest covers the city of Uralsk and its surrounding 
territories (Figure 1), which, like many other regions of Kazakhstan, experienced severe and 
widespread flooding in spring 2024. The hydrologic regime of the study area is dominated by 
the Zhaiyk (Ural) River, which courses directly through Uralsk before draining to the Caspian 
Sea. During the April 2024 freshet the Zhaiyk (Ural) River stage in Uralsk peaked at ≈ 8.64 
m (864 cm), overtopping the 8.50 m critical flood mark and triggering emergency reinforce-
ment of levees together with the evacuation of tens of thousands of residents. Hydrometeor-
ological briefings further projected that a flood-wave discharge of about 1 700 m³ s⁻¹ would 
propagate downstream, inundating extensive riparian zones and substantially enlarging the 
regional flood footprint [14]. According to official data, the flood resulted from a combination 
of precipitation events and preceding snowmelt. Notably, snowfall volumes during the winter 
of 2023–2024 significantly exceeded average values in northern regions of the country. Con-
sequently, the land surface became considerably saturated, which, combined with recurring 
frosts, impeded natural drainage and contributed to elevated river and reservoir levels [14]. 
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Figure 1. Region of interest

The initial stage of data handling is pre-processing, implemented within the ESA SNAP en-
vironment. The pre-processing workflow commences with radiometric calibration, converting 
digital numbers into σ₀ values (backscatter coefficients). This step removes the dependency of 
scene brightness on viewing angle [15]. Following calibration, Range-Doppler terrain correc-
tion is conducted using precise ICEYE orbital data and the SRTMv3 digital elevation model 
integrated directly into ESA SNAP. This procedure projects the imagery onto the ground plane 
and mitigates overlay effects, foreshortening (occurring when features at different elevations, 
such as mountain bases and peaks, simultaneously reflect radar waves, resulting in distorted 
object shapes), and radar shadows (arising when a mountain’s summit obstructs the radar 
signal from reaching the opposite slope). Hence, terrain correction significantly enhances the 
accuracy of subsequent classification tasks.

The final pre-processing step involves speckle filtering. It is important to note that speckle 
itself is not noise in the conventional sense; rather, it is a coherent interference pattern arising 
from the summation of radar waves reflected and scattered by numerous similar targets within 
a scene. Filtering thus involves local statistical averaging of scene brightness. In this study, 
a Boxcar filter with a 7x7 window size was employed. This choice is justified by the fact that 
averaging over a sufficiently large window includes a greater number of scatterers, increasing 
the equivalent number of looks. Consequently, this approach preserves critical details, such as 
waterbody shorelines, and enhances the contrast between water surfaces and adjacent land 
areas [8].

Figure 2 illustrates the flowchart of the pre-processing steps using the imagery from April 
20, with corresponding intermediate outputs.
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Figure 2. A block diagram of the preprocessing algorithm in the ESA SNAP software

At the conclusion of the pre-processing step, the resulting image is exported as a GeoTIFF 
file for subsequent integration and analysis within the Google Earth Engine (GEE) environ-
ment.

The water surface detection algorithm consists of several key stages. The first stage in-
volves defining training classes and generating samples. The training dataset was manually 
created in GEE by delineating two distinct geometry sets – 'land' and 'water'. These polygons 
outlined regions empirically determined as water or land, based on visual inspection of Google 
Hybrid base imagery, the SAR image itself, and the NDWI map for the area, thus preventing 
false positives. The resulting dataset was subsequently used to train the Random Forest al-
gorithm. Polygons are converted into a collection, and each pixel is assigned a binary class 
label (1 for water, 0 for land). To reduce computational load, radar intensity values are sampled 
at 10-meter intervals. From the resulting mask-intensity dataset, 8,000 random samples per 
class were selected – a quantity sufficient for accurate classification.

