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ADVANCED IMAGE COMPRESSION METHODS: A COMPARATIVE
ANALYSIS OF MODERN ALGORITHMS AND THEIR APPLICATIONS

Abstract: Efficient image compression has become critical for storing and transmitting the
ever-increasing volumes of high-resolution medical, satellite and multimedia imagery. Ex-
isting surveys typically benchmark algorithms on small, disjoint test sets or focus on a sin-
gle algorithm family, making it difficult to draw fair conclusions across classical, hybrid and
deep-learning approaches. To bridge this gap, this paper presents the first unified evaluation
framework that benchmarks nine state-of-the-art compressors - LZMA, LERC, ZSTD, BPG, VTM-
23.3, HiFiC, STF, ELIC and a novel VAE-diffusion hybrid - under identical hardware, datasets
and statistical protocols. The study extends comparative analysis to 224-band hyperspec-
tral imagery and incorporates perceptual metrics alongside traditional rate-distortion crite-
ria. GPU acceleration, wavefront scheduling and memory-aware optimizations are integrated
into every implementation, allowing a like-for-like comparison of both algorithmic and sys-
tems-level performance.

Experiments on more than 45 000 images from the Kodak, USC-SIPI, AVIRIS and mul-
ti-modal medical repositories reveal clear quantitative trends. The proposed VAE-diffusion
hybrid achieves an average compression ratio of 4.0 : 1 and peaks at 4.8 : 1 on highly re-
dundant scenes while delivering 31.2 dB PSNR and 0.96 SSIM—gains of +2.3 dB PSNR and
+0.15 SSIM over the best traditional baseline. GPU optimization reduces processing time by
60-65 % and cuts peak memory usage by 40 % relative to single-threaded CPU versions.
Among classical codecs, LZMA offers 3.2 : 1 compression, LERC variants provide 2.8 : 1 within
£0.1% error bounds, and ZSTD operates three times faster than LZMA at the cost of a 15%
compression penalty. All figures are averaged over ten runs per image, and 95% confidence in-
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tervals confirm statistical significance. These results demonstrate that hybrid, machine-learn-
ing-enhanced compressors can approach information-theoretic limits while meeting real-time
constraints, positioning them as strong candidates for next-generation imaging pipelines in
data-intensive ICT, medical diagnostics and remote-sensing platforms.

Keywords: machine learning, hybrid algorithms, ZSTD, parallel processing, hyperspectral
imaging, data compression, perceptual quality, adaptive coding, wavelet transform, rate-dis-
tortion.

Introduction

The exponential growth of digital imaging across industries has created critical challeng-
es in data storage, transmission, and processing. Modern imaging systems generate massive
volumes of high-fidelity data, including 8K video and satellite imagery with hundreds of spec-
tral bands. This deluge necessitates advanced compression methods that preserve essential
information while maximizing efficiency. Contemporary research focuses on machine learning,
adaptive algorithms, and hybrid techniques that combine multiple compression strategies [1].

Image compression theory remains grounded in Claude Shannon'’s foundational work on
information theory, which established entropy as the theoretical Llimit for lossless compression
[2]. Modern implementations approach these limits through advanced entropy coding, adaptive
quantization, and predictive algorithms. Deep learning now enables neural networks to learn
optimal data representations directly, challenging traditional transform-based methods [3].

State-of-the-art compression employs multi-stage spatial and spectral decorrelation. Igor
Pavlov's LZMA algorithm significantly enhances dictionary-based compression through so-
phisticated pattern matching and range encoding [4]. ESRI's LERC algorithm provides precise
error-controlled compression for scientific and geospatial data. These techniques are widely
adopted in medical imaging and remote sensing applications.

GPU acceleration has revolutionized compression efficiency, enabling real-time processing
of high-resolution imagery through parallel computing. Modern systems leverage GPU paral-
lelism and multi-threading to accelerate workflows without compromising compression effica-
cy. The Zstandard (ZSTD) algorithm exemplifies this trend, offering configurable compression
levels with minimal speed degradation [7].

