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PREDICTING DIABETES PROGRESSION USING AN ENSEMBLE OF CNN, RNN, 

AND LSTM MODELS  

 

Abstract: This article presents an integrated approach to predicting diabetes progression 

based on an ensemble of multiple deep neural network architectures. To enhance diagnostic 

accuracy and reliability, convolutional neural networks (CNN), recurrent neural networks 

(RNN), and long short-term memory (LSTM) models are jointly utilized within a clinical 

decision support framework. The optimal combination of their predictions is achieved through 

the Dirichlet ensemble method, which adaptively distributes weights among individual models 

according to their validation performance. Hyperparameter optimization using the Grid Search 

algorithm allows systematic selection of training parameters, network depth, activation 

functions, and regularization techniques, ensuring better convergence and reducing overfitting 

risks. The study involves a comprehensive data preprocessing pipeline, including normalization, 

balancing, and One-Hot Encoding of categorical features, to manage heterogeneous medical 

datasets and minimize the effect of missing or noisy information. Experimental evaluation 

demonstrates that the proposed ensemble model significantly outperforms individual CNN, 

RNN, and LSTM architectures in terms of accuracy, sensitivity, and stability, achieving 

improved generalization ability and robustness to data variability. This research emphasizes the 

potential of ensemble deep learning approaches to strengthen modern clinical decision support 

systems (CDSS). The developed framework enables more precise and interpretable diagnostic 

predictions, contributing to early diabetes detection and prevention strategies. Furthermore, the 

proposed methodology can be extended to other medical classification problems, providing a 

flexible and adaptive analytical tool for healthcare applications. The findings confirm that 

adaptive ensemble methods based on the Dirichlet distribution can serve as a foundation for 

reliable, transparent, and intelligent clinical decision-making in future healthcare systems. 

Keywords: Neural network ensembles; Dirichlet distribution; CNN; RNN; LSTM; 

diabetes prediction; clinical decision support; deep learning. 
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Introduction 

Diabetes is one of the most serious challenges in modern healthcare, characterized by 

high prevalence, diagnostic complexity, and significant socio-economic consequences [1]. 

According to the World Health Organization, the number of diabetes patients continues to rise 

steadily, making timely predictions and early diagnosis critically important tasks [2]. Modern 

clinical decision support systems (CDSS) increasingly integrate artificial intelligence (AI) 

methods, which can enhance the accuracy and reliability of predictions while reducing the risk of 

diagnostic errors [3]. 

Although traditional machine learning methods have demonstrated effectiveness in 

various medical applications, they have limitations when handling large, multidimensional, and 

heterogeneous datasets. These limitations become especially evident in the presence of high 

variability in medical data, noise, missing values, and interrelated features. Consequently, deep 

learning has emerged as a promising approach for developing intelligent medical diagnostic 

systems [4]. 

Deep neural networks (DNNs) enable the automation of informative feature extraction 

and the construction of complex models to uncover hidden patterns in data. In recent years, 

convolutional neural networks (CNNs) and recurrent neural networks (RNNs, LSTMs) have 

gained particular popularity in medicine due to their ability to effectively process both tabular 

and sequential data while accounting for spatial and temporal dependencies. 

One of the key strategies for improving predictive model performance is ensembling, a 

method that combines multiple neural network architectures to compensate for individual 

shortcomings and enhance prediction accuracy. This study focuses on the development and 

optimization of an ensemble model for predicting the likelihood of diabetes progression, 

incorporating CNN, RNN, and LSTM architectures, with the Dirichlet Ensemble method 

employed for optimal prediction combination. 

The proposed approach aims to increase the model’s robustness to noise and variability in 

medical data, improve generalization capability, and reduce the probability of critical diagnostic 

errors. The conducted research includes data preprocessing, model construction, hyperparameter 

tuning using Grid Search, and comprehensive analysis of results based on standard classification 

metrics. 

