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FUSION VIEW-NET: DUAL-VIEW DEEP LEARNING FOR ROBUST
MAMMOGRAPHIC BREAST CANCER CLASSIFICATION

Abstract: Breast cancer is still one of the top causes of cancer-related death for women
globally, and better patient outcomes depend on early identification. Although mammography
is the main imaging modality used for screening, the delicate nature of early clinical symp-
toms and inter-reader variability sometimes compromise diagnostic accuracy. We examine the
application of deep convolutional neural networks (CNNs) to automated classification of mam-
mogram images in this work. FusionView-Net (FV-Net) is also presented, a novel dual-view
integration framework that combines data from mediolateral oblique (MLO) and craniocaudal
(CC) views to improve diagnostic precision. To produce a more comprehensive depiction of the
breast tissue than conventional single-view methods, FV-Net combines contextual and spatial
data from both standard perspectives. Two publicly available mammography datasets, which
have been properly divided to allow for both seen-unseen data configurations and cross-da-
taset generalization testing, are used to assess the approach. A variety of CNN architectures
are evaluated on separate and combined datasets, including ResNet18 and a specially created
CNN. Findings indicate that FV-Net significantly increases model robustness and classification
accuracy, as evidenced by consistently better F1 scores and ROC AUC values, especially when
combined with ResNet18 and the custom CNN. The necessity for flexible models in actual
clinical settings is shown by generalization studies, which further highlight the significance of
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dataset diversity by showing a noticeable drop in performance when domain shifts are pres-
ent. Our results demonstrate how well multi-view fusion works for CNN-based mammography
classification and provide useful guidance for choosing architectures and training methods.
The development of trustworthy, broadly applicable Al technologies to assist radiologists in
the early diagnosis of breast cancer is made possible by FV-Net.

Keywords: Deep Learning, Mammography, Breast Cancer, Computer-Aided Diagnosis (CADXx),
Medical Image Analysis, Classification.

Introduction

According to the World Health Organization, breast cancer accounts for over 2.3 million new
cases and roughly 685,000 deaths per year, making it the most common cancer among wom-
en and a major cause of cancer-related deaths globally [1]. The best way to lower the death
rate from breast cancer is still early detection, and mammography-based screening programs
significantly increase survival rates. Despite its proven benefits, mammography is not without
challenges. Breast density, image quality, and the subtlety of early-stage tumor features are
some of the factors that frequently impair diagnostic accuracy. Furthermore, inconsistent in-
terpretations and missed or false-positive results can arise from inter-reader variability among
radiologists, which is frequently brought on by fatigue, differences in experience, or high case
volumes.

In the analysis of medical images, including mammograms, convolutional neural networks
(CNNs) have demonstrated great promise. Deep learning has been used in a number of studies
for tasks like malignancy classification [4], breast density assessment [3], and lesion detection
[2]. Notable models have reached or even exceeded radiologist-level accuracy in large-scale
screening contexts [5], [6]. Performance has also been enhanced by transfer learning tech-
niques that use pretrained architectures like ResNet and DenseNet, particularly in situations
with little labeled data [7], [8].

Despite these developments, the majority of CNN-based mammography models process
the mediolateral oblique (MLO) and craniocaudal (CC) standard views separately. This differs
from clinical workflows, where radiologists use both perspectives to more accurately describe
abnormalities. Although some recent attempts have investigated multi-view learning through
the use of parallel pipelines [9], view concatenation [10], or attention-based fusion [11], many
of these approaches are not very good at accurately simulating the contextual and spatial
relationships between views.

The ability of dual-stream architectures to process multiple views or modalities in paral-
lel has made them popular in medical image analysis, especially in breast cancer screening,
where standard mammography exams include four views (L-CC, L-MLO, R-CC, and R-MLO).
Before combining their individual feature embeddings, these architectures frequently have
two (or more) branches intended to process CC and MLO views separately [12], [13]. Better
modeling of view-specific anatomical and pathological cues is made possible by this design,
which makes it easier to learn specialized features from each view. For example, Lotter et al.
[15] and Ribli et al. [14] showed that integrating bilateral and ipsilateral views via different
processing paths improves diagnostic accuracy and more accurately represents the diagnostic
workflow of radiologists.

