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DEVELOPMENT OF THE INTEGRATED WATER RESOURCES 
MONITORING AND FORECASTING MODULE FOR DECISION 
SUPPORT SYSTEMS AT HYDROTECHNICAL STRUCTURES

Abstract: Nowadays, it is necessary to use monitoring and forecasting technologies for ef-
fective water resources management at water management facilities. The objective of this 
study is to develop and verify an integrated approach to water resources forecasting with the 
task of identifying features for forecasting, designing a data preprocessing submodule and a 
forecasting module. The workflow diagram of the water forecasting system includes sequential 
stages of data collection, preprocessing, filtering, feature extraction, and training. Sentinel-2 
and MODIS satellite sources were used for data preprocessing. Predictors for the formation of 
time series by normalized difference water index (NDWI) and water surface temperature (LST) 
were selected in the feature engineering stage. The XGBoost Regressor algorithm was chosen 
due to its ability to model nonlinear relationships and feature interactions. Excluding winter 
months improved the model performance for all metrics, which demonstrates the importance 
of seasonal filtering when working with optical satellite data. The machine learning algorithm 
takes into account the analysis of satellite data (NDWI and LST indices) through the Google 
Earth Engine (GEE) platform. Both seasonal and long-term dynamics of water volumes in the 
Tasotkel reservoir are monitored for the period from 2020 to 2024.  In practice, image initial 
filtering submodules were developed using linear regression and the XGBoost model. Model 
trained without winter data shows high performance using Metrics Mean Absolute Error (MAE) 
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of 52.793, Root Mean Squared Error (RMSE) of 60.276, coefficient of determination (R2) of 
0.673 and Mean Squared Error (MSE) of 3633.252 metrics. However, a decrease in clarity was 
observed due to snow and ice on reflective properties in winter. For the purpose of rational 
water resources management, the combination of satellite images and machine learning al-
gorithms in this study shows the prospects for development.

Keywords: machine learning, remote sensing, water resources monitoring, predictive mod-
eling, reservoir 

Introduction (Literary review)
According to the Concept for the Development of the Water Resources Management System 

of the Republic of Kazakhstan for 2024-2030, the main problems include irrational and ineffi-
cient use of water resources, lack of proper information and analytical support and monitoring 
of the water resources management system [1]. According to forecasts, by 2040, Kazakhstan 
will be among the 20 countries with the highest level of water deficit in the world if current 
conditions persist [2]. Wasteful use of water resources is mostly visible in the agricultural 
sector, where, according to the results of 2022, the share of losses in irrigated agriculture is 
65%. According to forecasts, in 2029, there is a risk of a decrease in the rate of socio-econom-
ic development due to water shortages. Water accounting is organized at a low level, water 
measurement is carried out using outdated methods and not all devices are properly tested. 
Insufficient control leads to the drying up of small rivers and their tributaries. There is no 
proper information and analytical support and monitoring of the water resources manage-
ment system. The methodological basis of forecasts based on outdated methods and technol-
ogies has led to a steady trend towards deterioration in the quality of hydrological data.

The existing problem of acute shortage of water resources is complicated by discrepancies 
in the indicators of water resources data provided by various sources. This leads to the lack 
of reliable and truthful information on the real state of the water sphere. Discrepancies in 
accounting indicators complicate the planning process and make it difficult to make effective 
decisions. This leads to an increase in deficit, a decrease in the sustainability of water supply 
and an increase in conflicts between sectors dependent on water resources. For example, the 
river flow was 181 km³ (2010), 160 km³ (2016) according to the Water Management Com-
mittee of the Ministry of Water Resources and Irrigation of the Republic of Kazakhstan, in par-
allel with this, the republican state enterprise "Kazhydromet" indicates other data 143.6 km³ 
(2010) and 146.0 km³ (2016). The data on the number of rivers and temporary watercourses 
also have discrepancies [1], [3], [ 4].