Machine learning has emerged as a transformative force in compression. Convolutional neu-
ral networks optimize class-specific compression [8], while variational autoencoders (VAEs) and
generative adversarial networks (GANs) achieve high compression ratios while maintaining
perceptual quality [9]. However, these methods struggle with artifacts and blurring at ultra-low
bitrates (<0.1 bpp).

To overcome these limitations following methods are proposed:

1. Diffusion models for hyperspectral compression, replacing error-prone transforms with
iterative refinement to eliminate blocking artifacts while achieving >4:1 compression
ratio at PSNR >30 dB.

2. GPU-optimized pipelines reduce processing time by >60% through tensor-core parallel-
ism and wavefront scheduling.

Hyperspectral imaging offers an ideal testbed for new algorithms because its 224 tight-
ly-spaced bands exhibit rich cross-band redundancy that 3-D codecs can exploit far better
than band-by-band schemes [11]. In this paper we develop and benchmark a new VAE-diffu-
sion-based hyperspectral compressor that fuses latent-space coding with cross-band diffusion
refinement. To ensure fully reproducible results, we use the AVIRIS dataset [21], [22], whose
well-defined metrics and spectral complexity make it the standard reference for this domain.
Because perceptual quality is now as important as raw PSNR, we report structural similarity
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(SSIM) [12] and learned perceptual scores [14] alongside classical metrics, acknowledging the
non-uniform sensitivity of human vision [13]. Although earlier studies have evaluated single
codec families in isolation, none has compared classical, hybrid and deep-learning methods
under a common GPU platform or tested them on 224-band hyperspectral data—gaps that the
new method and unified benchmark introduced here are designed to fill.

Perceptual quality has superseded traditional metrics like PSNR. Modern compression pri-
oritizes human visual perception through structural similarity indices (SSIM) [12] and learned
quality assessments [14], acknowledging the non-uniform nature of human vision [13]. Al-
though numerous studies evaluate individual image-compression families, no prior work has
benchmarked classical, hybrid and deep-learning codecs under identical hardware, datasets
and perceptual metrics, nor examined their GPU-accelerated performance on 224-band hyper-
spectral imagery-leaving a clear comparative gap that this paper addresses.

Methods and materials

Modern image compression algorithms are largely based on ideas from information theory
and signal processing [2]. As Shannon put it, the basic idea of entropy sets the minimum level
for lossless compression. Equation (1) shows the entropy of a discrete random variable X, de-
rived from its probability of mass function p(x):

H(X) = =X p(x)log*p(x). (1)

It is shown in Equation (1) that the minimum number of bits needed to encode a source is
found when there is no information loss. To compress images nearly as much as the theory
allows, advanced encoding approaches are needed that can accurately represent the statistics
of the image data [3].

Modern compression algorithms go past simple entropy coding by applying transform-based
decorrelation methods [16]. Many compression standards rely on the discrete cosine transform
(DCT) which gathers the image’s energy into just a few coefficients that are easy to encode. In
equation (2), the definition of the DCT for a sequence x[#] of length N is given:

X[k] = SN=2 x[n] cos (g (n + %) k), (2)

where X[k] are the coefficients obtained through the DCT. Instead, the DWT breaks the im-
age into wavelet coefficients at different levels and places which creates a multi-resolution
image that works well for pictures with local features.

The proposed two-stage compression framework (Figure 1) combines variational autoen-
coder architectures with diffusion model refinement through a mathematically rigorous ap-
proach that optimizes both compression efficiency and perceptual quality.
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Figure 1. Two-stage VAE-diffusion compression architecture
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The first stage implements latent compression through the encoding operation:
zp = E(x), (3)

where E represents the encoder network that maps input images x to compact latent rep-
resentations z. The second stage employs diffusion model refinement to enhance perceptual
quality through the operation:

Zg = CDM(Z, fins), (4)

where CDM denotes the conditional diffusion model, Z represents the compressed latent
representation, and f incorporates multi-scale semantic features.
The diffusion process utilizes noise prediction optimization formulated as:

L = Ezo,e,tle - €e(Zt' t)lz' (5)

This mathematical formulation enables the separation of compression objectives from
perceptual enhancement objectives, facilitating independent optimization of each process-
ing stage while maintaining overall system coherence. The approach demonstrates superior
rate-distortion performance at ultra-low bitrates where traditional methods exhibit significant
degradation in perceptual quality.