Figure 3 illustrates a flowchart depicting the subsequent classification and water surface 
detection process. The Random Forest algorithm was chosen for model development due to its 
demonstrated effectiveness with a limited number of features (in this case, just one – the radar 
backscatter intensity). Its advantage lies in using different decision thresholds at each node 
and random subsets of the data, thus producing diverse decision trees. Additionally, Random 
Forest makes no assumptions about data distribution, making even a single feature informa-
tive enough for building an accurate model. Another advantage is that each tree is trained on 
a random subset of the original data, significantly mitigating noise influence. Any noisy artifact 
present in a single tree will have minimal impact, as it is typically offset by the majority vote 
from other trees—provided the input data has been pre-processed properly to ensure a limited 
number of noisy artifacts.
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Figure 3. A block diagram of the water surface recognition algorithm operation on a preprocessed 
radar image

Comparative analysis showed that the classification accuracy (Overall Accuracy, OA) ranged 
from 75.9–76.8%, and the agreement coefficient k — from 0.52 to 0.54. The best results were 
achieved with the parameters RF_100t_0.5, RF_300t_0.6 and RF_500t_0.5, where OA was 
76.7–76.8%, and k — 0.534–0.536. These values show a moderate but steady improvement 
compared to other configurations.

An increase in the number of trees from 100 to 500 did not result in a noticeable increase 
in accuracy: the maximum values were observed already with 100 trees (bagFraction = 0.5). 
With the further growth of the ensemble, the quality remained at a similar level, which indi-
cates the saturation of the model. Varying the bagFraction parameter showed that the optimal 
value is 0.5–0.6, whereas at 0.7 there was a deterioration in quality (OA decreased to ~76.0%, 
k to ~0.52). This is because too high a sampling coefficient reduces the diversity of trees in the 
ensemble, which leads to overfitting and increased errors.

In general, the results indicate that the Random Forest model demonstrates resistance to 
changes in the number of trees, provided that the bagFraction parameter is selected correctly. 
RF_300t_0.6 (300 trees, minLeafPopulation = 3, bagFraction = 0.6) was adopted as the opti-
mal set of parameters for further work, which provided the maximum value of k (0.535) and 
an overall accuracy of 76.8%, with an acceptable computational load.

So the training is performed using a Random Forest classifier comprising 300 decision trees, 
each built with a bagFraction of 0.6 (the fraction of data randomly selected for each tree) and 
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a minimum leaf population of 3. Testing different leaf population values did not affect model’s 
accuracy, so the value 3 was chosen as the optimal. Each tree within the forest makes decisions 
through sequential binary splitting of the feature space. Every ensemble member is trained on 
a randomly selected subset of the initial dataset, employing random subsets of features. Since 
the single predictor is the radiometric intensity from band b1 of the radar image, the method 
relies on differences in the statistical distributions of signal amplitudes over water and land, 
resulting from distinct backscatter mechanisms. The training dataset is balanced, containing 
an equal number of samples for each class. Thus, the classifier learns to identify characteris-
tic backscatter distributions: water surfaces, being smooth, tend to reflect radar waves away 
completely, yielding minimal returned signals; land areas, conversely, exhibit heterogeneous 
reflections dependent upon the specific type of surface. Examples illustrate the reflectivity of 
various surfaces are shown in Figure 4 [16].

Figure 4. Backscatterer types on SAR images [17]

The developed model is applied directly to the original image without reducing its spatial 
resolution, thus preserving the quality of the output mask. In this scenario, the feature space 
consists of radar signal intensity values from band b1. Each decision tree selects an optimal 
threshold θ, at which the division of the dataset into water and land classes maximizes infor-
mation gain. The Gini impurity index (1) is employed as the criterion for evaluating informa-
tion gain.
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 (1)

where pi – is the proportion of objects belonging to class i within the current node of the 
tree, and C is the total number of classes (water and land). During the classification stage, the 
intensity value x of an unknown pixel is input into each tree Tj . Each tree then returns to a 
class prediction  . Ultimately, the final prediction (2) is determined by majority voting 
across all trees:

 (2)

where N is the total number of trees, which in this case is 200.
As a result, the output is a binary mask in which pixels corresponding to water surfaces 

have a value of 1, whereas pixels representing land have a value of 0. The second image in the 
analyzed series undergoes the same processing workflow, thereby yielding two masks corre-
sponding to two consecutive days – April 20 and April 21, 2024.