With proper water management, the amount and location of available water resources in 
each geographic region, especially in certain mountains and glaciers, can be effectively mon-
itored to prevent damaging events [5]. To prevent and reduce droughts, water shortages and 
their impacts in the future, be more prepared and resilient by knowing where natural disas-
ters have occurred in the past. It is also necessary to select the right combination of satellite 
platforms, water parameters and machine learning models when optimizing water monitoring. 
Models such as convolutional neural network (CNN), recurrent neural networks (RNN) and 
generative adversarial network (GAN) provide high accuracy, but their applicability depends on 
the quality and resolution of satellite data.

In the paper [6], RNN and GAN models demonstrated high efficiency in eliminating distor-
tions in remote sensing images, which allowed accurate prediction of water quality indicators. 
In deep learning, RNN methods are used for forecasting, but require large amounts of data 
[7]. The RNN-based time series model is effective for intelligent forecasting of water levels 
in reservoirs but has fewer parameters and is suitable for a small dataset [8]. The combined 
ARIMA-RNN model takes into account the linear and nonlinear components of the data when 
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forecasting the water level and demonstrates accuracy but requires further optimization tak-
ing into account the spatial relationship of the sites [9]. In small reservoirs, combining satellite 
data and CNN to obtain the water level shows stable and accurate results [10]. In addition, 
convolutional neural networks CNN use semantic segmentation methods for more accurate 
detection of reservoirs [11]. Combining satellite data with machine learning makes it possible 
to develop real-time monitoring systems, promoting the rational use of resources [12]. An 
information portal with a high-speed storage of satellite images recording information on 
surface waters in both spatial and temporal terms helps to use maps of the Water Observation 
from Space (WOfS) product for visualization, analysis and risk forecasting. The method used 
showed that one algorithm is operationally applicable in many environmental and climatic 
conditions, but known errors remain due to cloud shadows and relief [13]. The database using 
ICESat/ICESat-2 altimetry to determine demonstrate and Landsat images to determine the 
exact boundaries of surface water bodies demonstrates the general trend of water levels in 
rivers or reservoirs [14].

Monitoring changes in water volumes in rivers and reservoirs is of great importance in 
predicting water disasters, assessing the impact of human activities on water security, and 
analyzing climate and environmental changes. The KazRivDyn platform, developed on Goog-
le Earth Engine (GEE), implements an automatic algorithm for identifying rivers on a map in 
real time. However, no dependencies (correlations) between water volume and glacier volume 
have been identified, and no forecasting model using the regression method has been built 
[15]. The study used SARIMAX and RNN models to predict water levels, and the use of GEE to 
analyze satellite images provided an accurate calculation of the water surface, but RNN-based 
models require large amounts of data and significant computing resources [16].

Automatic detection of water bodies plays an important role in water resources manage-
ment. One of the important sensors for monitoring surface water change is synthetic aperture 
radar (SAR). A semi-supervised algorithm for detecting water and land in SAR images is pre-
sented using lognormal density mixtures as a probability model for pixel intensities, which 
are estimated using the expectation–maximization (EM) algorithm simultaneously with the 
contour evolution [17]. However, for more accurate SAR image extraction, a water extraction 
algorithm based on a modified Markov random field and a CNN model is needed. In order to 
extract and compile reliable features of water and non-water pixels, a CNN-based method 
is used and tested on images using scenes with different characteristics of water resources 
based on Sentinel-1 SAR. This method shows more accurate overall classifications compared 
to OTSU thresholding and support vector machines (SVM) methods [18]. Extraction of pa-
rameters from various types of remotely sensed data is carried out by geographic information 
systems Sentinel Application Platform (SNAP), Multi-national Geographic Information System 
(Arc-GIS), Quantum Geographic Information System (QGIS), American [19].

At the moment, the water resources management system of Kazakhstan lacks modern dig-
ital technologies with a single digital database that could quickly consolidate relevant infor-
mation. In these conditions, the introduction of GIS, automation and digitalization are effec-
tive tools for improving the efficiency of management and technological processes.

