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FUSION VIEW-NET: DUAL-VIEW DEEP LEARNING FOR ROBUST 
MAMMOGRAPHIC BREAST CANCER CLASSIFICATION 

Abstract: Breast cancer is still one of the top causes of cancer-related death for women 
globally, and better patient outcomes depend on early identification. Although mammography 
is the main imaging modality used for screening, the delicate nature of early clinical symp-
toms and inter-reader variability sometimes compromise diagnostic accuracy. We examine the 
application of deep convolutional neural networks (CNNs) to automated classification of mam-
mogram images in this work. FusionView-Net (FV-Net) is also presented, a novel dual-view 
integration framework that combines data from mediolateral oblique (MLO) and craniocaudal 
(CC) views to improve diagnostic precision. To produce a more comprehensive depiction of the 
breast tissue than conventional single-view methods, FV-Net combines contextual and spatial 
data from both standard perspectives. Two publicly available mammography datasets, which 
have been properly divided to allow for both seen-unseen data configurations and cross-da-
taset generalization testing, are used to assess the approach. A variety of CNN architectures 
are evaluated on separate and combined datasets, including ResNet18 and a specially created 
CNN. Findings indicate that FV-Net significantly increases model robustness and classification 
accuracy, as evidenced by consistently better F1 scores and ROC AUC values, especially when 
combined with ResNet18 and the custom CNN. The necessity for flexible models in actual 
clinical settings is shown by generalization studies, which further highlight the significance of 
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dataset diversity by showing a noticeable drop in performance when domain shifts are pres-
ent. Our results demonstrate how well multi-view fusion works for CNN-based mammography 
classification and provide useful guidance for choosing architectures and training methods. 
The development of trustworthy, broadly applicable AI technologies to assist radiologists in 
the early diagnosis of breast cancer is made possible by FV-Net.

Keywords: Deep Learning, Mammography, Breast Cancer, Computer-Aided Diagnosis (CADx), 
Medical Image Analysis, Classification.

Introduction 
According to the World Health Organization, breast cancer accounts for over 2.3 million new 

cases and roughly 685,000 deaths per year, making it the most common cancer among wom-
en and a major cause of cancer-related deaths globally [1]. The best way to lower the death 
rate from breast cancer is still early detection, and mammography-based screening programs 
significantly increase survival rates. Despite its proven benefits, mammography is not without 
challenges. Breast density, image quality, and the subtlety of early-stage tumor features are 
some of the factors that frequently impair diagnostic accuracy. Furthermore, inconsistent in-
terpretations and missed or false-positive results can arise from inter-reader variability among 
radiologists, which is frequently brought on by fatigue, differences in experience, or high case 
volumes.

In the analysis of medical images, including mammograms, convolutional neural networks 
(CNNs) have demonstrated great promise. Deep learning has been used in a number of studies 
for tasks like malignancy classification [4], breast density assessment [3], and lesion detection 
[2]. Notable models have reached or even exceeded radiologist-level accuracy in large-scale 
screening contexts [5], [6]. Performance has also been enhanced by transfer learning tech-
niques that use pretrained architectures like ResNet and DenseNet, particularly in situations 
with little labeled data [7], [8].

Despite these developments, the majority of CNN-based mammography models process 
the mediolateral oblique (MLO) and craniocaudal (CC) standard views separately. This differs 
from clinical workflows, where radiologists use both perspectives to more accurately describe 
abnormalities. Although some recent attempts have investigated multi-view learning through 
the use of parallel pipelines [9], view concatenation [10], or attention-based fusion [11], many 
of these approaches are not very good at accurately simulating the contextual and spatial 
relationships between views.

The ability of dual-stream architectures to process multiple views or modalities in paral-
lel has made them popular in medical image analysis, especially in breast cancer screening, 
where standard mammography exams include four views (L-CC, L-MLO, R-CC, and R-MLO). 
Before combining their individual feature embeddings, these architectures frequently have 
two (or more) branches intended to process CC and MLO views separately [12], [13]. Better 
modeling of view-specific anatomical and pathological cues is made possible by this design, 
which makes it easier to learn specialized features from each view. For example, Lotter et al. 
[15] and Ribli et al. [14] showed that integrating bilateral and ipsilateral views via different 
processing paths improves diagnostic accuracy and more accurately represents the diagnostic 
workflow of radiologists.