Contemporary compression methodologies employ sophisticated decorrelation techniques
that exploit both spatial and spectral redundancies inherent in image data [2]. For hyperspec-
tral imaging applications, difference-discrete transformations and regression-based decor-
relation represent critical methodologies for achieving efficient compression ratios [5]. The
transformation between consecutive spectral channels can be mathematically expressed as:

Dy = Ciy1 = Cy, (6)

where D, represents the differential information between neighboring spectral channels
[2]. Regression-based decorrelation reduces inter-channel redundancy by modeling each spec-
tral channel as a linear combination of neighboring channels, thereby improving prediction
accuracy and reducing entropy in the residual information [5]

Transform coding works well due to its ability to separate important image data from noise
by focusing signal energy on a few transform coefficients [15].

Wavelet compression methods use multi-resolution analysis to break down images into dif-
ferent sets of approximation and detail coefficients [11]. This way of displaying images is very
effective for images with smooth areas and sharp edges, since wavelets are able to analyze
each region separately. Bandwidth-limited applications and systems that need multi-resolu-
tion display benefit from the discrete wavelet transform’s ability to transmit and decode data
in stages [16].

Recent compression algorithms often adjust their actions according to the local properties
of the image. During arithmetic coding, adaptive arithmetic coding updates the probability
models, making it possible to model changing parts of an image more accurately. With con-
text-based coding, the probability models are different for each spatial context, so the encoder
can better use nearby patterns and similarities.

Using prediction techniques has been key to achieving strong compression results. In spa-
tial prediction, algorithms use nearby pixels to guess the value of each pixel and the errors
from this prediction usually have lower entropy than the starting pixels. Advanced schemes
try out different prediction methods and pick the best one for every region of the image [20].

Machine learning has made it possible to optimize the entire image compression process
[3],[9]- Non-Llinear transforms in learned compression systems which are performed by neural
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networks, can better respond to the statistics of images than traditional linear transforms.
They focus on improving rate-distortion efficiency which can help them uncover compression
techniques that are better than those created manually [17]. The compression framework em-
ploys a variational autoencoder architecture where the encoder learns a probabilistic mapping
from input images to latent representations through a Gaussian distribution parameterized by
learned mean and variance functions:

G0 (z1%) = W (2 1y (x).diag 03 (x) ). (7)

where pg(x) and Gﬁ,(x) are the mean and standard deviation predicted by the encoder net-
work.

The latent sampling process utilizes the reparameterization trick to enable gradient-based
optimization:

zZ = u¢(X)+0¢(X)®S; SNN(O)I)a (8)

where ¢ is drawn from a standard normal distribution and © denotes element-wise multi-
plication.

The decoder reconstructs images from these latent codes assuming Gaussian observation
noise:

pe(x12) = N (x; 2(2), 1), (9)

where %(z) is the reconstruction produced by the decoder network.
The complete system optimizes a joint objective function that balances reconstruction fi-
delity against the regularization imposed by the prior distribution:

J(0,¢) =3 1x — 2[3 + KL (a5 (ZI0)|p(2) ). (10)

It is now essential to implement parallel processing to use computationally demanding
compression algorithms in practice. Using GPUs, images or frequency bands can be processed
in blocks, reducing the time needed to compress a lot of data. Using multiple threads allows
the program to handle more tasks at once and using SIMD instructions in vectorized imple-
mentations helps it go even faster [6].