The aim of this study is to develop and verify an integrated approach to forecasting water 
resources at hydraulic structures by creating a forecasting module integrated into a decision 
support system.

The set goal can be achieved by defining features for forecasting water resources at hy-
draulic structures, followed by developing a submodule for preliminary data processing based 
on NDVI and LST methods and further developing a module for forecasting water resources 
at hydrotechnical structures.
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Methods and Materials
Data and preprocessing 
The dataset combines satellite observations with ground-based measurements to model 

the daily water volume in a reservoir. Multispectral Sentinel-2 Level-1C images were used 
to derive the Normalized Difference Water Index (NDWI) over the Tasotkel Reservoir, a widely 
used indicator for surface water detection. The Normalized Difference Water Index (NDWI) was 
calculated using the green (B3) and near-infrared (B8) bands according to McFeeters [20]:

 
(1)

where B3 represents reflectance in the green band, and B8 represents reflectance in the 
near-infrared band.

All available Sentinel-2 images from 2020 to 2024 covering the reservoir were processed.  
Scenes with excessive cloud cover were removed using a cloud filter (metadata field cloudy_
pixel_percentage < 20%). After cloud filtering, NDWI was calculated for each remaining image. 
These NDWI values were then spatially averaged over the reservoir’s region of interest (ROI) to 
obtain a single representative water index value for the image date.

In parallel, land surface temperature (LST) data were obtained from the daily MODIS Terra 
MOD11A1.061 product, which provides daytime land surface temperature at a 1 km resolu-
tion. Each MODIS LST pixel value was converted to degrees Celsius (°C) according to Wan et 
al. [21]:

 (2)

where is the temperature in Kelvin provided by MODIS. 
LST values within the reservoir ROI were averaged to produce a daily mean LST value for 

the reservoir (denoted as LST_C). To focus on periods when the reservoir is not frozen and 
NDWI is reliable, days with LST_C < 0 °C were excluded from the analysis (typically winter 
months when the reservoir surface may be covered with ice).

Daily water volume data for the reservoir from 2020 to 2024 were provided by the regional 
division of Kazhydromet and expressed in million cubic meters (Million m³). These values were 
used as the target variable.

The satellite-derived NDWI and land surface temperature (LST_C) data were synchronized 
by date with the observational water volume data. Since Sentinel-2 does not provide daily 
imagery (its revisit period is 5 days), and some images were filtered due to cloud cover, linear 
interpolation was applied to restore continuity in the NDWI time series.

Thus, NDWI was filled in for days with missing values based on the nearest available obser-
vations. This enabled the formation of a continuous daily NDWI time series synchronized with 
the water volume data. Each final daily record contained two features (NDWI and LST_C) and 
the corresponding water volume value. Sentinel-2 and MODIS data are publicly available via 
Google Earth Engine.

Importantly, volume lags (past values of the target variable) were not included in the model 
to make the forecast entirely based on external satellite-derived indicators, without using the 
history of the target variable itself. This approach allows testing the predictive power of only 
remotely sensed parameters, although it excludes potential model improvements from the 
autocorrelation of past volume values.

The geographic setting of the Tasotkel Reservoir, situated in the southern region of Kazakh-
stan, straddling the administrative boundary between the Zhambyl and Zhetysu provinces 
(Figure 1). The reservoir is primarily fed by the Shu River, which flows through its central basin 
and serves as the main hydrological inflow source.
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Figure 1. Area of interest of the Tasotkel reservoir
 
The image provides a sharply delineated view of the water surface, highlighted in a vivid 

cyan hue to distinguish it from surrounding terrain. The region of interest (ROI) used in the sat-
ellite-based analysis is delineated with a rectangular bounding box encompassing the entire 
reservoir along with adjacent land areas. This spatial configuration ensures comprehensive 
coverage of both the reservoir’s open water body and its littoral zones. Such inclusion is par-
ticularly critical for the accurate computation of water-related indices, such as the Normalized 
Difference Water Index (NDWI) and land surface temperature (LST_C), using data processed 
within the Google Earth Engine environment. The seasonal dynamics of the reservoir's surface 
water extent, as derived from NDWI time series data (Figure 2). 