This paradigm has been further adopted by recent transformer-based or graph-based ar-
chitectures. In their evaluation of multi-view transformer and graph models, Manigrasso et
al. [12] demonstrate that explicitly encoding view relationships improves performance over
conventional CNNs, even with relatively small amounts of data. In a similar vein, Yala et al.
[16] reinforced the advantages of separate-stream learning by proposing Mirai, a transform-
er-based model that independently processes each mammography view before aggregating
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representations. Dual-stream designs have a higher computational burden despite the per-
formance improvements. Particularly in high-resolution mammography, where full-resolution
images can surpass 3000x5000 pixels, each parallel stream results in additional memory
and computational demands. Scalability and real-time applicability are limited by this over-
head, which is further increased when heavy-weight backbones such as ResNet-50 or ViT
variants are used [13], [17]. Additionally, unless pretraining techniques or large datasets are
used to prevent overfitting, training stability may be jeopardized [18]. In clinical settings with
limited deployment infrastructure, this resource-performance trade-off is especially crucial.
In order to preserve view-specific modeling capability without having to pay for duplicate
backbones, a number of studies have started looking into more effective alternatives, such as
attention-based fusion [19] or lightweight dynamic routing strategies, even though the du-
al-stream approach is still a good choice for multi-view medical image analysis.

In order to close this gap, we present FusionView-Net (FV-Net), a novel dual-view inte-
gration framework that creates a more comprehensive and richer representation of mam-
mographic data by processing CC and MLO views simultaneously. FV-Net seeks to increase
classification accuracy, robustness, and clinical utility by matching the architecture design to
radiologists’' diagnostic reasoning.

To test the generalizability of our models, we apply both intra- and cross-dataset evalua-
tions to two publicly accessible mammography datasets. To understand how view integration
and data diversity affect performance, we benchmark a number of CNN architectures under
single-view and dual-view configurations, including ResNet18 and a custom-designed CNN.
Our results show that the proposed dual-view approach significantly improves F1 scores and
ROC AUC across architectures, with the custom CNN showing particularly strong generaliza-
tion performance.

This paper makes several contributions:

Introduces a novel, clinically informed dual-view fusion architecture for mammogram clas-
sification.

Provides comprehensive benchmarking of CNN models across individual and fused-view
configurations.

Offers new insights into the effects of dataset diversity and domain shift on model robust-
ness in real-world scenarios.

The remainder of the paper is structured as follows: Section 2 details our proposed method,
FusionView-Net. Section 3 describes the experimental setup, including datasets, evaluation
metrics, and model training. Section 4 presents the results and performance analysis. Finally,
Section 6 concludes with key findings and directions for future research.

Methods and Materials

In this section, we describe the detailed methodology of FusionView-Net (FV-Net), a deep
learning framework designed for mammographic lesion classification. We discuss the work-
flow, including raw image acquisition, fusion strategies, preprocessing pipelines, and the CNN-
based classification process. Additionally, we outline the evaluation protocols used to assess
the model’s robustness and generalizability across the VinDr-Mammo and CMMD datasets.

Datasets

VinDr-Mammo is a large-scale full-field digital mammography (FFDM) dataset that provides
standard views (CC and MLO) with expert-annotated BI-RADS assessments. For the purpose of
this study, BI-RADS categories were converted into binary labels—benign or malignant—based
on standard BI-RADS interpretation guidelines [20]. Specifically, BI-RADS 2 to 4 were catego-
rized as benign, while BI-RADS 5 was treated as malignant.
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CMMD (Chinese Mammography Database) contains full-field digital mammography (FFDM)
images with clinical labels and detailed annotations of tumor presence and type. Like Vin-
Dr-Mammo, both CC and MLO views are available for each breast.

An overview of the number of benign and malignant images in each dataset is provided in
Table 1.

Table 1. Overview of utilized datasets

Dataset Number of Benign Number of Malignant Label Source
Images Images
VinDr-Mammo 6368 226 BI-RADS
CMMD 1108 2626 Biopsy-confirmed
Proposed Methodology

We propose FusionView-Net (FV-Net), a novel deep learning framework that uses com-
plementary information from the two common mammography views MLO and CC, to classify
mammogram images into benign or malignant categories. In order to predict lesion malignan-
cy, the suggested approach combines these perspectives into a single fused representation,
which is then processed by a convolutional neural network (CNN). Raw image acquisition,
view fusion, preprocessing, and classification are all included in the overall workflow, which is
shown in Fig. 1.

Architecture Overview

The custom CNN model is presented in this study. Fig. 2 depicts proposed architecture. The
data acquisition procedure, fusion tactics, preprocessing pipelines, CNN-based classification,
and evaluation protocols are all covered in detail in this section.

