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USING GRAPH CENTRALITY METRICS FOR DETECTION OF 
SUSPICIOUS TRANSACTIONS

Abstract: Detecting suspicious transactions remains a persistent challenge due to increas-
ingly sophisticated methods of money laundering and fraud within modern financial systems. 
This study introduces a graph-based analytical framework utilizing social network analysis 
for identifying potentially illicit transactions. Financial entities (individuals or institutions) 
are represented as nodes connected by directed edges symbolizing transactions. Applying 
centrality measures – including degree, betweenness, closeness, and eigenvector centrality - 
we quantify each node’s influence and involvement in financial flows. Nodes exhibiting high 
betweenness and degree centrality values emerge as potential ‘bridges,’ controlling significant 
transaction pathways. Our analysis demonstrates these high-centrality entities often mediate 
substantial transactional volumes or integrate otherwise disconnected sub-networks, high-
lighting them as prime targets for investigation. Visualizing localized subgraphs around these 
pivotal nodes further uncovers densely interconnected structures suggestive of hidden clus-
ters involved in complex money-laundering operations. Integrating our method with real-time 
machine learning analytics significantly enhances both the speed and precision of suspicious 
account detection. Empirical validation using anonymized banking data illustrates that cen-
trality-based screening enables proactive identification of anomalous patterns, substantially 
improving traditional, reactive anti-money laundering measures. This approach not only ad-
dresses existing gaps - such as the static nature of traditional supervised learning models - but 
also overcomes computational and scalability barriers characteristic of prior advanced tech-
niques. Additionally, the proposed approach provides enhanced interpretability, supporting 
compliance officers in making informed decisions. The findings emphasize the necessity of 
continuously adapting analytical techniques to emerging threats. Ultimately, our research pro-
vides financial institutions with robust, actionable tools for early-stage fraud detection, under-
scoring graph analytics as vital to financial security within our interconnected global economy.

The relevance of this research stems from the increasing complexity of financial fraud, 
which often evades traditional rule-based detection systems. The study aims to address this 
gap by employing graph-based techniques that allow for the structural analysis of transac-
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tion networks. Centrality metrics are used to identify key actors whose positions may indicate 
hidden coordination or anomaly patterns. A directed transaction graph is constructed from 
synthetic financial data, and a set of experiments is conducted to compute centrality measures, 
extract subgraphs, and visualize network topology. The results are evaluated in comparison 
with machine learning benchmarks to assess the effectiveness and interpretability of the pro-
posed approach.

Keywords: social network analysis, centrality measures, financial fraud detection, between-
ness centrality, anti-money laundering, transaction networks, graph-based anomaly detection, 
explainable AI.

Introduction
Modern financial systems are increasingly reliant on high-speed, digital transaction pro-

cesses, making them more efficient yet simultaneously vulnerable to sophisticated schemes of 
fraud and money laundering. A notable historical case that underscores these vulnerabilities 
is the collapse of the Bank of Credit and Commerce International (BCCI) [1]. Due to insufficient 
transparency and inadequate oversight mechanisms, the BCCI scandal illustrated how multi-
national financial institutions could conceal illicit activities for prolonged periods. Although 
technological advancements now allow for real-time monitoring and data analysis, criminal 
networks continue to evolve, capitalizing on decentralized structures and multiple layers of 
intermediaries. 

In this context, methods based on graph analytics and social network analysis (SNA) have 
emerged as powerful tools for identifying suspicious nodes and transaction flows in complex 
financial networks. By representing senders, beneficiaries, and the corresponding monetary 
transactions as nodes and edges, respectively, researchers can leverage centrality metrics 
– such as degree, betweenness, closeness, and eigenvector – to detect anomalies, pinpoint 
pivotal actors, and assess the overall resilience of the network. This approach enables finan-
cial institutions and regulatory authorities not only to analyze historically known fraud pat-
terns but also to proactively identify new, undiscovered threats. Consequently, the integration 
of graph-based methodologies into anti-money laundering (AML) systems holds significant 
promise for safeguarding financial integrity and preventing large-scale abuses similar to those 
exemplified by BCCI [1].