Figure 2. Seasonal dynamics of water surface in 2024

A pronounced seasonal pattern emerges, closely aligned with regional hydrological and 
climatic cycles.

Feature engineering
The selected predictors for the forecasting model are NDWI and LST_C, which represent 

complementary physical characteristics of reservoir conditions. NDWI captures the spatial ex-
tent of surface water coverage: higher NDWI values indicate a broader water surface area, 
which typically correlates with increased water volume. This index provides a direct proxy for 
the dynamics of the reservoir's water body, as NDWI effectively distinguishes water pixels in 
satellite imagery and serves as a robust estimator of surface water area. 
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In this study, a threshold of NDWI > 0 was employed to delineate surface water, consistent 
with widely adopted practices in remote sensing. NDWI values above zero are interpreted as 
indicative of water presence, reflecting water’s strong reflectance in the green band (B3) and 
low reflectance in the near-infrared band (B8), which together yield positive index values. Pix-
els with NDWI ≤ 0 are classified as land, vegetation, or other non-water surfaces. Hence, NDWI 
serves not only as a continuous measure of water coverage but also as the basis for generating 
binary water masks.

LST_C functions as a meteorological indicator capturing thermal influences on the reser-
voir. Elevated surface temperatures can intensify evaporative losses from the water surface, 
leading to volume reductions, while simultaneously accelerating snowmelt in the upstream 
basin during spring and summer, thereby increasing inflow. Thus, LST_C encapsulates two op-
posing hydrological drivers:

• evaporative demand, associated with high temperatures and arid conditions that pro-
mote water loss

• meltwater contribution, driven by seasonal warming that enhances runoff
Incorporating LST_C alongside NDWI is physically justified, as it introduces sensitivity to 

temperature-dependent processes that influence reservoir volume variability. Prior to model 
training, both features were standardized to zero mean and unit variance to prevent any single 
feature from disproportionately influencing the model and to ensure efficient convergence 
during optimization. Each feature x was subjected to z-score normalization, defined as:

 (3)

where μ is the mean and σ is the standard deviation computed over the training period.

The target variable, daily water volume (in million cubic meters), was not normalized, giv-
en that regression models can handle target values on their original physical scale. Error 
metrics are likewise reported in physical units to facilitate interpretation and relevance for 
decision-making.

The combination of NDWI and LST_C represents a minimalist yet informative feature set, 
balancing model interpretability and generalization capability under data-scarce conditions. 
NDWI provides insights into surface water availability, while LST_C captures climatic pressures 
affecting the reservoir’s hydrological regime.

It is important to acknowledge that other influential variables, such as precipitation and 
river inflow, were excluded due to the unavailability of high-temporal-resolution data. None-
theless, their effects are indirectly reflected: NDWI responds to water level changes follow-
ing precipitation, and LST_C mediates processes such as evaporation and snowmelt. Previous 
research underscores precipitation and evapotranspiration as critical drivers in hydrological 
modeling. While evapotranspiration is partially addressed through temperature, the lack of 
explicit precipitation input remains a recognized limitation of the present framework.

Machine learning model 
The primary model selected for forecasting the daily reservoir volume was the XGBoost 

Regressor algorithm. XGBoost (eXtreme Gradient Boosting) is an ensemble learning technique 
based on decision trees that constructs an additive model by sequentially building trees and 
optimizing the error via gradient boosting. This algorithm was chosen due to its capacity to 
model nonlinear relationships and feature interactions, its robustness to outliers and feature 
scaling, and its strong track record in regression tasks with limited data. Ensemble methods 
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like boosting have demonstrated superior accuracy and reliability in hydrological forecasting 
contexts.