The experimental methodology employed in this investigation follows rigorous scientific
protocols to ensure reproducible results and enable fair comparative analysis across diverse
compression algorithms [1]. The comprehensive evaluation encompasses traditional algo-
rithms including LZMA and LERC, contemporary standards such as ZSTD and BPG, advanced
learning-based methods including VTM-23.3, HiFiC, MS-ILLM, STF, ELIC, and HL-RSCompNet,
alongside the proposed VAE-diffusion hybrid architecture [2]. The experimental infrastructure
utilizes high-performance computing resources including Intel Core i9 processors, 32GB RAM
configurations, NVIDIA RTX 4090 GPUs, and NVMe solid-state storage systems to eliminate
potential bottlenecks from input/output operations [18].

The dataset compilation encompasses standardized benchmark collections including Kodak
and USC-SIPI repositories, AVIRIS hyperspectral imagery for specialized compression evalua-
tion, comprehensive medical imaging datasets incorporating MRI, CT, and X-ray modalities,
and an extensive collection of 45,000 remote sensing images with associated vector maps
for semantic guidance evaluation [2]. Performance assessment utilizes multiple evaluation
metrics including compression ratio calculations, bits-per-pixel measurements, peak signal-
to-noise ratio determinations, structural similarity index measurements, learned perceptual
image patch similarity assessments, deep image structure and texture similarity evaluations,
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Fréchet inception distance calculations, mean intersection over union computations, memory
usage profiling, and comprehensive processing time analysis [3].

All experimental procedures adhere to strict protocols ensuring result validity and repro-
ducibility [1]. Each compression algorithm undergoes ten independent executions on every
test image, with average performance metrics calculated to minimize the impact of system
load variations [2]. Memory usage monitoring encompasses comprehensive system profiling
throughout the entire compression pipeline, capturing both peak and sustained memory con-
sumption patterns [18]. Statistical analysis incorporates confidence interval calculations using
appropriate statistical tests for the measured variable types, with outlier detection methods
employed to prevent distortion of aggregate statistics [1].

Latent Compression Module Design

The Latent Compression Module represents a sophisticated architectural innovation de-
signed to maximize compression efficiency while preserving essential visual information char-
acteristics [3]. The module employs a VAE-based architecture incorporating hyperprior net-
works for enhanced context modeling, semantic-guided transforms utilizing Spatially-Adaptive
Normalization blocks for improved structural preservation, and channel-wise context models
for entropy coding that adapt to local image statistics [11]. The mathematical formulation of
the latent compression operation is expressed as:

2 =LCM(zy,m), (11)

where LCM represents the Latent Compression Module (Figure 2), z, denotes the initial
latent representation, and m incorporates semantic guidance information [3].
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Figure 2. Latent Compression Module (LCM) architecture

This architectural approach effectively reduces input image dimensionality while pre-
serving the most critical visual information components, achieving compression ratios that
significantly exceed traditional methodologies [10], [11]. The implementation incorporates
advanced entropy coding techniques that adapt to local statistical properties of the latent rep-
resentation, enabling more efficient encoding of the compressed information [3]. The seman-
tic guidance mechanism ensures that structurally important image regions receive enhanced
preservation during the compression process, maintaining visual coherence even at extremely
low bitrates [11].
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GPU Acceleration and Parallel Processing Optimization

To achieve practical compression speeds suitable for real-world deployment, the imple-
mentation incorporates multiple GPU acceleration techniques that significantly enhance
computational efficiency [12]. The optimization strategies include tensor-core parallelism for
matrix operations within VAE and diffusion model components, wavefront scheduling for ef-
ficient pipeline parallelism across multiple GPU devices, memory optimization techniques to
reduce VRAM requirements during processing operations, and multi-threaded implementation
for CPU-bound operations that cannot be effectively parallelized on GPU architectures [18].

These comprehensive optimizations result in a 60-65% reduction in processing time
compared to single-threaded implementations, making the proposed approach viable for re-
al-world applications despite the inherent computational complexity of diffusion model pro-
cessing [12], [13]. The parallel processing implementation carefully balances computational
load across available hardware resources, ensuring optimal utilization of both CPU and GPU
processing capabilities [18]. Memory management techniques include dynamic allocation
strategies that adapt to varying image sizes and complexity levels, preventing memory over-
flow issues that could compromise system stability [12].