This paradigm has been further adopted by recent transformer-based or graph-based ar-
chitectures. In their evaluation of multi-view transformer and graph models, Manigrasso et 
al. [12] demonstrate that explicitly encoding view relationships improves performance over 
conventional CNNs, even with relatively small amounts of data. In a similar vein, Yala et al. 
[16] reinforced the advantages of separate-stream learning by proposing Mirai, a transform-
er-based model that independently processes each mammography view before aggregating 



80 Scientific Journal of Astana IT University
ISSN (P): 2707-9031   ISSN (E): 2707-904X

VOLUME 23, SEPTEMBER 2025

representations. Dual-stream designs have a higher computational burden despite the per-
formance improvements. Particularly in high-resolution mammography, where full-resolution 
images can surpass 3000×5000 pixels, each parallel stream results in additional memory 
and computational demands. Scalability and real-time applicability are limited by this over-
head, which is further increased when heavy-weight backbones such as ResNet-50 or ViT 
variants are used [13], [17]. Additionally, unless pretraining techniques or large datasets are 
used to prevent overfitting, training stability may be jeopardized [18]. In clinical settings with 
limited deployment infrastructure, this resource-performance trade-off is especially crucial. 
In order to preserve view-specific modeling capability without having to pay for duplicate 
backbones, a number of studies have started looking into more effective alternatives, such as 
attention-based fusion [19] or lightweight dynamic routing strategies, even though the du-
al-stream approach is still a good choice for multi-view medical image analysis.

In order to close this gap, we present FusionView-Net (FV-Net), a novel dual-view inte-
gration framework that creates a more comprehensive and richer representation of mam-
mographic data by processing CC and MLO views simultaneously. FV-Net seeks to increase 
classification accuracy, robustness, and clinical utility by matching the architecture design to 
radiologists' diagnostic reasoning.

To test the generalizability of our models, we apply both intra- and cross-dataset evalua-
tions to two publicly accessible mammography datasets. To understand how view integration 
and data diversity affect performance, we benchmark a number of CNN architectures under 
single-view and dual-view configurations, including ResNet18 and a custom-designed CNN. 
Our results show that the proposed dual-view approach significantly improves F1 scores and 
ROC AUC across architectures, with the custom CNN showing particularly strong generaliza-
tion performance.

This paper makes several contributions:
Introduces a novel, clinically informed dual-view fusion architecture for mammogram clas-

sification.
Provides comprehensive benchmarking of CNN models across individual and fused-view 

configurations.
Offers new insights into the effects of dataset diversity and domain shift on model robust-

ness in real-world scenarios.
The remainder of the paper is structured as follows: Section 2 details our proposed method, 

FusionView-Net. Section 3 describes the experimental setup, including datasets, evaluation 
metrics, and model training. Section 4 presents the results and performance analysis. Finally, 
Section 6 concludes with key findings and directions for future research.

Methods and Materials
In this section, we describe the detailed methodology of FusionView-Net (FV-Net), a deep 

learning framework designed for mammographic lesion classification. We discuss the work-
flow, including raw image acquisition, fusion strategies, preprocessing pipelines, and the CNN-
based classification process. Additionally, we outline the evaluation protocols used to assess 
the model’s robustness and generalizability across the VinDr-Mammo and CMMD datasets.

Datasets
VinDr-Mammo is a large-scale full-field digital mammography (FFDM) dataset that provides 

standard views (CC and MLO) with expert-annotated BI-RADS assessments. For the purpose of 
this study, BI-RADS categories were converted into binary labels—benign or malignant—based 
on standard BI-RADS interpretation guidelines [20]. Specifically, BI-RADS 2 to 4 were catego-
rized as benign, while BI-RADS 5 was treated as malignant. 
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CMMD (Chinese Mammography Database) contains full-field digital mammography (FFDM) 
images with clinical labels and detailed annotations of tumor presence and type. Like Vin-
Dr-Mammo, both CC and MLO views are available for each breast.