This perspective is aligned with the international guidelines of the Financial Action Task 
Force (FATF), which emphasize the importance of adopting proactive, data-driven monitoring 
systems in financial institutions to counter money laundering and terrorist financing [2].

Literature review and problem statement
The historic collapse of the Bank of Credit and Commerce International (BCCI) revealed as-

tonishing levels of institutionalized fraud, as investigators discovered that the bank’s sprawl-
ing transnational network facilitated unauthorized fund transfers on multiple continents [3]. 
Because regulatory bodies struggled to coordinate their oversight across diverse jurisdictions, 
BCCI’s top executives successfully obscured illicit transactions behind intricate layers of corpo-
rate structures. These findings underscored just how critical international regulatory coordina-
tion is to prevent large-scale money laundering, while also highlighting the inherent vulnera-
bility of financial institutions operating in rapidly globalizing markets. In an academic context, 
BCCI’s case serves as an exemplar of systemic failure: the sheer volume of illicit activity that 
occurred – even under partial regulatory scrutiny – illuminated the pressing need for advanced 
detection methods capable of transcending traditional auditing mechanisms.

Building on the lessons from this significant financial scandal, subsequent scholarship on 
anti-money laundering (AML) and fraud detection pivoted toward sophisticated, data-driven 
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techniques. Ahmed et al. [4] systematically reviewed anomaly detection methodologies in the 
financial sector, concluding that single-method approaches – such as basic statistical thresh-
olds or rule-based systems – struggle to adapt to constantly evolving criminal strategies. Their 
meta-analysis showed that while simpler models were sometimes easier to interpret, they 
frequently missed subtle anomalies or generated spurious alerts, thereby reducing operation-
al effectiveness. This indicated that more adaptive solutions, integrating machine learning 
or hybrid detection strategies, were necessary to mitigate both false negatives (overlooking 
genuine fraud) and false positives (flagging benign transactions).

Huang et al. [5] further advanced the conversation by applying a machine-learning-based 
k-means clustering algorithm to financial datasets, revealing distinct transaction “clusters” 
suggestive of anomalous behavior. Empirically, they demonstrated that the algorithm could ef-
fectively adapt to newly emerging transaction patterns, a crucial advantage given the dynamic 
tactics employed by illicit actors. However, their study also reported substantial computational 
overhead in high-volume environments, where continuously streaming data demanded fre-
quent model updates. From an academic perspective, these results underscore a fundamental 
tension in AML research: while increasingly complex algorithms can improve detection accu-
racy, they may also necessitate extensive computing resources and careful parameter tuning. 
This trade-off highlights the need for scalable system architectures, a balanced approach to 
model interpretability, and ongoing updates to account for new types of fraudulent activity – 
all of which remain core challenges in the modern AML landscape.

Subsequent studies increasingly adopted supervised learning paradigms, reflecting a de-
sire to improve the precision and scalability of AML efforts under rapidly changing conditions. 
Savage et al. rigorously tested Random Forest and Support Vector Machine (SVM) models 
on transaction-network features, demonstrating robust detection rates for known fraudulent 
patterns [6]. Notably, their results suggested that these models could accurately classify many 
high-risk entities, indicating strong predictive power when sufficient historical training data 
was available. However, an important takeaway was the pronounced performance decline 
when criminals deployed entirely new schemes or significantly altered their methods—circum-
stances where the underlying training data no longer mirrored real-world conditions. From an 
academic standpoint, this underscores a key limitation of supervised models: their reliance on 
representative training sets makes them vulnerable to evolving criminal activity that does not 
match existing patterns.