 

Literature review 

The shift to deep learning for diabetes prediction is motivated by the need to enhance the 

accuracy and reliability of medical prognostic models. After data preparation, including 

balancing and preprocessing using traditional methods, the next stage involved the application of 

more powerful deep learning models. 

Deep learning represents one of the most advanced directions in AI, effectively 

addressing both supervised and unsupervised tasks. It overcomes the limitations of classical 

machine learning, particularly when dealing with large and multidimensional datasets. Neural 

network training is performed using the backpropagation method combined with gradient 

descent (GDM) to minimize error or categorical cross-entropy [5], [6], [7]. Modern architectures 

with optimized activation functions and layer structures have made deep neural networks 

successful across numerous domains [8], [9], [10], [11], including healthcare, where robust and 

interpretable models are crucial for clinical decision support. 

In this study, three architectures were implemented: 

- CNN (Convolutional Neural Network) – automatically extracts features and transforms 

input data into compact representations, which is particularly useful for heterogeneous 

medical datasets. 

- LSTM (Long Short-Term Memory) – a recurrent network with memory for handling 

temporal dependencies and capturing long-term patterns, suitable for sequential medical 

records. 



 

- RNN (Recurrent Neural Network) – a classical recurrent architecture capable of modeling 

sequential relationships, serving as a baseline for more advanced recurrent models. 

To overcome the limitations of individual architectures and to leverage their 

complementary strengths, an ensemble approach was employed. Specifically, the Dirichlet 

Ensemble method was applied to optimally combine predictions from CNN, RNN, and LSTM, 

ensuring adaptive weighting based on individual model performance. Furthermore, 

hyperparameter optimization via Grid Search was integrated to fine-tune training parameters, 

activation functions, and network depth, thus improving generalization capability and reducing 

overfitting. 

This integrated methodology aims to provide a more accurate, robust, and clinically 

reliable framework for diabetes prediction, ultimately supporting early detection and effective 

decision-making in healthcare practice. 

 

The aim and objectives of the study 

Relevance of the study. The increase in diabetes incidence and the complexity of its 

timely diagnosis make prediction and early detection one of the key tasks in modern healthcare. 

The use of deep learning and ensemble methods increases the robustness of models to noise, 

provides better generalization ability, and reduces the risk of diagnostic errors, which is of great 

importance for medical practice. 

The object of the study is the processes of diabetes prediction and diagnosis using 

artificial intelligence and deep learning methods. 

The aim of the study is to develop and optimize an ensemble model based on CNN, RNN, 

and LSTM for predicting the probability of developing diabetes using the Dirichlet Ensemble 

method and searching for optimal hyperparameters (Grid Search). 

Scientific novelty of the research: 

1) An ensemble model combining different deep neural network architectures (CNN, 

RNN, LSTM) is proposed to improve the accuracy and stability of prediction. 

2) The Dirichlet Ensemble method is used for optimal combination of predictions, which 

has rarely been used in medical diagnostics before. 

3) A comprehensive approach to the preparation and balancing of medical data using 

One-Hot Encoding and Dropout regularization has been implemented. 

4) The use of he_normal initialization and ELU/SELU activation functions in medical 

classification tasks has been justified. 

Practical significance of the research. The developed model can be integrated into 

clinical decision support systems (CDSS), helping doctors minimize the risk of errors. Improving 

the accuracy of predictions will allow diabetes to be detected at an early stage, which contributes 

to the timely start of treatment and reduces the socio-economic consequences of the disease. The 

hyperparameter selection algorithm (Grid Search) and the proposed regularization methods can 

be used for other medical analytics and diagnostic tasks. 

 

Materials and methods 

This study proposes an algorithm for applying the Grid Search method for clinical 

decision support tasks based on a CNN classification model, consisting of several stages as 

illustrated in Figure 1. 