An overview of the number of benign and malignant images in each dataset is provided in 
Table 1.

Table 1. Overview of utilized datasets

Dataset Number of Benign 
Images

Number of Malignant 
Images Label Source

VinDr-Mammo 6368 226 BI-RADS
CMMD 1108 2626 Biopsy-confirmed

Proposed Methodology
We propose FusionView-Net (FV-Net), a novel deep learning framework that uses com-

plementary information from the two common mammography views MLO and CC, to classify 
mammogram images into benign or malignant categories. In order to predict lesion malignan-
cy, the suggested approach combines these perspectives into a single fused representation, 
which is then processed by a convolutional neural network (CNN). Raw image acquisition, 
view fusion, preprocessing, and classification are all included in the overall workflow, which is 
shown in Fig. 1. 

Architecture Overview
The custom CNN model is presented in this study. Fig. 2 depicts proposed architecture. The 

data acquisition procedure, fusion tactics, preprocessing pipelines, CNN-based classification, 
and evaluation protocols are all covered in detail in this section.

Figure 1. Workflow of proposed FusionView-Net (FV-Net) methodology.

Figure 2. Custom CNN architecture.
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The CNN architecture can be described mathematically as a function f(x; θ), which maps 
the input image  to an output prediction (e.g., class probability or segmentation 
mask), where θ represents the learnable parameters (weights and biases).

•	 Convolutional Layers
Each convolutional layer applies a set of learnable kernels to the input tensor. The output 

feature map xl+1 at layer l+1 is given by:

 (1)

where K is the kernel size, C is the number of input channels, and bl
k is the bias term.

•	 Activation Function
After each convolution, a nonlinear activation function σ(·) is applied. For ReLU:

 (2)

This produces the activated feature maps .
•	 Pooling Layers
Pooling layers reduce the spatial dimensions of feature maps. For instance, 2×2 max pool-

ing is defined as:

 (3)

•	 Fully Connected Layer
After flattening, fully connected layers map the extracted features to the output space. For 

classification, a softmax function is applied:

 (4)

 (5)

•	 Complete Model
The complete CNN is a composition of the above layers:

 (6)

Workflow Overview
The FV-Net workflow consists of four main stages, seamlessly integrated to process mam-

mographic images for lesion classification. First, raw input acquisition involves collecting both 
craniocaudal (CC) and mediolateral oblique (MLO) views of each breast from mammographic 
imaging, capturing distinct anatomical perspectives to provide complementary diagnostic in-
formation. Next, the fusion pipeline combines these CC and MLO views into a single image 
through one of two fusion strategies – direct fusion or cropped fusion, as described in the fu-
sion strategies section – creating a unified representation that encapsulates critical diagnostic 
details from both views. Following this, the preprocessing stage normalizes the fused image to 
a pixel intensity range of [0, 1] and resizes it to a standardized resolution of 256 × 256 pixels, 
ensuring compatibility with the convolutional neural network (CNN) architecture while en-
hancing computational efficiency. Finally, the classification stage feeds the preprocessed fused 
image into a CNN-based model, which leverages transfer learning where necessary to predict 
whether the lesion is benign or malignant.
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Preprocessing Pipelines
To investigate the impact of preprocessing on model performance, two distinct preprocess-

ing pipelines are implemented, corresponding to the fusion strategies described above:
•	 Preprocessing Pipeline 1 (Direct Fusion Pipeline): The CC and MLO images are concate-

nated without any cropping. The concatenated image is normalized to a pixel intensity 
range of [0, 1] using min-max normalization and resized to 256 × 256 pixels using bilin-
ear interpolation. This pipeline prioritizes simplicity and retains all image information, 
including non-breast regions. The pipeline is shown on Fig. 3.

•	 Preprocessing Pipeline 2 (Cropped Fusion Pipeline): Prior to concatenation, each CC and 
MLO image undergoes a breast isolation step. This involves applying an automated seg-
mentation algorithm to detect and extract the breast tissue, removing the background. 
The cropped images are then concatenated, normalized to [0, 1], and resized to 256 × 
256 pixels using bilinear interpolation. This pipeline aims to reduce noise and focus the 
model on clinically relevant features. The pipeline is shown on Fig. 4.