Mirroring these concerns, Sun et al. [7] developed a specialized decision tree algorithm 
that incorporated a focused feature selection process designed specifically for AML applica-
tions. Their study showed that limiting the model to the most relevant transaction variables 
enhanced both accuracy and interpretability. The decision tree approach allowed compliance 
officers to trace exactly how the model flagged certain operations, satisfying regulatory de-
mands for transparent, justifiable decisions. However, the authors also cautioned that the de-
cision trees, by nature, can become too simplistic if crucial features are omitted – potentially 
missing complex behaviors that more sophisticated models might capture.

Building on these supervised foundations, Pambudi et al. [8] introduced principal compo-
nent analysis (PCA) as a dimensionality-reduction tool, streamlining large input vectors into a 
smaller set of latent features. Their method improved classification speed and yielded higher 
overall accuracy, primarily because it eliminated redundant or weakly predictive features that 
could clutter traditional classifiers. Yet a core limitation emerged: in reducing dimensionality, 
PCA sometimes obscured outlier points that were critical for detecting rare but highly damag-
ing fraudulent behaviors. This trade-off exemplifies an enduring tension in AML model design: 
balancing computational efficiency and the capacity to capture exceptional but meaningful 
data anomalies.
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Along a similar line, Zhu et al. [9] benchmarked artificial neural networks (ANN) against 
logistic regression in credit card fraud detection, finding that ANN excelled in modeling non-
linear relationships within transaction data. Their experiments suggested that neural architec-
tures capture subtle indicators of deception missed by linear or stepwise methods, improving 
recall in complex, real-world scenarios. However, logistic regression continued to offer better 
real-time applicability due to its lower computational overhead, an indispensable factor for 
financial institutions that process hundreds or thousands of transactions per second.

Yet, despite the efficacy of purely attribute-based (or tabular) machine learning systems, 
researchers increasingly recognize that modeling financial transactions as a network—link-
ing senders, beneficiaries, and intermediaries – can reveal deeper patterns of illicit behavior. 
Building on this idea, Sousa Lima [10] conducted an extensive study utilizing real-world Bra-
zilian banking data, where he applied social network analysis (SNA) techniques to trace mul-
ti-layered schemes orchestrated by shell companies. Notably, his results showed that nodes 
which appeared innocuous in conventional tabular analyses were, in fact, part of tightly woven 
clusters funneling suspicious funds across international jurisdictions. By detecting atypical 
“hub” nodes and suddenly formed network bridges, Sousa Lima’s approach substantially re-
duced false positives, primarily because it captured relational structures that standard point-
wise algorithms overlooked. This outcome highlights the critical advantage of examining how 
specific entities function within a collective web of interactions rather than focusing solely on 
isolated variables like transaction volume or frequency.

Expanding on the network perspective, Deprez et al. [11] offered a comprehensive over-
view of state-of-the-art graph-driven anti-money laundering methodologies, surveying 97 
scholarly sources from Web of Science and Scopus databases. Their large-scale comparison, 
employing the Elliptic dataset of 203,769 Bitcoin transactions, revealed two pivotal insights. 
First, Graph Convolutional Networks (GCNs) achieved higher accuracy in detecting malicious 
nodes compared to simpler classification techniques, such as logistic regression or decision 
trees, confirming their superior capacity for modeling intricate relationships in transactional 
graphs. Second, while GCN-based methods outperformed others by a significant margin in 
capturing evolving money-laundering patterns, the authors noted steep computational de-
mands, including increased training time and memory usage. This underscores a trade-off 
routinely encountered in real-world applications: although complex architectures often excel 
in uncovering hidden clusters or subtle transactional anomalies, they also pose challenges in 
scalability and operational feasibility – especially in environments requiring real-time or near-
real-time screening. Deprez et al. [11] further emphasized that many existing models focus 
on historically known fraud typologies, raising questions about how effectively they adapt to 
novels, rapidly mutating criminal behaviors. Academically, these findings suggest that future 
AML research must balance the algorithmic sophistication afforded by network-based deep 
learning with the need for efficiency, interpretability, and continuous model updating to stay 
ahead of increasingly agile money-laundering networks.