Raw input Fusion View

Benign

Malignant

Input: AMaxPan)
(3, 256, 256) <_ReLU >— {_RelLU >—1u
G ) Gy
Linear Linear -_‘

T Linear
P (256 — 1)) (128 — 256) (2304 - 128)
Output: y 9 "
Probability  «—<{_sigmoid >+ “ < ReLU >+ L e - [, ::]lazl;ﬁ
[0,1] ‘

Figure 2. Custom CNN architecture.
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The CNN architecture can be described mathematically as a function f(x; 6), which maps
the input image x € RIXW*C tg an output prediction (e.g., class probability or segmentation
mask), where 0 represents the learnable parameters (weights and biases).

e Convolutional Layers

Each convolutional layer applies a set of learnable kernels to the input tensor. The output
feature map x™*! at layer /+1 is given by:

I+1 _ vC K K l l l
xi,j,k - Zm+1 Zu+1 Zv+1 Wu,v,m,k 'xi+u,j+v,m + bk (1)

where K is the kernel size, C is the number of input channels, and blk is the bias term.
e Activation Function
After each convolution, a nonlinear activation function o(+) is applied. For ReLU:

ReLU(x) = max(0,x) (2)

This produces the activated feature maps z'*/= o (x*7).

e Pooling Layers

Pooling layers reduce the spatial dimensions of feature maps. For instance, 2x2 max pool-
ing is defined as:

+7 _ l
Xijk = = MAX Zyitp2j+qk (3)

e Fully Connected Layer
After flattening, fully connected layers map the extracted features to the output space. For
classification, a softmax function is applied:

y = Softmax (W¢) - zL + pf¢ (4)
eYi
Softmax(y;) = W (5)

e Complete Model
The complete CNN is a composition of the above layers:

flr @) =xb=floft o o fl(x) (6)

Workflow Overview

The FV-Net workflow consists of four main stages, seamlessly integrated to process mam-
mographic images for lesion classification. First, raw input acquisition involves collecting both
craniocaudal (CC) and mediolateral oblique (MLO) views of each breast from mammographic
imaging, capturing distinct anatomical perspectives to provide complementary diagnostic in-
formation. Next, the fusion pipeline combines these CC and MLO views into a single image
through one of two fusion strategies - direct fusion or cropped fusion, as described in the fu-
sion strategies section - creating a unified representation that encapsulates critical diagnostic
details from both views. Following this, the preprocessing stage normalizes the fused image to
a pixel intensity range of [0, 1] and resizes it to a standardized resolution of 256 x 256 pixels,
ensuring compatibility with the convolutional neural network (CNN) architecture while en-
hancing computational efficiency. Finally, the classification stage feeds the preprocessed fused
image into a CNN-based model, which leverages transfer learning where necessary to predict
whether the lesion is benign or malignant.
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Preprocessing Pipelines

83

To investigate the impact of preprocessing on model performance, two distinct preprocess-
ing pipelines are implemented, corresponding to the fusion strategies described above:
e Preprocessing Pipeline 1 (Direct Fusion Pipeline): The CC and MLO images are concate-
nated without any cropping. The concatenated image is normalized to a pixel intensity
range of [0, 1] using min-max normalization and resized to 256 x 256 pixels using bilin-

ear interpolation. This pipeline prioritizes simplicity and retains all image information,

including non-breast regions. The pipeline is shown on Fig. 3.

e Preprocessing Pipeline 2 (Cropped Fusion Pipeline): Prior to concatenation, each CC and
MLO image undergoes a breast isolation step. This involves applying an automated seg-
mentation algorithm to detect and extract the breast tissue, removing the background.
The cropped images are then concatenated, normalized to [0, 1], and resized to 256 x
256 pixels using bilinear interpolation. This pipeline aims to reduce noise and focus the
model on clinically relevant features. The pipeline is shown on Fig. 4.

The preprocessing pipelines are designed to ensure consistency in input dimensions and in-

tensity ranges while allowing for a comparative analysis of the impact of background removal

on classification accuracy.

The fused images are processed by a CNN-based classifier to predict whether a lesion is
benign or malignant. The CNN architecture is based on a pre-trained model (e.g., ResNet 18)
fine-tuned via transfer learning to adapt to the mammography domain. Transfer learning is
employed to leverage features learned from large-scale datasets (e.g., ImageNet) while tailor-
ing the model to the specific characteristics of mammographic images. The final fully connect-
ed layer of the CNN is modified to output two classes (benign or malignant), and the model is
trained using a binary cross-entropy loss function. The training process involves optimization
with the Adam optimizer and a learning rate scheduler to ensure convergence.