The preprocessing pipelines are designed to ensure consistency in input dimensions and in-
tensity ranges while allowing for a comparative analysis of the impact of background removal 
on classification accuracy. 

The fused images are processed by a CNN-based classifier to predict whether a lesion is 
benign or malignant. The CNN architecture is based on a pre-trained model (e.g., ResNet 18) 
fine-tuned via transfer learning to adapt to the mammography domain. Transfer learning is 
employed to leverage features learned from large-scale datasets (e.g., ImageNet) while tailor-
ing the model to the specific characteristics of mammographic images. The final fully connect-
ed layer of the CNN is modified to output two classes (benign or malignant), and the model is 
trained using a binary cross-entropy loss function. The training process involves optimization 
with the Adam optimizer and a learning rate scheduler to ensure convergence.

Figure 3. Image preprocessing pipeline 1: Direct Fusion Pipeline.
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Figure 4. Image preprocessing Pipeline 2: Cropped Fusion Pipeline.

Evaluation Protocols
To assess the robustness and generalizability of FusionView-Net (FV-Net), the model is 

evaluated using two distinct datasets: the VinDr-Mammo dataset, and the CMMD. The evalua-
tion is conducted under two protocols designed to test the model’s performance under varying 
conditions of data familiarity and generalization. Both protocols utilize standard performance 
metrics, including accuracy, sensitivity, specificity, and F1.

The first setting, termed Seen-Patient Evaluation, involves splitting each dataset (Vin-
Dr-Mammo and CMMD) such that images from the same patients may appear in both training 
and testing sets, though no identical images are shared. This setup allows the model to lev-
erage patient-specific distributional patterns, potentially enhancing performance on familiar 
data. The dataset is partitioned using a stratified split to maintain class balance, and the mod-
el is tested separately on each dataset to evaluate its performance when trained and tested 
within the same dataset. 

The second and third settings, Unseen-Patient Evaluation, are designed to rigorously test 
the model’s generalizability by ensuring that all patients in the test set are excluded from 
the training set. Two configurations are employed: in the first, the model is trained on one 
dataset (e.g., VinDr-Mammo) and tested on the other (e.g., CMMD), and vice versa, to assess 
cross-dataset generalization. In the second configuration, both datasets are combined, but 
patient-level partitioning ensures that no patient’s images appear in both training and testing 
sets. This setup simulates real-world clinical scenarios where the model encounters entirely 
new patients, providing a stringent test of its ability to generalize across diverse populations 
and imaging conditions.

By evaluating FV-Net on the VinDr-Mammo and CMMD datasets under these protocols, 
the study aims to comprehensively assess its robustness and generalizability, leveraging both 
within-dataset and cross-dataset scenarios to ensure applicability in diverse clinical settings. 
The visual representation of the protocols is given in Fig. 5. 
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Figure 5. Evaluation Protocols. 

Implementation Details
The experiments were conducted on a dedicated workstation with two 11 GB video memo-

ry-equipped NVIDIA GeForce RTX 2080 Ti GPUs. The system used CUDA and cuDNN for hard-
ware acceleration and was set up with Ubuntu 20.04. PyTorch was used as the main framework 
for model construction and training in Python 3.9, where the deep learning operations were 
developed. Every training and inference activity was carried out within the PyTorch ecosystem, 
making use of its adaptable model-building tools and effective data management features. 
Training was split over both GPUs using the DataParallel module to optimize GPU consump-
tion.