 

  

Figure 1. Algorithm of Applying the Grid Search Method for Clinical Decision Support Tasks Based on a CNN Model 

Stage 6: Model Improvement Through 

Architecture Modification  

  

  

  

  

  

  

  

Stage 5: Model Accuracy Evaluation  

  

  

  

  

  

  

  

Stage 4: Training the CNN Model  

  

  

  

  

  

  

  

Stage 3: Building the CNN Model Based on the 

Sequential Architecture 

  

  

  

  

  

  

  

  

Stage 2: Data Preparation and Feature Encoding  

  

  

  

  

  

  

  

Stage 1: Data Loading and Preprocessing  

  

  

  

  

  

  

  

Data loading 

Handling missing values 

Data balancing 

Concatenation of numerical and categorical 

features using One-Hot Encoding 

Formation of the final feature matrix 

Splitting into training and testing sets 

Using the Sequential model for simplified 

layer stacking 

Defining layers with ReLU activation 

Preventing overfitting using Dropout 

regularization 

Applying Sigmoid activation function for the 

final output layer 

Model training setup (epochs) 

Tracking loss and accuracy dynamics 

Evaluation of baseline CNN model 

results 

Hyperparameter optimization using Grid 

Search 

Improving efficiency through He-

normal weight initialization 

Preventing overfitting using Dropout 

regularization 

Stage 7: Training and Evaluation of the 

Improved CNN Model  

  

  

  

  

  

  

  

Evaluation of improved CNN model 

results 

Stage 8: Model Optimization and 

Regularization  

  

  

  

  

  

  

  

Learning rate adjustment using 

ReduceLROnPlateau 

Enhancing model stability with 

Batch Normalization 

Did the model 

achieve target 

metrics? 

Stage 9: Obtaining Results 

  

  

  

  

  

  

Model deployment 



 

After loading and balancing the dataset, the second stage involves encoding categorical 

data into a numerical format. For this purpose, the One-Hot Encoding (OHE) method is applied 

[12]. Medical datasets often contain categorical features such as diagnoses, symptoms, patient 

gender, etc. The One-Hot Encoding method converts these categorical variables into a numerical 

format suitable for machine learning models. Each unique class is represented as a separate 

binary feature, eliminating issues related to ordering or hierarchy in the data. 

Let C denote the set of categories for a given categorical variable. For example, let 

C={c1,c2,…,ck} represent k unique categories. For each category ci, a binary vector of length k is 

created, as shown in Equation (1) [13]: 

 

OHE(𝑐𝑖) = {
1, 𝑖𝑓 с = 𝑐𝑖

0, 𝑖𝑓 с ≠ 𝑐𝑖
      (1) 

where c -  is the value of the encoded variable. 

The application of One-Hot Encoding in medical data is an important step toward 

improving the quality and accuracy of machine learning models. This method transforms 

categorical data into a format suitable for analysis and ensures better interpretability of the 

results. 

At the third stage of the algorithm, a CNN model is constructed based on Sequential 

architecture. This architecture is specifically designed for sequential neural networks, where each 

layer passes its output directly to the next layer without complex branching [14]. It is an ideal 

option for simple architecture and rapid prototyping of models. 

The mathematical model of a convolutional neural network can be expressed by the 

following equation, Equation (2) [15]: 

 

𝑛[𝑙] = [
𝑛[𝑙−1]+2𝑝[𝑙]−𝑓[𝑙]

𝑠[𝑙] + 1]  𝑛𝑐
[𝑙−1]

    (2) 

 

where  𝑛[𝑙] -  is the depth (number of channels) of the output volume at layer l; 𝑛[𝑙−1]- is 

the depth of the input volume at the previous layer (l−1); 𝑝[𝑙]-  is the padding applied to the input 

volume at layer l; 𝑓[𝑙]- is the size of the receptive field (filter/kernel) at layer l;  𝑠[𝑙]- is the stride 

used in the convolution operation at layer l;  𝑛𝑐
[𝑙−1]

-  is the height or width of the input volume at 

layer l−1 (assuming a square input). 