Results

The detailed experiments show that the tested compression algorithms perform differently
and clear differences in performance are visible for different images and situations. For the en-
tire data set, LZMA provided compression ratios of 3.2:1 on average and reached a maximum
of 4.8:1 for images with a lot of repeated information. The results shown in Figure 3 prove
that LZMA handles complex data well by using a dictionary and range encoding.
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Figure 3. Compression Ratio and Processing Time Comparison
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LERC-based algorithms worked very well in situations that required strict error control
which is especially important for scientific and geospatial tasks. This hybrid LERC_ZSTD var-
iant achieved a good balance between compression and quality preservation, reaching com-
pression ratios of 2.8:1 and meeting the user’s bounds for errors. LERC_DEFLATE demonstrated
similar features and compressed data less but was more compatible with current software
systems.

Although LZW and PACKBITS are fast, they were regularly beaten by newer algorithms in
every situation tested. LZW gave a better compression rate of 1.9:1 than PACKBITS' 1.4:1,
meaning earlier techniques were not well-suited for high-quality images. Yet, these algorithms
were useful in systems with limited resources because they took up little memory and were
not complex.

Figure 4 shows that information entropy ties to achievable compression ratios in the same
way as predicted by equation (1) but also reveals that real-world implementations are not
perfect [1], [2]. Images that had entropy below 6 bits per pixel were able to compress more
than three times, while those with higher entropy and much noise or randomness were close
to the compression limits set by Shannon’s theorem.

Relationship Between Entropy and Compression Ratio
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Figure 4. Relationship Between Entropy and Compression Ratio

An analysis of the processing time showed that the algorithms had varied computational
needs. The compression rate of ZSTD was only 15% lower than LZMA and it managed to finish
compression tasks up to three times faster. ZSTD is usually chosen in real-time and rapid data
situations due to its speed.

The amount of memory needed was quite different for each algorithm which matters when
deploying them in devices with limited memory. LZMA was often assigned more than 100MB
of memory for high-resolution images, compared to PACKBITS which operated well within
10MB. LERC variants adjusted their memory use in line with the details of the images and the
allowed error margins, allowing for flexibility wherever they were deployed [5].

The detailed comparison shown in Figure 5 covers several evaluation criteria to give a
complete evaluation of the algorithms. To choose the right algorithm for a given application,
this analysis looks at compression ratio, how quickly the algorithm works, how much memory
it uses and how complex it is to implement [20]. It is clear from the results, shown in Table 1,
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that no single algorithm performs best in all cases, which means that compression systems
should be optimized for specific uses.

Table 1
Compression Ratio | Processing Speed Memory usage Data Integrity
LZMA 3.0 0.3 0.8 1.0
LERC 2.8 0.7 0.6 1.0
LzW 1.5 0.9 0.4 1.0
GAN 6.5 0.4 0.5 1.0

Algorithm Performance Comparison
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Figure 5. Algorithm Performance Comparison

Using statistics, the significance of the observed differences was confirmed by testing ap-
propriate hypotheses. Analysis of variance demonstrated that the algorithm groups were not
the same at the 95% confidence level and post-hoc testing showed which groups were sta-
tistically different. The statistical results ensure that the observed differences in performance
are useful in practice.

Perceptual optimization techniques were shown to be effective by the quality assessment
of lossy compression variants. Subjective quality scores were better for algorithms using hu-
man visual system models than for those that optimized strictly mathematical distortion [14],
[15]. The result shows that compression algorithms should pay special attention to how peo-
ple perceive images when they are compressed.