In this application, XGBoost naturally captures the nonlinear dependence of reservoir vol-
ume on NDWI, which may exhibit plateauing or nonlinear behavior relative to surface area, 
as well as temperature thresholds, such as LST effects manifesting primarily above freezing. 
Furthermore, XGBoost incorporates built-in regularization mechanisms to control model com-
plexity, thereby reducing the risk of overfitting given the relatively small dataset.

The model is trained by minimizing a regularized objective function. Given a training set 
 , where  represents the feature vector and yi the corresponding target (water vol-

ume), the ensemble comprises K regression trees fi (x), each belonging to a functional space 
of tree-based learners. The objective function is expressed as: 

 
(4)

where

 
(5)

and the loss function lll is the mean squared error:

 (6)

The regularization term Ω(f) penalizes model complexity and is formulated as:

 
(7)

Here, T is the number of leaves in the tree, w is the vector of leaf weights, and γ and λ are 
hyperparameters governing the strength of regularization. This formulation balances fitting 
accuracy against model complexity, minimizing training error while constraining overcomplex 
trees.

XGBoost implements gradient boosting by iteratively adding new trees fk trained on the 
residuals of previous predictions. Each added tree minimizes the gradient of the loss function, 
with the process continuing until a predefined number of trees is reached or model improve-
ments plateau.

Hyperparameter tuning was performed using grid search combined with cross-validation 
on training data spanning 2020–2023. Parameters optimized included the number of trees 
(n_estimators), maximum tree depth, learning rate, and L2 regularization coefficient (lambda). 
To respect the temporal dependence of the data, cross-validation was conducted with chron-
ological splits: training on data from 2020–2022 and validation in 2023, preventing data 
leakage from future periods. The optimal configuration balanced bias and variance with a tree 
depth of 3, learning rate of 0.1, approximately 100 boosting iterations, and moderate regular-
ization. This setting achieved the lowest RMSE on the validation subset.

This strategy enhances model generalizability and mitigates overfitting risks tied to specific 
years within the training timeframe. The training period covered January 1, 2020, through 
December 31, 2023.

For evaluating predictive performance, the entire year 2024 (January 1 to December 31) 
was reserved as an independent test set, simulating real-world forecasting of future periods. 
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Data were neither shuffled nor randomly partitioned, as preserving temporal order is critical 
for valid time series model validation.

A baseline model was implemented using multiple linear regression with ordinary least 
squares. The target water volume was modeled as a linear function of the two predictors, 
NDWI and LST_C:

 (8)

By assuming linear correlations between predictors and reservoir volume, the baseline 
model offers a simple, straightforward approximation. The benefits of nonlinear ensemble 
learning can be quantified by comparing XGBoost to this benchmark.

A linear model is unable to capture the subtleties of volume dynamics when nonlinear 
effects or feature interactions are present, such as temperature effects that only occur above 
freezing, or NDWI saturation at high reservoir levels. XGBoost can do this. Threshold behaviors 
and index saturation during reservoir overflow cannot be modeled by linear regression. 

XGBoost’s ability to model complex nonlinear hydrological processes affecting reservoir 
storage led to its selection. While XGBoost provides the sophisticated modeling flexibility 
needed to more accurately model natural system behavior in water management, linear re-
gression serves as a low-complexity baseline. As a boosting model, XGBoost gradually reduc-
es ensemble errors while maintaining robustness to overfitting using built-in regularization. 
Compared to neural network-based approaches, XGBoost requires less data, which is an ad-
vantage given the limited feature set.

Results
After training the models on data from 2020 to 2023, their predictive ability was assessed 

on daily observations for 2024. The XGBoost model demonstrated significantly higher accura-
cy compared to the baseline linear regression. Table 1 presents the error metrics on the test 
set for both models.

The workflow (Figure 3) integrates Sentinel-2 NDWI and MODIS LST data with ground-truth 
volumes, filtered to exclude winter months (Dec–Feb) and subzero temperatures Temporal 
features (month/year, winter flags) were engineered, and linear regression and XGBoost mod-
els (with/without winter data) were trained using standardized features (seed = 42). 
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Figure 3.  Workflow for water volume prediction system

Models were evaluated on 2024 holdout data via RMSE, MAE, and R², with XGBoost (win-
ter-inclusive) selected as optimal.