Below is a list of the primary training parameters that were employed in the experiments:
•	 Batch size: 32 (adjusted based on available GPU memory)
•	 Optimizer: Adam optimizer with β₁ = 0.9 and β₂ = 0.999
		  - Update biased first moment estimate:

 (7)

		  - Update biased second raw moment estimate:

 (8)

		  - Compute bias-corrected moment estimates:

 (9)

 (10)

		  - Update parameters:

 (11)

DOI: 10.37943/23OUMR1748
© Beibit Abdikenov, Tomiris Zhaksylyk, Aruzhan Imasheva, 
    Yerzhan Orazayev, Danara Suleimenova



86 Scientific Journal of Astana IT University
ISSN (P): 2707-9031   ISSN (E): 2707-904X

VOLUME 23, SEPTEMBER 2025

•	 Learning rate: Initialized at 1 × 10⁻⁴ with a cosine annealing schedule
		  - Loss function: Binary Cross-Entropy Loss

 (12)

		  - For a batch of N samples, the mean BCE loss is:

 (13)

•	 Training duration: Between 30 and 50 epochs, with early stopping based on validation 
performance

To maintain experimental consistency, the same preprocessing routine and training con-
figuration were used across all dataset variations and model runs. Additionally, random seeds 
were fixed to ensure reproducibility in data splits and weight initialization. This environment 
and pipeline allowed for the efficient execution of extensive experimentation, including com-
parisons of neural networks, cross-dataset generalization tests, and evaluation of the two 
fusion strategies described earlier.

Results
ResNet18 and a custom convolutional neural network are trained and tested across three 

evaluation settings (depicted in Fig. 5) and two preprocessing pipelines (depicted in Fig. 3 and 
Fig. 4). 

Results under Pipeline 1 (No Cropping)
In Setting 1 with the same distribution of training and testing datasets, ResNet18 achieved 

the highest overall performance with an accuracy of 0.8780, F1 score of 0.7934, a strong re-
call of 0.8521, which shows its ability to capture true positive cases effectively. On the other 
hand, custom CNN model performed competitively with an accuracy of 0.8497 and F1 score 
of 0.7370. However, it was more prone to false positives with lower precision of 0.7103, com-
pared to ResNet18.

In setting 2 with domain generalization, both models performed poorly. The accuracy of 
ResNet18 dropped to 0.4146, and its F1 score fell to 0.2852. Similarly, custom CNN showed 
poor performance with an accuracy of 0.4109 and an F1 score of 0.2784. 

In setting 3 with a different unseen domain, ResNet18 performed better than in Setting 2. 
It achieved an accuracy of 0.7779 and an F1 score of 0.8734—its highest F1 score across all 
settings—driven by an exceptionally high precision of 0.9719. The model was confident when 
predicting positive cases, although recall was more modest at 0.7930. In contrast, custom 
CNN showed substantially lower performance, with an accuracy of 0.6152 and an F1 score of 
0.6577. While the recall was decent (0.7201), the precision was much lower at 0.6052.

Results under Pipeline 2 (With Cropping)
Incorporation of cropping step into preprocessing pipeline showed slightly better overall 

performance of models. 
In Setting 1, ResNet18’s performance improved slightly, reaching an accuracy of 0.8819. 

Although the F1 score of 0.7904 was similar to that in Pipeline 1, its precision increased to 
0.7986, suggesting more reliable predictions. Interestingly, custom CNN also benefited from 
cropping, improving its accuracy to 0.8722 and, notably, surpassing ResNet18 in F1 score with 
a value of 0.7937. This was largely driven by its substantially higher recall (0.8944), demon-
strating that cropping enabled the model to detect more true positives at the expense of 
slightly lower precision (0.7135).
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Setting 2 revealed a more pronounced advantage of cropping. ResNet18’s accuracy in-
creased from 0.4146 in Pipeline 1 to 0.6277 in Pipeline 2, and its F1 score more than doubled, 
reaching 0.6899. This improvement was largely due to enhanced precision (0.8330). Custom 
CNN also showed better performance, with an increase in F1 score from 0.2784 to 0.5666. 
However, it remained behind ResNet18 in all metrics, suggesting that while cropping helped, 
it was not sufficient for the custom CNN to match the robustness of ResNet18 in this setting.

In Setting 3, cropping slightly reduced ResNet18’s performance compared to Pipeline 1, 
with accuracy dropping from 0.7779 to 0.7262 and F1 score from 0.8734 to 0.7666. However, 
it maintained high and balanced precision and recall (0.7700 and 0.764), indicating consist-
ent performance. The custom CNN showed a slight improvement in this setting compared 
to the no-cropping pipeline, increasing its F1 score to 0.6958, with a recall of 0.7542 and a 
precision of 0.6452.