Original MLO

Merge

Original CC

!

Resize

Figure 3. Image preprocessing pipeline 1: Direct Fusion Pipeline.
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Figure 4. Image preprocessing Pipeline 2: Cropped Fusion Pipeline.

Evaluation Protocols

To assess the robustness and generalizability of FusionView-Net (FV-Net), the model is
evaluated using two distinct datasets: the VinDr-Mammo dataset, and the CMMD. The evalua-
tion is conducted under two protocols designed to test the model’s performance under varying
conditions of data familiarity and generalization. Both protocols utilize standard performance
metrics, including accuracy, sensitivity, specificity, and F1.

The first setting, termed Seen-Patient Evaluation, involves splitting each dataset (Vin-
Dr-Mammo and CMMD) such that images from the same patients may appear in both training
and testing sets, though no identical images are shared. This setup allows the model to lev-
erage patient-specific distributional patterns, potentially enhancing performance on familiar
data. The dataset is partitioned using a stratified split to maintain class balance, and the mod-
el is tested separately on each dataset to evaluate its performance when trained and tested
within the same dataset.

The second and third settings, Unseen-Patient Evaluation, are designed to rigorously test
the model’s generalizability by ensuring that all patients in the test set are excluded from
the training set. Two configurations are employed: in the first, the model is trained on one
dataset (e.g., VinDr-Mammo) and tested on the other (e.g., CMMD), and vice versa, to assess
cross-dataset generalization. In the second configuration, both datasets are combined, but
patient-level partitioning ensures that no patient’s images appear in both training and testing
sets. This setup simulates real-world clinical scenarios where the model encounters entirely
new patients, providing a stringent test of its ability to generalize across diverse populations
and imaging conditions.

By evaluating FV-Net on the VinDr-Mammo and CMMD datasets under these protocols,
the study aims to comprehensively assess its robustness and generalizability, leveraging both
within-dataset and cross-dataset scenarios to ensure applicability in diverse clinical settings.
The visual representation of the protocols is given in Fig. 5.
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Figure 5. Evaluation Protocols.

Implementation Details

The experiments were conducted on a dedicated workstation with two 11 GB video memo-
ry-equipped NVIDIA GeForce RTX 2080 Ti GPUs. The system used CUDA and cuDNN for hard-
ware acceleration and was set up with Ubuntu 20.04. PyTorch was used as the main framework
for model construction and training in Python 3.9, where the deep learning operations were
developed. Every training and inference activity was carried out within the PyTorch ecosystem,
making use of its adaptable model-building tools and effective data management features.
Training was split over both GPUs using the DataParallel module to optimize GPU consump-
tion.

Below is a list of the primary training parameters that were employed in the experiments:

e Batch size: 32 (adjusted based on available GPU memory)

e Optimizer: Adam optimizer with 1 = 0.9 and . = 0.999

- Update biased first moment estimate:

my = Bl * mp-qy3+ (1 — B1) * g (7)
- Update biased second raw moment estimate:
Ve = B2 * vy + (1 — B2) = gt (8)

- Compute bias-corrected moment estimates:

m¢

Me= s )
= T (10)

- Update parameters:

m
Oc= Oy — @ * ey (11)
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* Learning rate: Initialized at 1 x 10~* with a cosine annealing schedule

- Loss function: Binary Cross-Entropy Loss

Lgcg = —[y *log(®) + (1 — y) *log(1 — $)] (12)

- For a batch of N samples, the mean BCE loss is:

Lgcg = — (%) * X [y;*log(§;) + (1 — y;) *log(1 — §7)] (13)
e Training duration: Between 30 and 50 epochs, with early stopping based on validation
performance

To maintain experimental consistency, the same preprocessing routine and training con-
figuration were used across all dataset variations and model runs. Additionally, random seeds
were fixed to ensure reproducibility in data splits and weight initialization. This environment
and pipeline allowed for the efficient execution of extensive experimentation, including com-
parisons of neural networks, cross-dataset generalization tests, and evaluation of the two
fusion strategies described earlier.

Results

ResNet18 and a custom convolutional neural network are trained and tested across three
evaluation settings (depicted in Fig. 5) and two preprocessing pipelines (depicted in Fig. 3 and
Fig. 4).