Evaluation Setup
Model performance was assessed using Mean Absolute Error (MAE), Root Mean Squared 

Error (RMSE), R-squared (R²), and Adjusted R-squared. 
MAE measures the average absolute deviation of predicted house prices from actual val-

ues, providing an interpretable estimate of typical prediction errors. Lower MAE values indi-
cate higher precision; in the study, Polynomial Regression achieved the lowest MAE (99,958), 
demonstrating superior accuracy compared to other models [22].

RMSE amplifies the impact of large errors by squaring residuals before averaging, making it 
sensitive to outliers. A lower RMSE reflects stable predictions across the dataset. Polynomial 
Regression again outperformed with an RMSE of 161,044, while Support Vector Regression 
(SVR) showed the highest errors (RMSE: 390,627), revealing poor fit [23].
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R² quantifies the proportion of variance in housing prices explained by the model. Values 
closer to 1 indicate stronger predictive power. Polynomial Regression achieved the highest 
R² (0.82), suggesting it captured 82% of price variability, whereas SVR's negative R² (-0.056) 
implied it performed worse than a baseline mean model [24].

Baseline Comparison
To evaluate the quality of nonlinear modeling, the performance of XGBoost was compared 

to a linear regression baseline. The baseline is a standard linear modeling approach that 
assumes a direct proportional relationship between the predictors and the target variable. 
Despite its simplicity and interpretability, linear regression is often insufficient to capture 
complex hydrological dynamics governed by multiple interacting physical processes. 

Across all tested configurations, XGBoost significantly outperformed the linear model. The 
mean absolute error (MAE) for XGBoost was 52.793 Mm³ when excluding winter months, com-
pared to 80.105 Mm³ for linear regression trained under the same conditions. Similarly, the 
root mean square error (RMSE) was 60.276 million m³ for XGBoost versus 93.792 million m³ 
for linear regression, reflecting a significant reduction in large forecast errors. The superiority 
of XGBoost was also evident in the coefficient of determination (R²), which reached 0.673, 
while the linear regression model explained only 20.7% of the reservoir volume variance. In 
addition, the mean square error (MSE) was reduced by more than 58% in the nonlinear model. 
These differences highlight the ability of ensemble learning algorithms to model nonlinear 
relationships between remotely sensed metrics and hydrological responses. Such a significant 
performance gap justifies the use of advanced learning methods, especially in applications 
where system behavior depends on multiple overlapping physical factors. The nonlinear in-
teractions between NDWI and LST_C and their different influences across seasons are more ef-
fectively captured by the flexible XGBoost structure compared to the rigid linear assumptions.

Metric Comparison and Interpretation
Model evaluation was conducted using four complementary metrics: Mean Absolute Error 

(MAE), Root Mean Squared Error (RMSE), Coefficient of Determination (R²), and Relative Ab-
solute Error (RAE). These metrics were selected to jointly assess the models’ accuracy, robust-
ness to outliers, ability to capture variance, and comparative utility against naive baselines 
(Table 1).

MAE provides an interpretable measure of average prediction error in the same units as the 
target variable (million m³). Values below 60 indicate high predictive reliability, while those 
above 80 reflect limited utility in decision-making contexts. RMSE, which penalizes large de-
viations more heavily due to its quadratic nature, further differentiates model robustness. 
An RMSE under 65 denotes consistent performance, whereas higher values signal instability 
under extreme conditions.

The R² statistic quantifies the proportion of variance in the observed data that is explained 
by the model. A value of 0.673, achieved by the best-performing XGBoost model, indicates that 
nearly two-thirds of the fluctuations in daily reservoir volume are captured by the predictors. 
In contrast, the linear model explained less than a quarter of the variance, suggesting under-
fitting and the inability to capture critical hydrological patterns.