Table 2. Overview of Experimental Results

Preprocessing 
Pipeline

Evaluation 
settings Model Accuracy Precision Recall F1

Pipeline 1
(no cropping)

Setting 1
(Seen)

Resnet18 0.8780 0.7423 0.8521 0.7934
Custom CNN 0.8497 0.7103 0.7716 0.7370

Setting 2 Resnet18 0.4146 0.2236 0.3935 0.2852
Custom CNN 0.4109 0.2123 0.4146 0.2784

Setting 3 Resnet18 0.7779 0.9719 0.7930 0.8734
Custom CNN 0.6152 0.6052 0.7201 0.6577

Pipeline 2
(with cropping)

Setting 1
(Seen)

Resnet18 0.8819 0.7986 0.7823 0.7904
Custom CNN 0.8722 0.7135 0.8944 0.7937

Setting 2 Resnet18 0.6277 0.8330 0.5887 0.6899
Custom CNN 0.5972 0.5591 0.5745 0.5666

Setting 3 Resnet18 0.7262 0.7700 0.7641 0.7666
Custom CNN 0.6952 0.6452 0.7542 0.6958

Discussion
The results from our experiments offer a nuanced understanding of the comparative 

strengths and limitations of ResNet18 and the custom convolutional neural network under 
varying domain conditions and preprocessing pipelines. The experimental results offer several 
key insights that are critical for interpreting model behavior and guiding future work in robust 
image classification.

Model Performance and Generalization
ResNet18 consistently showed superior performance across different settings and pipelines, 

particularly excelling in precision. In setting 1, its performance was notably strong across both 
pipelines, showing that it is more suitable for cases where the training and testing distribu-
tions are aligned similarly. The real distinction across models is apparent from the other 2 
settings with domain generalization. The severe drop in performance under Pipeline 1 for 
Setting 2 highlights the sensitivity of both models to domain shifts, a common challenge in 
real-world applications. ResNet18's recovery in Setting 3 and substantial improvement under 
cropping conditions (Pipeline 2) in Setting 2 underscore its capacity to adapt more effectively 
when aided by appropriate preprocessing.
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In contrast, custom CNN showed promising performance with its high recall rates, which is 
an important metric, especially when it comes to high-stakes domains such as medical imag-
ing, where it is crucial not to miss positive cases. In some cases, it trailed behind ResNet18, 
but it achieved notable improvements under Pipeline 2, particularly in Setting 1, where it out-
performed ResNet18 in F1 score due to a remarkably high recall. This suggests that the model 
is adept at identifying true positives when focused on relevant image regions, albeit at the 
cost of higher false positive rates (lower precision). This high sensitivity suggests that custom 
CNN may be well-suited for applications where detecting every relevant instance is prioritized 
over minimizing false positives. In domain generalization scenarios (Settings 2 and 3), custom 
CNN showed consistent improvements under the cropping pipeline. While it did not fully close 
the gap with ResNet18 in these unseen domains, its gains in recall indicate meaningful en-
hancement in generalization when provided with a more targeted input representation. These 
results suggest that custom CNN, despite its simpler architecture, possesses strong detection 
capability and, when supported with effective preprocessing, can serve as a competitive and 
practical model, especially in recall-critical contexts.

Impact of Cropping as a Preprocessing Strategy
The results indicate that it can be critical to use the right preprocessing to enhance robust-

ness and generalization of models. Cropping, which is designed to focus on the breast tissue 
rather than the background, improved performance across domain generalization settings for 
both models. 

The benefit was apparent in Setting 2, a challenging unseen dataset scenario, where crop-
ping led to substantial gains in accuracy and F1 score for both models. This improvement sug-
gests that reducing input noise and directing attention to semantically relevant regions helps 
mitigate the effects of domain shift. While ResNet18 saw a slight decrease in performance in 
Setting 3 under the cropping pipeline, it still maintained balanced precision and recall. For 
custom CNN, cropping yielded notable and consistent improvements, especially in Settings 
1 and 3. These relative improvements suggest that targeted preprocessing can significantly 
boost the effectiveness of more compact or domain-specific architectures.