Results
Otsu’s method was used as an unsupervised baseline to delineate open water directly from 

the SAR backscatter (b1, dB). Let a histogram of the image within the analysis region be de-
fined by bin centers xi and counts ni (i=1, …, L) with   and global mean . 
For a candidate threshold at bin k, the cumulative class probabilities and means are:

 (3)

 (4)

 (5)

 (6)

Otsu selects the threshold that maximizes the between-class variance:

 (7)

equivalently minimizing the within-class variance. Applied to the histogram in Figure 5, the 
optimal threshold was t*= − 16.625621235853288 dB (approximately −16.63 dB). Pixels are then 
classified as water by a simple indicator function

 (8)

which is theoretically consistent with specular returns from open water producing low 
backscatter in SAR. The resulting binary mask was restricted to the study geometry and con-
verted to area by summing pixel areas, is the native pixel area.
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Figure 5. Histogram of the preprocessed ICEYE image

As a second baseline, water was delineated from the GRD backscatter (band b1, dB) using a 
single, empirically chosen threshold. Guided by the regional backscatter histogram and visual 
checks against reference water, the threshold was set to t = -18 dB. Pixels were labeled water 
via a binary indicator:

 (9)

which accords with the physical expectation that open water in C-band yields low, specular 
returns. The mask was computed over the analysis region and then clipped to the reporting 
geometry. Water area was obtained by summing pixel areas within the mask. This fixed-thresh-
old estimate provides a training-free comparator to the Random Forest approaches, while 
remaining explicitly site- and acquisition-dependent.

The results of all three methods are displayed on Figure 6. There are large areas of false 
positive results for the Otsu method. Urban areas and roadways are classified as water, accord-
ing to the method, which is not true. The threshold method worked much better, however, too 
many objects that are not water are classified as it.
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Figure 6. Water surface mask according to the ICEYE image (RF, Otsu, threshold methods)

Spectral indices such as the NDWI (Normalized Difference Water Index) (3), MNDWI (Modi-
fied NDWI) (10), among others, have been widely used in optical remote sensing tasks for wa-
ter surface detection. Each of these indices possesses distinct advantages and limitations. The 
NDWI (3)[11] relies on differences in surface reflectance between the green and near-infrared 
(NIR) spectral ranges:

 (10)

The index demonstrates high sensitivity to open water bodies and can be effectively uti-
lized for monitoring clear water surfaces. However, its application in urban areas, or in the 
presence of shadows, dark vegetation, or low-albedo objects, is often associated with a high 
likelihood of false positives [5].

The Modified NDWI (MNDWI) (11)[17] replaces the near-infrared (NIR) channel with the 
short-wave infrared (SWIR) channel, thereby enabling more effective suppression of reflec-
tance from vegetation and artificial structures:

 (11)

The use of MNDWI provides some advantages over the limitations inherent in NDWI; how-
ever, in scenarios involving weak water signatures—such as ice, geothermal waters, turbid 
waters, and similar conditions – the spectral response can become distorted, leading to in-
creased omissions and false positives, analogous to those encountered with NDWI. The results 
of differential indexes outcome are displayed on Figure 7.
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Figure 7. Water surface masks calculated from the Sentinel-2 image (NDWI, MNDWI)

A detailed examination also reveals significantly greater spatial detail in the RF-derived 
mask compared to the optical masks. This is primarily attributed to the considerably higher 
spatial resolution of the ICEYE X-band imagery (approximately 3 meters), in contrast to the 
Sentinel-2 imagery, which offers a resolution of 10 to 20 meters depending on the spectral 
band used [18].

As part of the comparison between the resulting classification and the reference optical 
water masks, the water surface area was calculated for each optical index-based mask as well 
as for the radar-derived mask. 

As illustrated in the image, there are minor discrepancies in the estimated water surface 
area across the different methods. These differences can be attributed, first, to the spatial res-
olution disparities between the optical and radar imagery, as previously noted, and second, to 
the inherent characteristics of optical and radar sensing. Optical masks are susceptible to the 
influence of clouds and surface reflections, which can either inflate or deflate index values. 
In contrast, radar satellites are not affected by cloud cover but may misclassify objects with 
similar backscatter intensities – such as roadways, as mentioned earlier – as water surfaces.

Figure 8 presents the outcome of this analysis, showing the area values as output in the 
GEE console.
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Figure 8. Water surface areas according to different extraction methods

Figures 9 and 10 present a comparison between the resulting masks and the original im-
agery. The algorithm demonstrates reasonably accurate performance: areas covered by water 
were identified with a satisfactory level of accuracy and reliability.