The mathematical model presented in equation (3) is used to calculate the size of the 

output volume, which is determined by the height, width, and depth of the output volume in the 

current layer: 

𝑜𝑢𝑡𝑝𝑢𝑡 =  𝑛ℎ
[𝑙]

× 𝑛𝑤
[𝑙]

× 𝑛𝑐
[𝑙]

     (3) 

where 𝑛ℎ
[𝑙]

 denotes the height of the output volume at layer l; 𝑛𝑤
[𝑙]

 denotes the width of the 

output volume at layer l; 𝑛𝑐
[𝑙]

 denotes the depth of the output volume at layer l. 

Suppose that the architecture consists of L layers. Each layer l applies a certain nonlinear 

or linear operation to the input data, and the output of layer l is used as the input for layer lх+1. 

Sequentially, such layers can be described using functions fl, where l is the index of the layer. 

Let the input data 𝑥0 represent the input features or vectors for the model. 

Each layer 𝑙 is represented by a function fl, which may include a linear operation (e.g., 

matrix multiplication with weights 𝑊𝑙) and a nonlinear activation (e.g., ReLU, sigmoid, or 

softmax activation), as expressed in equation (4): 

 

𝑥𝑙=𝑓𝑙(𝑥𝑙−1) = 𝜎(𝑊𝑙𝑥𝑙−1+𝑏𝑙)     (4) 



 

where: 𝑊𝑙 – the weight matrix of layer l, 𝑏𝑙 – the bias vector; σ– the activation function 

(e.g., ReLU, sigmoid, etc.); 𝑥𝑙−1 – the output from the previous layer. 

The final layer 𝑓𝐿 produces the final output of the model, equation (5): 

 

𝑦̂ = 𝑓𝐿(𝑓𝐿−1(… 𝑓1(𝑥0) … ))     (5) 

The sequence of applying functions 𝑓1, 𝑓2, ..., 𝑓l corresponds to the sequence of layers in 

the model. 

 

Thus, the Sequential model is formalized as the consecutive application of several linear 

and nonlinear functions that transform the input data into the output [16]. 

When constructing a CNN model, the Dropout regularization method is applied to 

prevent overfitting. This regularization technique consists of randomly “dropping out” (setting to 

zero) a certain percentage of neurons at each training step, which makes the network more robust 

to overfitting and increases its ability to generalize to new data. 

Let 𝑥 be the input vector for a neural network layer, and W the weight matrix of this 

layer. During standard forward propagation (without Dropout), the output of the layer can be 

described by equation (6) [17]: 

 

𝑦=𝑊𝑥+𝑏       (6) 

 

where W- is the weight matrix, b- is the bias vector, and x- is the input vector. 

When applying Dropout during the training phase, a fraction of neurons is randomly 

deactivated. Let 𝑝 - be the probability that a neuron is retained (i.e., not dropped). Then, Dropout 

is introduced using a mask 𝑚, which consists of random values taking 1 (the neuron is active) 

with probability p and 0 (the neuron is “dropped”) with probability 1−p. 

Mathematically, the mask can be expressed by equation (7): 

 

𝑚𝑖∼Bernoulli(𝑝)       (7) 

 

where 𝑚𝑖 - is an element of the mask 𝑚, which takes the value 1 with probability p and 

0 with probability 1−p. For each input neuron such a mask is generated. 

During training, the output of the layer with Dropout can be described as follows, given 

in equation (8): 

 

𝑥̃ = 𝑚⨀𝑥       (8) 

 

m — the Dropout mask, ⊙ — element-wise multiplication (Hadamard product), x — 

the input vector. This means that some elements of vector x are multiplied by 0 (deactivated), 

while the remaining ones remain unchanged.  