Trade-offs Between Precision and Recall
A key takeaway from the results is the complementary trade-off between precision and 

recall observed in the two models. ResNet18 consistently favored precision, leading to fewer 
false positives, which can be advantageous in contexts where incorrect positive predictions 
have higher costs. In contrast, custom CNN tended to favor recall, especially when cropping 
was applied. This behavior means that the model was more aggressive in identifying potential 
positive cases, which is particularly valuable in fields like medical imaging, where missing 
a positive case (false negative) can have more serious consequences than flagging a false 
positive. High recall, as seen in multiple settings, especially the remarkable 0.8944 recall in 
Setting 1 with cropping, demonstrates the model’s ability to effectively detect relevant pat-
terns when provided with clear and focused input. Tasks requiring high certainty may favor 
ResNet18, while sensitivity-critical applications may benefit more from custom CNN.

Conclusion 
This study evaluated the performance of ResNet18 and a custom CNN across multiple do-

main conditions and preprocessing strategies, offering insights into their respective strengths 
and use cases. While ResNet18 consistently showed strong generalization and precision, the 
custom CNN model demonstrated compelling performance, particularly in terms of recall and 
sensitivity, and especially when paired with cropping. Importantly, cropping significantly im-
proved both models' robustness under domain shift, with particularly strong relative gains 
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for custom CNN. These findings illustrate that preprocessing techniques are not merely en-
hancements, they can be transformative, especially for models with lighter architectures or 
domain-specific optimizations.

Looking forward, future research should explore adaptive or learned preprocessing mech-
anisms, such as attention-based cropping or dynamic region selection, to further amplify the 
strengths of each architecture. Evaluating model behavior under a broader range of domain 
shifts and tasks will also help deepen our understanding of how to build robust, flexible, and 
context-aware deep learning systems for real-world applications.

Acknowledgement
This research was funded by the Committee of Science of the Ministry of Science and Higher 

Education of the Republic of Kazakhstan, grant number BR24993145.

References

[1]	 World Health Organization. (2021). Breast cancer. Geneva, Switzerland: World Health Organiza-
tion. Retrieved from https://www.who.int/news-room/fact-sheets/detail/breast-cancer

[2]	 Shen, L., Margolies, L. R., Rothstein, J. H., Fluder, E., McBride, R., & Sieh, W. (2019). Deep learning to 
improve breast cancer detection on screening mammography. Radiology, 292(3), 535–540.

[3]	 Lehman, C.D., Wellman, R.D., Buist, D.S.M., Kerlikowske, K., Tosteson, A.N.A., & Miglioretti, D.L. 
(2019). Mammographic breast density assessment using deep learning: Clinical implementation. Radi-
ology, 290(1), 52–58.

[4]	 McKinney, S.M., Sieniek, M., Godbole, V., Godwin, J., Antropova, N., Ashrafian, H., et al. (2020). Inter-
national evaluation of an AI system for breast cancer screening. Nature, 577(7788), 89–94.

[5]	 Karaca Aydemir, B.K., Telatar, Z., Güney, S. et al. (2025). Detecting and classifying breast masses via 
YOLO-based deep learning. Neural Comput & Applic 37, 11555–11582. https://doi.org/10.1007/
s00521-025-11153-1

[6]	 Lotter, W., Sorensen, G., Ding, J., Kim, H., Ghassemi, M., Haider, Z., et al. (2021). Robust breast cancer 
detection in mammography and digital breast tomosynthesis using an annotation-efficient deep learn-
ing approach. Nature Medicine, 27(2), 244–249.

[7]	 Carriero, A., Groenhoff, L., Vologina, E., Basile, P., & Albera, M. (2024). Deep Learning in Breast Cancer 
Imaging: State of the Art and Recent Advancements in Early 2024. Diagnostics, 14(8), 848. https://
doi.org/10.3390/diagnostics14080848.