Figure 9. Water recognition on ICEYE image from April 20th
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Figure 10. Water recognition on ICEYE image from April 21st

Figure 11 provides a more detailed view of the water surface detection results. The dis-
played images clearly show that major water bodies are accurately identified due to the high 
contrast in backscatter signals compared to non-water areas. However, the resulting mask 
contains some artifacts, such as segments of road networks. This type of misclassification oc-
curs when the radar signal intensity values for hard surfaces (e.g., asphalt roads) are similar to 
those of specular reflections from calm water surfaces. One potential solution to this issue is 
to enhance the existing machine learning model by incorporating additional features such as 
texture parameters and polarization characteristics. This approach could reduce the incidence 
of false positives, particularly over road surfaces, by enabling the classifier to better distin-
guish between water and non-water targets with similar backscatter intensities.

Figure 11. Closer look on water recognition  
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Another type of observed artifact is speckling within agricultural fields—individual pixels 
classified as water surrounded by pixels classified as land. This effect also arises due to the 
similar backscatter intensity of fields and water surfaces. During periods of active vegetation 
growth or when fields are highly saturated, including cases where they are flooded due to 
overflow, the distinction between surface types may become minimal. To address this issue, a 
post-processing procedure should be introduced following RF-based classification. A median 
filter applied over a moving window can be effective, smoothing isolated pixels while preserv-
ing the boundaries of larger objects. Alternatively, the existing model could be combined with 
operations specifically designed to eliminate false positives. This would result in a final output 
that is more reliable and directly usable for further applications.

Discussion
During classifier training, an error assessment matrix was generated using out-of-bag (OOB) 

validation, which enables the calculation of standard performance metrics on independent 
data. The primary metric used was overall accuracy (12):

 (12)

where TP is the number of True Positive classified pixels, TN is the number of True Negative 
classified pixels, FP is the number of False Positive classified pixels, and FN is the number of 
False Negative classified pixels. Figure 12 shows the result of calculating the classification 
accuracy from the GEE console, according to which TP=6667 (water pixels correctly classified 
as water), TN=7609 (land pixels correctly classified as land), FP=391(false positive recognition 
of land as water), FN=1333 (false negative recognition of water as land). Then the accuracy 
(13) is calculated as follows: 

 (13)

which is considered sufficiently high value for machine learning tasks involving a limited 
number of classification features (Table 1).

Table 1 – Confusion Matrix

Actually Positive (1) Actually Negative (0)
Predicted Positive (1) False Positives (FP = 521) True Positives (TP = 1601)
Predicted Negative (0) True Negatives (TN = 1579) False Negatives (FN = 442)

It can also be concluded that Type I errors — 442 land pixels misclassified as water—con-
stitute a relatively small proportion, indicating that the model rarely confuses land with water. 
However, water is more frequently misclassified as land. This issue is likely due not to deficien-
cies in the model itself, but rather to artifacts in the input imagery. The presence of wind and 
surface ripples on water bodies can directly affect their backscattering properties, leading to 
false negatives in classification.

To eliminate the dependence on the decision threshold, a Receiver Operating Characteris-
tic (ROC) curve was constructed [19]. This curve illustrates how the two key error metrics of 
a binary classifier — TPR(θ), FPR(θ) (14, 15) change as the decision threshold θ is gradually 
shifted across the range from 0 to 1.

 (14)
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 (15)

In this case, an algorithm was implemented to vary the probability of a pixel belonging to 
the "water" class from 0 to 1 in increments of 0.05. For each probability value, the sensitivity 
and false positive rate were calculated and plotted on a graph. For a given threshold value θ, 
the sensitivity–false positive rate pair is computed as follows (16):

 
(16)

According to Figure 12, the curve representing the relationship between sensitivity and the 
false positive rate lies well above the diagonal of random guessing, particularly in the region 
of low FPR values. Notably, when the false positive rate is around five percent, the sensitivity 
reaches approximately seventy-five percent.

Figure 12. Effectiveness of the binary classifier model plot

The integral characteristic of the curve — namely, the area under the corresponding curvi-
linear trapezoid (17) — serves as a measure of the model's performance and is calculated as 
follows:

 (17)

Substituting the values obtained from formulas (9) and (10) yields a result of 0.91. This 
value indicates that there is a 91% probability that a randomly selected water pixel receives a 
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higher probabilistic score than a randomly selected land pixel, thereby demonstrating a high 
level of model performance. The upward trend of the curve observed in the region of high 
sensitivities, as shown in the figure, reflects a typical trade-off – further reduction in missed 
water pixels can only be achieved at the expense of an increased rate of false classification 
of land pixels. Thus, the final threshold selection should be aligned with specific operational 
requirements for the model.