Relative Absolute Error (RAE) contextualizes the MAE by comparing it to a naive model that 
always predicts the historical meaning. The RAE of 0.35 for XGBoost (no winter) confirms a 
65% reduction in error relative to the naive baseline, while the RAE of 0.48 for linear regres-
sion reveals substantially poorer performance.
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Table 1. Performance comparison of reservoir volume prediction models across evaluation metrics

Model RMSE MAE R² MSE
XGBoost (no winter) 60.276 52.793 0.673 3633.252
XGBoost (with winter) 61.486 54.635 0.659 3780.555
Linear Regression (with winter) 92.031 77.810 0.237 8469.707
Linear Regression (no winter) 93.792 80.105 0.207 8796.996

Notably, the exclusion of winter months improved model performance across all metrics, 
particularly for XGBoost. The model trained without winter data showed a decrease in MAE by 
1.8 million m³ and an increase in R² by 0.014, confirming the detrimental impact of cold-sea-
son NDWI anomalies. These results highlight the importance of seasonal filtering when work-
ing with optical satellite data in hydrological contexts.

Visual Analysis of Predictions
A comparison of the performance of the models with and without winter data (Figure 4).

 
(а)

 
(b)

 
(c)

 
(d)

 
Figure 4. Performance comparison of models with and without winter data inclusion: 

(a) Linear Regression (winter), (b) Linear Regression (no winter), 
(c) XGBoost (winter), (d) XGBoost (no winter).

The XGBoost model trained without winter data reduced prediction errors by 1.8% (RMSE) 
and improved explained variance by 2.1% (R²) compared to its winter-inclusive counterpart, 
indicating minimal added value from winter observations in this basin’s hydrological regime.
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Discussion
In this study developed a satellite-based machine learning model for reservoir volume fore-

casting and evaluated its performance across seasons. The results demonstrate both the po-
tential and limitations of using satellite data for hydrological monitoring. Several important 
insights emerged from this work that can inform future research in this area.

First, it was found that careful data filtering is essential to obtain reliable forecasts. Although 
satellite data provide broad coverage, not all observations are equally useful for modeling. 
Visualizing the seasonal dynamics of NDWI (Figure 3) not only allows us to track spatiotempo-
ral changes in the water surface but also to identify factors that distort remote sensing data, 
especially during the cold season. The winter decrease in NDWI, accompanied by a decrease in 
the water mask area, is likely due not so much to the actual decrease in water volume as to the 
presence of ice, snow, and low atmospheric transparency. Therefore, using winter data without 
correcting for spectral and atmospheric distortions may reduce the reliability of monitoring.

Spring expansion of the water surface and increase in NDWI indicate high sensitivity of the 
index to flood events, making it a valuable indicator for early warning systems and reservoir 
assessment during snowmelt periods. Summer stabilization and autumn decrease in NDWI 
reflect the seasonal cyclicity of the water balance. These data confirm that NDWI can act not 
only as an indicator of a static state, but also as an input variable in forecasting models.

The simulation results presented in Figure 4 revealed a significant impact of the quality of 
training data on the forecast accuracy. The model trained without winter data showed more 
stable behavior, better following the seasonal trajectory of water volume. This is confirmed by 
both the visual agreement with actual measurements and the lower variance of forecasts. At 
the same time, the inclusion of winter data containing spectral distortions of NDWI led to the 
appearance of fluctuations and erroneous peaks in the forecasts, especially during transition 
periods. This demonstrates the model’s inability to handle seasonally compromised data and 
highlights the need for input feature cleaning or selection, especially in the presence of snow, 
ice, and cloud cover.

In terms of model performance, our comparison showed clear advantages of the XGBoost 
approach, especially when excluding winter data. The practical implications of this work have 
important implications for water resources management. Our best-performing model achieved 
sufficient accuracy for operational monitoring during ice-free periods, providing a cost-effec-
tive complement to ground-based measurements. 