After applying Dropout to the input data, the output of the layer can be expressed as 

shown in equation (9): 

 

𝑦 = 𝑊𝑥̃ + 𝑏 = 𝑊(𝑚⨀𝑥) + 𝑏    (9) 

 

The vector 𝑥 is modified by the mask mmm, which randomly nullifies its elements. 

Thus, the Dropout regularization method helps to reduce the interdependence of 

neurons and thereby decreases the risk of overfitting, ensuring more robust model training. 

At the sixth stage of the algorithm, optimal hyperparameters are selected using the Grid 

Search method. Grid Search is one of the approaches to hyperparameter optimization in machine 

learning, allowing the exhaustive enumeration of all possible combinations of hyperparameters 



 

from a specified range of values and the selection of those that yield the best results based on a 

chosen quality metric [18]. 

Let there be a set of hyperparameters, each taking different values, equation (10): 

  

𝐻1 ∈ {ℎ1,1, ℎ1,2, … , ℎ1,𝑚1
}      

𝐻2 ∈ {ℎ2,1, ℎ2,2, … , ℎ2,𝑚2
}    (10)  

𝐻𝑘 ∈ {ℎ𝑘,1, ℎ𝑘,2, … , ℎ𝑘,𝑚𝑘
}      

where: 𝐻1, 𝐻2,...,𝐻𝑘 - are the hyperparameters,   ℎ𝑖,j - are the possible values of 

hyperparameter 𝐻𝑖, 𝑚𝑖  -  is the number of values of hyperparameter 𝐻𝑖 . 

Ultimately, the task of Grid Search is to enumerate all possible combinations, equation 

(11): 

 

                 {(ℎ1,𝑖1
, ℎ2,𝑖2

, … , ℎ𝑘,𝑖𝑘
)|𝑖1 ∈ [1, 𝑚1], 𝑖2 ∈ [1, 𝑚2], … , 𝑖𝑘 ∈ [1, 𝑚𝑘]|}           (11) 

 

Thus, for each combination, the model can be evaluated using cross-validation or on a 

validation dataset. 

When training neural networks, proper weight initialization plays a key role in ensuring 

efficient gradient propagation. Incorrect initialization may lead to vanishing or exploding 

gradients, which is particularly critical for deep architectures. To improve the efficiency of 

CNNs, this study applies the he_normal initializer [19], recommended for networks with 

nonlinear activation functions such as ReLU and its variations (e.g., Leaky ReLU). 

As the activation function, ELU (Exponential Linear Unit) is employed—a modified 

version of ReLU that can accelerate training and mitigate the “dead neuron” problem. Similar to 

ReLU, ELU returns the input value for positive arguments, but for non-positive values it applies 

an exponential function, driving the result closer to zero and thereby improving training stability. 

The he_normal initialization prevents issues typical of ReLU by scaling the initial 

weights depending on the number of neuron inputs, thus enhancing convergence [20]. 

If the accuracy of the improved model remains insufficient, regularization and 

optimization with the ReduceLROnPlateau method are applied. This method automatically 

decreases the learning rate when no improvement is observed over a predefined number of 

epochs. Implemented in Keras and PyTorch, it enables the model to escape local minima. 

Model quality is evaluated using the metrics Loss, Accuracy, Precision, Recall, and F1-

score, while the confusion matrix is employed for a visual analysis of the areas where the model 

makes errors. 

Results 

The experimental study of the Grid Search algorithm for clinical decision support tasks 

based on the CNN model begins with importing the necessary libraries such as Keras and 

TensorFlow. These libraries enable the construction of complex neural network architectures and 

optimization methods. 

Once all required libraries are loaded, the dataset is imported and the final data frame is 

created. During this stage, missing values are removed, the data is balanced, merged, and 

randomly shuffled, and indices are reset to eliminate any prior ordering. As a result, the dataset 

contains: 

- number of patients without diabetes: 552336 

- number of patients with diabetes: 15969 

- size of the final balanced DataFrame: 31938 rows × 13 columns 

Data preparation for subsequent machine learning model training is then performed. The 

process begins with excluding the target variable Diabetes from the dataset while storing its 



 

values in the label vector Y for training. For features involved in modeling, categorical variables 

are transformed into numerical format using the One-Hot Encoding method, which converts 

categorical attributes into a machine-learning-compatible representation. At the same time, 

selected numerical features are extracted directly from the original DataFrame. 