The kappa coefficient (κ) is a measure of agreement proposed by Cohen [20] and is widely 
used to evaluate classification quality while accounting for the probability of random agree-
ment. Unlike Overall Accuracy, kappa shows to what extent the model’s results exceed the 
level of random classification. The value of κ ranges from –1 (worse than random) to 1 (perfect 
agreement), with 0 corresponding to pure chance.

Formally, the metric is defined as:

 (18)

where PO is the observed accuracy:

 (19)

and PE is the expected accuracy under random assignement:

 (20)

where row1 and col1 are the row and column sums of the confusion matrix.
In this case PO = 0.7676, PE = 0.5007, which yields to k ≈ 0.535. his indicates a moderate level 

of agreement, exceeding random guessing by more than 26%.
Further reduction of omission errors for water detection would inevitably lead to a sub-

stantial increase in false inundation of land areas. Consequently, the choice of the decision 
threshold should be guided by the intended application: if a strict limit on false positives is 
required, it is advisable to fix the FPR; whereas in situations where the risk of missing water is 
more critical, the criterion of maximizing the difference between sensitivity and false positive 
rate (Youden’s index) [19] offers a more balanced solution. Overall, the set of derived metrics 
confirms the algorithm’s high reliability and its suitability for rapid flood mapping, even when 
using a limited set of radar-based features.

A spatial agreement analysis was performed to compare three SAR-based water-delinea-
tion approaches using backscatter (b1, dB): a supervised Random Forest (RF), an unsupervised 
Otsu threshold (data-driven; t* dB), and a fixed manual threshold (−18 dB). For each method 
pair, agreement maps within the study geometry partitioned pixels into four categories (both 
land, A-only water, B-only water, both water); per-method water extent was computed as “only 
+ both,” and pairwise consistency was summarized by the Jaccard index (intersection/union).

The results demonstrated a consistent ordering of mapped water extent (Figure 13): Otsu 
>> Threshold (−18 dB) > RF, yielding 26.83, 20.47, and 15.55 km², respectively. Consistency 
was highest for Otsu vs Threshold (Jaccard ≈ 0.76, intersection 20.48 km²), moderate for RF 
vs Threshold (≈ 0.71, intersection 15.00 km²), and lowest for RF vs Otsu (≈ 0.57, intersection 
15.40 km²). The Otsu–Threshold comparison contained no Threshold-only water, indicating 
that the −18 dB mask is a subset of Otsu, as expected from the less stringent Otsu threshold. 
Disagreements were dominated by Otsu-only areas relative to RF (11.43 km²) and relative to 
Threshold (6.35 km²), and by Threshold-only areas relative to RF (5.47 km²), suggesting that 
thresholding admits additional low-backscatter, ambiguous zones (e.g., roughened water, in-
undated vegetation, wet soils, SAR shadows).
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Figure 13. Agreement maps for SAR water extraction methods

These findings indicate that RF behaves conservatively, producing the smallest water ex-
tent and likely higher spatial purity by excluding borderline pixels that thresholding methods 
include. RF is therefore suitable when precision (low commission error) is prioritized over 
completeness, whereas Otsu (and, to a lesser degree, the −18 dB threshold) emphasize recall 
by expanding the water mask. Definitive statements on effectiveness should be corroborated 
with independent reference data; within the agreement framework reported here, RF exhibits 
a selective delineation that trades some recall for reduced false positives.

The methodology for evaluating the binary water classification model from SAR data was 
carried out in two stages. At the first stage, the discriminatory capacity of the model was as-
sessed independently of any fixed threshold using the Receiver Operating Characteristic (ROC) 
curve and the Area Under the Curve (AUC). For this purpose, true class labels

 (21)

and continuous model outputs

 (22)

representing the probability of belonging to the positive class (water) were employed. The 
ROC curve was constructed by varying the threshold  .

The predicted class ypred is assigned the value of 1 (water) if the probability of belonging to 
the water class, estimated by the model yscore , is greater than or equal to the selected threshold 
τ. Otherwise, the predicted class is assigned the value of 0 (land).