Results under Pipeline 1 (No Cropping)

In Setting 1 with the same distribution of training and testing datasets, ResNet18 achieved
the highest overall performance with an accuracy of 0.8780, F1 score of 0.7934, a strong re-
call of 0.8521, which shows its ability to capture true positive cases effectively. On the other
hand, custom CNN model performed competitively with an accuracy of 0.8497 and F1 score
of 0.7370. However, it was more prone to false positives with lower precision of 0.7103, com-
pared to ResNet18.

In setting 2 with domain generalization, both models performed poorly. The accuracy of
ResNet18 dropped to 0.4146, and its F1 score fell to 0.2852. Similarly, custom CNN showed
poor performance with an accuracy of 0.4109 and an F1 score of 0.2784.

In setting 3 with a different unseen domain, ResNet18 performed better than in Setting 2.
It achieved an accuracy of 0.7779 and an F1 score of 0.8734—its highest F1 score across all
settings—driven by an exceptionally high precision of 0.9719. The model was confident when
predicting positive cases, although recall was more modest at 0.7930. In contrast, custom
CNN showed substantially lower performance, with an accuracy of 0.6152 and an F1 score of
0.6577. While the recall was decent (0.7201), the precision was much lower at 0.6052.

Results under Pipeline 2 (With Cropping)

Incorporation of cropping step into preprocessing pipeline showed slightly better overall
performance of models.

In Setting 1, ResNet18’s performance improved slightly, reaching an accuracy of 0.8819.
Although the F1 score of 0.7904 was similar to that in Pipeline 1, its precision increased to
0.7986, suggesting more reliable predictions. Interestingly, custom CNN also benefited from
cropping, improving its accuracy to 0.8722 and, notably, surpassing ResNet18 in F1 score with
a value of 0.7937. This was largely driven by its substantially higher recall (0.8944), demon-
strating that cropping enabled the model to detect more true positives at the expense of
slightly lower precision (0.7135).
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Setting 2 revealed a more pronounced advantage of cropping. ResNet18’s accuracy in-
creased from 0.4146 in Pipeline 1 to 0.6277 in Pipeline 2,and its F1 score more than doubled,
reaching 0.6899. This improvement was largely due to enhanced precision (0.8330). Custom
CNN also showed better performance, with an increase in F1 score from 0.2784 to 0.5666.
However, it remained behind ResNet18 in all metrics, suggesting that while cropping helped,
it was not sufficient for the custom CNN to match the robustness of ResNet18 in this setting.

In Setting 3, cropping slightly reduced ResNet18’s performance compared to Pipeline 1,
with accuracy dropping from 0.7779 to 0.7262 and F1 score from 0.8734 to 0.7666. However,
it maintained high and balanced precision and recall (0.7700 and 0.764), indicating consist-
ent performance. The custom CNN showed a slight improvement in this setting compared
to the no-cropping pipeline, increasing its F1 score to 0.6958, with a recall of 0.7542 and a
precision of 0.6452.

Table 2. Overview of Experimental Results

Prep.rocc.essing Evalu.ation Model Accuracy Precision Recall F1
Pipeline settings
Pipeline 1 Setting 1 Resnet18 0.8780 0.7423 0.8521 0.7934
(no cropping) | (Seen) Custom CNN | 0.8497 0.7103 0.7716 0.7370
Setting 2 Resnet18 0.4146 0.2236 0.3935 0.2852
Custom CNN | 0.4109 0.2123 0.4146 0.2784
Setting 3 Resnet18 0.7779 0.9719 0.7930 0.8734
Custom CNN | 0.6152 0.6052 0.7201 0.6577
Pipeline 2 Setting 1 Resnet18 0.8819 0.7986 0.7823 0.7904
(with cropping) | (Seen) Custom CNN | 0.8722 0.7135 0.8944 0.7937
Setting 2 Resnet18 0.6277 0.8330 0.5887 0.6899
Custom CNN | 0.5972 0.5591 0.5745 0.5666
Setting 3 Resnet18 0.7262 0.7700 0.7641 0.7666
Custom CNN | 0.6952 0.6452 0.7542 0.6958
Discussion

The results from our experiments offer a nuanced understanding of the comparative
strengths and limitations of ResNet18 and the custom convolutional neural network under
varying domain conditions and preprocessing pipelines. The experimental results offer several
key insights that are critical for interpreting model behavior and guiding future work in robust
image classification.