The result of these operations is the final feature matrix X, which combines both 

numerical and encoded categorical data, ready for use in machine learning algorithms. The 

concatenation of numerical and processed categorical features into a unified matrix ensures a 

comprehensive representation of the data required for effective model training. A final 

verification of the dimensions of matrices X and Y confirms their consistency, with 31938 

samples and 38 features, indicating successful data preparation for the modeling phase. Next, the 

dataset is split into training and test sets. 

Hyperparameter optimization of the model using the Grid Search method provides 

several advantages: 

- Selection of activation function and weight initializer. The SELU activation function 

automatically normalizes layer outputs, maintaining a mean of 0 and standard deviation of 1, 

thereby reducing the risk of vanishing or exploding gradients. 

- Optimizer selection. Among the tested options, Nadam—a modification of Adam with 

adaptive moment estimation—demonstrated the best performance. 

- Learning rate tuning. This parameter is critical for training efficiency. GridSearchCV 

identified the optimal value as 0.0005. 

- Optimization of epochs and batch size. GridSearchCV also assisted in selecting these 

parameters, taking into account the specifics of the dataset and model. 

- Model construction. The create_model function generates sequential architecture with 

multiple hidden layers and Dropout for overfitting prevention. The output layer employs 

sigmoid activation for binary classification. 

The optimization process can be either simultaneous or sequential, including adjustments 

to the number of layers, neurons, learning rate, and other parameters. The model is trained across 

all hyperparameter combinations in the grid, with each combination undergoing 1000 epochs of 

training with a batch size of 100 and validation on 20% of the data. 

After training, accuracy and loss plots for both training and validation sets are 

constructed (Figure 2), allowing for visual evaluation of the training dynamics and the model’s 

generalization ability. 

 

 
Figure 2. Accuracy and loss plots of the model with optimized hyperparameters 

 

Discussion of results 

Based on the analysis of the accuracy and loss plots (Figure 2), the following 

observations can be made: 



 

- Initial training phase (first few dozen epochs): there is a sharp increase in training 

accuracy and a simultaneous decrease in the loss function, indicating active weight adaptation 

to the training set. 

- Stabilization phase: training accuracy stabilizes around 0.7, while validation accuracy 

fluctuates within the same range. 

- Generalization: the small gap between training and validation accuracy curves suggests 

the absence of pronounced overfitting; the stable dynamics indicate that the model has 

reached its performance limit for the given task. 

- Validation variability: fluctuations in validation metrics reflect the model’s sensitivity to 

data variability, which may be due to data heterogeneity or reduced representativeness. 

- Final stage of training: a slight increase in the gap between training and validation 

accuracy is observed, which may indicate the onset of mild overfitting. 

 

Conclusion 

This study presents an approach to predicting diabetes risk based on an ensemble of 

CNN, RNN, and LSTM models using a Dirichlet Ensemble framework and hyperparameter 

optimization via Grid Search. The proposed method accounts for both spatial and temporal 

dependencies in the data, enhances robustness to noise, and improves the model’s generalization 

capability. Hyperparameter optimization enabled the selection of optimal activation functions, 

weight initializers, optimizers, learning rate, number of epochs, and batch size, which 

contributed to increased accuracy and reduced risk of overfitting. The model demonstrated stable 

performance with an accuracy of approximately 0.7 on both the training and validation datasets, 

with a minimal gap between them. These results confirm that the proposed method can be 

effectively integrated into clinical decision support systems for early diabetes detection, thereby 

improving the accuracy and reliability of diagnosis. 
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