For each τ, the True Positive Rate was computed as (14) and the False Positive Rate as (15). 
The area under the ROC curve was then integrated in a standard manner. On the evaluated 
dataset, the resulting AUC was approximately 0.768, which indicates a robust discriminatory 
ability of the model and a clear deviation from random guessing (AUC = 0.5). This demonstrates 
that the classifier effectively orders examples by “water-likeness” even prior to thresholding.

At the second stage, threshold optimization was carried out to obtain a final binary map and 
threshold-dependent metrics. The optimization criterion was the maximum of the harmonic 
mean of precision and recall, namely the F1 score:

 (23)

where

 (24)

and
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 (25)

The threshold was searched across a dense grid on the interval [0, 1]
[0,1]. Alternative criteria such as minimizing the Euclidean distance to the ideal ROC point 

(FPR=0, TPR=1) and maximizing Youden’s index

 (26)

were also examined. The maximum F1 value on the evaluated sample was reached at a very 
low threshold, around τ ≈ 0.005. Such a localization of the optimum near zero reflects the con-
servative nature of the probability estimates produced by the model: the distribution of yscore  
is skewed toward small values, and even a minimal cutoff secures a good separation of the 
positive class. The stability of this solution is confirmed by the plateau of metrics observed in 
the range τ ∈ [0.005, 0.05], where further increases in threshold have virtually no effect on the 
balance of errors. This insensitivity of metrics to the precise cutoff demonstrates robustness in 
the neighborhood of the optimum.

The empirical performance of the model at the optimal threshold reveals the following 
profile. On the validation set containing 4143 observations, with a positive class prevalence 
of approximately 0.493, the confusion matrix

 (27)

was obtained. From this, the following values were calculated: precision ≈ 0.750, recall ≈ 
0.792, F1 ≈ 0.770, and Intersection over Union (IoU)

 (28)

Overall accuracy reached ≈ 0.767, while sensitivity (TPR) was 0.792 and specificity

 (29)

Balanced accuracy, defined as (TPR + TNR)/2, was consistent with the observed overall 
accuracy, reflecting the near balance of class prevalence. These values jointly indicate that 
the classifier achieves a coherent trade-off between omission and commission errors at the 
chosen threshold.

From a methodological perspective, choosing the threshold by maximizing F1 is appro-
priate when false positives and false negatives have comparable cost, and the task requires 
balancing under-detection of flooded areas with false alarms over land. If domain-specific 
priorities differ, the thresholding strategy can be adapted accordingly: lowering the threshold 
increases recall at the expense of precision, while raising it favors precision at the cost of re-
call. The observation that the F1 optimum occurs at an extremely low cutoff further suggests 
imperfect calibration of probability outputs from the random forest. In practice, probability 
calibration (e.g., isotonic regression or Platt scaling) could be applied before thresholding, 
or alternatively, optimization could be based on the precision–recall curve in cases of class 
imbalance. Nevertheless, even in the current configuration, the model exhibits consistent per-
formance: the AUC of 0.77 corresponds to a stable balance of precision and recall at a low 
threshold, with IoU exceeding 0.62, thus demonstrating the model’s adequacy for practical 
water body delineation in the study area.



135

Conclusion
The results of this study demonstrated the high effectiveness of the Random Forest algo-

rithm for the automatic classification of water surfaces using ICEYE synthetic aperture radar 
(SAR) data. The proposed methodology, based on training the model with a manually labeled 
sample and utilizing a single feature—radiometric backscatter intensity—achieved a classifi-
cation accuracy of 798%, as indicated by the out-of-bag (OOB) accuracy metric. The resulting 
water masks showed both visual and quantitative agreement with reference masks generated 
from optical indicators (NDWI, MNDWI), with the added advantage of significantly higher spa-
tial detail due to the finer resolution of SAR imagery.

The analysis identified characteristic classification errors, including false positives over hard 
surfaces, which can be attributed to surface roughness and wind-induced ripples affecting the 
smoothness of water bodies. The proposed approach can be extended to other regions and ap-
plied in operational flood monitoring tasks, particularly under cloud-covered conditions when 
optical methods are ineffective. It may serve as a foundation for the development of regional 
or national flood information systems based on ICEYE and similar SAR platforms.
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