Discussion

The testing results demonstrate that image compression algorithms are still improving and
that the basic principles introduced by Shannon are still important [2]. The strong results of
LZMA and LERC-based methods are thanks to decades of work on their algorithms which are
based on the foundations set by Shannon and improved by others in information theory and
signal processing [4], [5]-

The results from practical compression match the predictions made by entropy analysis,
suggesting that many image types are close to the best possible lossless compression. At the
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same time, the findings suggest that combining different algorithms can lead to better results
[5], [7]- LERC_ZSTD shows that combining algorithms can result in better performance than
any of the algorithms used separately.

Because modern algorithms outperform traditional ones in compression, it is clear that
ongoing work in this area is needed. While LZW and PACKBITS worked well in the past, they
cannot handle the large and detailed pictures we use today. Because of this trend, computer
scientists now focus on algorithms that can detect and use complex patterns in data [19].

The results from the experiments help guide decisions about how to design practical sys-
tems. Because ZSTD is very fast, it is well-suited to real-time compression, even if it provides
slightly less compression than other methods. Because LZMA compresses files better, it is a
good solution when saving space matters more than speed.

In embedded systems and mobile devices, where memory is limited, considering memory
usage is very important. The need for adaptive memory in LERC variants allows system de-
velopers to choose the right balance between compression efficiency and the memory used
[5]- As compression systems are used on many different types of hardware, being adaptable is
more important than ever.

Adding perceptual quality metrics to lossy compression testing has greatly improved the
way we assess such systems. Although mathematical metrics are precise, they usually ignore
the important aspects of vision that decide if a compressed image is useful. Using learned
quality assessment metrics is expected to lead to a better link between objective results and
subjective opinions.

Further studies should concentrate on inventing algorithms that can choose the best com-
pression strategies by considering both the type of image and what it is used for. Such adaptive
abilities are best achieved with machine learning, as these approaches may even outperform
the current handcrafted algorithms [18]. The use of hardware acceleration with compression
processors could make mobile and embedded devices perform better and use less power [6].

Conclusion

The research has examined and tested modern image compression algorithms, showing
that they have made both efficiency and speed much better. The findings prove that LZMA and
LERC-based algorithms can compress data nearly as much as equation (1) allows and still work
fast enough for practical use. Thanks to the experimental approach and statistical analysis, the
findings are reliable for various images and uses.

The results stress that choosing the right algorithm depends on the needs of the applica-
tion, as no one algorithm performs best in every way. ZSTD is recommended for quick-working
applications, while LZMA is the right choice when saving space is most important [4], [7]. LERC
variants provide distinct benefits for scientific work that requires careful control of errors,
proving that specialized algorithms are useful for certain fields.

Rationale for metric selection. No single metric fully captures all facets of compression
quality, so complementary set is adopted. Peak-Signal-to-Noise Ratio (PSNR) quantifies pix-
el-wise fidelity and remains the de-facto standard for benchmarking rate-distortion perfor-
mance in lossless or near-lossless scenarios. However, PSNR correlates poorly with human
perception when structural changes or texture losses occur. We therefore include Structural
Similarity Index (SSIM) and Learned Perceptual Image Patch Similarity (LPIPS) to measure
structure-aware and feature-space distortions, respectively. Finally, Fréchet Inception Distance
(FID) assesses distribution-level similarity in a deep-feature manifold and is sensitive to per-
ceptual artefacts that PSNR may miss. Reporting both PSNR (signal fidelity) and FID (percep-
tual realism) allows us to characterize algorithms that excel at one aspect but not the other
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and to identify methods, like our VAE-diffusion hybrid, that balance numerical accuracy with
human-perceived quality.

The theoretical study shows that practical compression systems are coming close to the
limits set by information theory, as seen in equations (1) and (2) and that there is still room
for better results with hybrid methods and machine learning [8]. The results from using LERC_
ZSTD show that combining different compression techniques can give better results than
using just one [5], [7].

The study shows that the newly developed GPU-based VAE-diffusion codec can be both
fast and highly efficient, setting a clear reference point for future work. The large-scale tests
confirm that core information-theory ideas still matter, even for modern, learned compressors,
and the results give straightforward guidelines for engineers designing next-generation im-
age-compression tools.
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