Despite the demonstrated performance of the XGBoost model, several limitations need to 
be considered when interpreting the results and formulating future research directions.

The model relies solely on two exogenous predictors extracted from remote sensing data. 
Although NDWI and LST_C are physically interpretable indicators, they do not capture the full 
range of hydrological factors affecting reservoir dynamics. Variables such as daily precipita-
tion, inflow, evaporation, controlled emissions, reservoir management regimes, and other me-
teorological parameters were excluded due to the lack of high-quality publicly available data 
with sufficient temporal and spatial resolution. Another critical limitation concerns the size of 
the training and testing dataset. For supervised machine learning problems, especially those 
involving non-stationary environmental processes, this represents a relatively small sample 
size. However, the study shows that even simple but physically sound adjustments to the train-
ing configuration can yield significant performance gains. In particular, excluding cold season 
data from the training set resulted in consistent improvements in model accuracy and stability. 
The model without winter not only showed lower average forecast errors but also showed 
reduced variance and greater generalization ability. This finding highlights the importance of 
considering seasonal effects and the reliability of satellite input data when developing fore-
casting models for water resources management.
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Future work
While the initial results look promising, there is still much room for further development of 

the approach. Several directions seem particularly worth exploring.
First, from a feature engineering perspective, it makes sense to consider using a modified 

version of the Normalized Difference Water Index, specifically MNDWI. This index appears to 
provide better robustness to urban and vegetation noise compared to the classic NDWI. Thus, 
including MNDWI could improve the accuracy of water surface retrieval, especially in complex 
shoreline environments, which tend to be challenging. Then there is the idea of expanding the 
feature set by introducing more meteorological data. Another promising avenue is to integrate 
lagged features, such as NDWI from the previous time step or lagged land surface tempera-
ture (e.g. NDWI(t−1), LST_C(t−1)). These kinds of features help to capture the inertia in how 
water area and temperature evolve, which is important to better model temporal dynamics 
in hydrological systems. Therefore, time dependencies cannot be ignored. Given how well 
ensemble methods and hybrid models have performed in related hydrological problems, it 
seems reasonable to explore stacking models, maybe something like combining XGBoost with 
neural networks or plugging Random Forest into a larger ensemble. This may squeeze out 
some additional performance, especially in edge cases. There is also the issue of seasonality 
and long-term climate trends. These are non-trivial, and ignoring them may limit the quality 
of the forecast over longer horizons. Using tools like STL decomposition or even something 
simpler like a Fourier transform can help reveal these cyclic patterns. 

Conclusion 
This article demonstrates reservoir volumes changes over time using satellite indices, pri-

marily NDWI and LST, obtained from Google Earth Engine, and coupled them with machine 
learning models built and run in Google Colab. The main focus was on the Tasotkel Reservoir, 
with about 250 weekly data points spanning the period from 2020 to 2024. This gave us a 
decent temporal resolution to track both seasonal trends and longer-term patterns.

In terms of performance, the difference between the two models was quite striking. For the 
full dataset, including winter, XGBoost gave us an RMSE of 61.49, an MAE of 54.63, and an R² 
of 0.659. Without winter, those numbers improved slightly, with the RMSE dropping to 60.28, 
the MAE to 52.79, and the R² rising to 0.673. So it looks like the winter data degrades the 
model’s quality a bit, which makes sense given how ice and snow interfere with the optical 
and thermal readings. LST is particularly sensitive at sub-zero temperatures, and NDWI tends 
to level off when surface reflectivity is dominated by snow cover.

In contrast, the linear regression model really struggled. Including winter months, it showed 
an RMSE of 92.03, an MAE of 77.81, and a very weak R² of 0.237. Excluding winter did not help 
either: RMSE of 93.79, an MAE of 80.10, and an R² of 0.207. This suggests that simple linear 
approaches cannot truly capture the more complex, non-linear dynamics of reservoir volume 
change, especially under variable seasonal conditions. 
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