Model Performance and Generalization

ResNet18 consistently showed superior performance across different settings and pipelines,
particularly excelling in precision. In setting 1, its performance was notably strong across both
pipelines, showing that it is more suitable for cases where the training and testing distribu-
tions are aligned similarly. The real distinction across models is apparent from the other 2
settings with domain generalization. The severe drop in performance under Pipeline 1 for
Setting 2 highlights the sensitivity of both models to domain shifts, a common challenge in
real-world applications. ResNet18's recovery in Setting 3 and substantial improvement under
cropping conditions (Pipeline 2) in Setting 2 underscore its capacity to adapt more effectively
when aided by appropriate preprocessing.
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In contrast, custom CNN showed promising performance with its high recall rates, which is
an important metric, especially when it comes to high-stakes domains such as medical imag-
ing, where it is crucial not to miss positive cases. In some cases, it trailed behind ResNet18,
but it achieved notable improvements under Pipeline 2, particularly in Setting 1, where it out-
performed ResNet18 in F1 score due to a remarkably high recall. This suggests that the model
is adept at identifying true positives when focused on relevant image regions, albeit at the
cost of higher false positive rates (lower precision). This high sensitivity suggests that custom
CNN may be well-suited for applications where detecting every relevant instance is prioritized
over minimizing false positives. In domain generalization scenarios (Settings 2 and 3), custom
CNN showed consistent improvements under the cropping pipeline. While it did not fully close
the gap with ResNet18 in these unseen domains, its gains in recall indicate meaningful en-
hancement in generalization when provided with a more targeted input representation. These
results suggest that custom CNN, despite its simpler architecture, possesses strong detection
capability and, when supported with effective preprocessing, can serve as a competitive and
practical model, especially in recall-critical contexts.

Impact of Cropping as a Preprocessing Strategy

The results indicate that it can be critical to use the right preprocessing to enhance robust-
ness and generalization of models. Cropping, which is designed to focus on the breast tissue
rather than the background, improved performance across domain generalization settings for
both models.

The benefit was apparent in Setting 2, a challenging unseen dataset scenario, where crop-
ping led to substantial gains in accuracy and F1 score for both models. This improvement sug-
gests that reducing input noise and directing attention to semantically relevant regions helps
mitigate the effects of domain shift. While ResNet18 saw a slight decrease in performance in
Setting 3 under the cropping pipeline, it still maintained balanced precision and recall. For
custom CNN, cropping yielded notable and consistent improvements, especially in Settings
1 and 3. These relative improvements suggest that targeted preprocessing can significantly
boost the effectiveness of more compact or domain-specific architectures.

Trade-offs Between Precision and Recall

A key takeaway from the results is the complementary trade-off between precision and
recall observed in the two models. ResNet18 consistently favored precision, leading to fewer
false positives, which can be advantageous in contexts where incorrect positive predictions
have higher costs. In contrast, custom CNN tended to favor recall, especially when cropping
was applied. This behavior means that the model was more aggressive in identifying potential
positive cases, which is particularly valuable in fields like medical imaging, where missing
a positive case (false negative) can have more serious consequences than flagging a false
positive. High recall, as seen in multiple settings, especially the remarkable 0.8944 recall in
Setting 1 with cropping, demonstrates the model’s ability to effectively detect relevant pat-
terns when provided with clear and focused input. Tasks requiring high certainty may favor
ResNet18, while sensitivity-critical applications may benefit more from custom CNN.

Conclusion

This study evaluated the performance of ResNet18 and a custom CNN across multiple do-
main conditions and preprocessing strategies, offering insights into their respective strengths
and use cases. While ResNet18 consistently showed strong generalization and precision, the
custom CNN model demonstrated compelling performance, particularly in terms of recall and
sensitivity, and especially when paired with cropping. Importantly, cropping significantly im-
proved both models' robustness under domain shift, with particularly strong relative gains
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for custom CNN. These findings illustrate that preprocessing techniques are not merely en-
hancements, they can be transformative, especially for models with lighter architectures or
domain-specific optimizations.

Looking forward, future research should explore adaptive or learned preprocessing mech-
anisms, such as attention-based cropping or dynamic region selection, to further amplify the
strengths of each architecture. Evaluating model behavior under a broader range of domain
shifts and tasks will also help deepen our understanding of how to build robust, flexible, and
context-aware deep learning systems for real-world applications.
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