[8]	 Songsaeng, Chatsuda & Pradaranon, Varanatjaa & Chaichulee, Sitthichok. (2021). Multi-Scale Con-
volutional Neural Networks for Classification of Digital Mammograms With Breast Calcifications. IEEE 
Access. PP. 1-1. 10.1109/ACCESS.2021.3104627. 

[9]	 Arevalo, J., González, F. A., Ramos-Pollán, R., Oliveira, J.L., & Guevara López, M.A. (2020). Rep-
resentation learning for mammography classification using multi-view information. Computer Meth-
ods and Programs in Biomedicine, 190, 105361.

[10]	Manigrasso, F., Milazzo, R., Russo, A. S., Lamberti, F., Strand, F., Pagnani, A., & Morra, L. (2025). 
Mammography classification with multi-view deep learning techniques: Investigating graph and trans-
former-based architectures. Medical Image Analysis, 99, 103320. https://doi.org/10.1016/j.me-
dia.2024.103320.

[11]	Nasir, I.M., Alrasheedi, M.A., & Alreshidi, N.A. (2024). MFAN: Multi-Feature Attention Network for 
Breast Cancer Classification. Mathematics, 12(23), 3639. https://doi.org/10.3390/math12233639.

[12]	F. Manigrasso, R. Milazzo, A.S. Russo, F. Lamberti, F. Strand, A. Pagnani, & L. Morra. (2025). Mam-
mography classification with multi-view deep learning techniques: Investigating graph and transform-
er-based architectures. Medical Image Analysis, vol. 99, Art. no. 103320. https://doi.org/10.1016/j.
media.2024.103320

[13]	Yang, B., Peng, H., Luo, X., & Wang, J. (2024). Multi-stages attention breast cancer classification based 
on nonlinear spiking neural P neurons with autapses. arXiv. https://arxiv.org/abs/2312.12804

DOI: 10.37943/23OUMR1748
© Beibit Abdikenov, Tomiris Zhaksylyk, Aruzhan Imasheva, 
    Yerzhan Orazayev, Danara Suleimenova



90 Scientific Journal of Astana IT University
ISSN (P): 2707-9031   ISSN (E): 2707-904X

VOLUME 23, SEPTEMBER 2025

[14]	Ribli D., Horváth A., Unger Z., Pollner P. (2021). Detecting and classifying lesions in mammograms 
with deep learning. Scientific Reports, vol. 8, no. 1, p. 4165. https://doi.org/10.1038/s41598-018-
22437-z.

[15]	Lotter W., Sorensen K., Golan T., Barzilay R. (2021). Breast cancer detection with a transform-
er-based model for high-resolution mammograms.  Nature Communications, vol. 12, p. 518. https://
doi.org/10.1038/s41467-020-20407-z.

[16]	Yala A., Mikhael P., Strand F., Lin G., Smith K., Barzilay R.. (2022). Toward robust mammography-based 
models for breast cancer risk. Science Translational Medicine, vol. 14, no. 629, eabj5325. https://doi.
org/10.1126/scitranslmed.abj5325.

[17]	Trivizakism E., Tsiknakis S., Vamvakas G., Marias K. (2020). A deep learning approach for automatic 
classification of breast lesions on mammography. Journal of Healthcare Engineering, vol. 2019, Art. 
no. 4180212. https://doi.org/10.1155/2019/4180212.

[18]	Wu N., Phang  J., Park  J., Shen Y.,. Huang Z, Zorin M. (2023). Self-supervised learning for mammog-
raphy.  Medical Image Analysis, vol. 87, 102787. https://doi.org/10.1016/j.media.2023.102787.

[19]	Raghu M., Zhang C., Kleinberg J., Bengio S. (2021). Do vision transformers see like convolutional 
neural networks? Advances in Neural Information Processing Systems, vol. 34, pp. 12116–12128, 
2021.

[20]	D'Orsi, C.J., Sickles, E.A., Mendelson, E.B., & Morris, E.A. (2014). 2013 ACR BI-RADS Atlas: Breast 
Imaging Reporting and Data System. American College of Radiology.