Further emphasis on centrality metrics can be found in the study by Gerbrands et al. [12], 
who investigated multiple real-world money-laundering cases to illustrate how degree, be-
tweenness, and closeness centrality can pinpoint nodes exerting disproportionate influence 
over financial flows. A major finding was that high-betweenness nodes, or “choke points,” often 
orchestrated significant movement of funds between otherwise isolated network segments. 
Crucially, the authors noted that such nodes tended to correlate with accounts already flagged 
by compliance teams, underscoring betweenness centrality’s strong empirical grounding in 
actual detection contexts. Yet, Gerbrands et al. [12] also criticized over-reliance on any single 
metric—particularly betweenness – because it can overlook cunning, low-degree intermediar-
ies that link sub-networks in ways less obvious than classic “hub” structures. From an academ-
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ic perspective, this affirms the complexity of money-laundering strategies: some bad actors 
deliberately minimize overt connectivity while secretly bridging essential transaction paths, a 
tactic easily missed by simplistic screening strategies.

In a bid to capture such multidimensional risk indicators, Smith and Allen [13] proposed 
a hybrid detection framework that integrates social network analysis (SNA) with graph-based 
outlier detection, enabling continuous recalibration of suspicious-entity profiles. Validat-
ed against extensive real-world transaction logs, their approach showed that static analy-
ses – regardless of how detailed – often fail to detect subtle, newly emerging schemes once 
criminals shift tactics or forge unorthodox connections. Instead, periodically updated network 
metrics proved more adept at spotting emergent clusters, albeit at a higher computational 
cost. Lee and Park [14] extended these insights into the cryptocurrency domain, focusing on 
high-throughput environments where wallets can swiftly transfer funds across multiple ad-
dresses. Their real-time anomaly detection achieved consistently high recall rates for flagging 
malicious activities, yet the authors cautioned about critical scalability concerns in fast-grow-
ing blockchain ecosystems. Taken together, these studies suggest that while multi-metric, con-
tinuously updated analyses hold promise for detecting sophisticated laundering operations, 
they also introduce significant operational challenges in terms of computational overhead and 
data management—underscoring the need for well-optimized systems and robust institution-
al support to ensure timely, effective AML monitoring.

One of the main technical challenges in applying graph-based methods is the high com-
putational cost of calculating centrality metrics, especially in real-time environments. Metrics 
such as betweenness and eigenvector centrality require building and analyzing all shortest 
paths, which becomes resource-intensive for large-scale graphs.

To optimize performance, it is possible to use approximate algorithms, stream-processing 
frameworks (e.g., Apache Flink, Apache Kafka), and graph engines that support parallel com-
putation – such as cuGraph, GraphX, and other GPU-accelerated solutions.

In pilot implementations, simplified approaches are often used—for example, construct-
ing subgraphs only around suspicious nodes or aggregating transactions by time, geography, 
or participant type. These strategies significantly reduce graph size without losing essential 
structural information.

Additionally, pre-filtering transactions before the graph construction phase is recommend-
ed. This reduces the data volume and improves system responsiveness.

In another critical contribution, Wang et al. [15] introduced a dynamic graph representation 
learning framework to capture the fluid, time-sensitive evolution of suspicious transactions 
in large-scale financial networks. Through extensive experiments on real-world banking data, 
they demonstrated that updating node embeddings to reflect newly formed or dissolved re-
lationships substantially improved detection recall compared to static graph models. Howev-
er, their results also revealed the considerable computational burden of recalculating graph 
embeddings, particularly for institutions processing millions of daily transactions. Wang et al. 
therefore argued that unless organizations invest in specialized data architectures and paral-
lelized computing resources, the practical adoption of real-time dynamic graph analytics may 
remain limited.

Building on this notion of temporal complexity, Kim and Choi [16] focused on high-fre-
quency trading (HFT) environments, analyzing minute-by-minute or even second-by-second 
changes in node centralities. Their findings indicated that abrupt surges in betweenness or 
degree centrality served as strong precursors to orchestrated market manipulation, including 
front-running and wash trading schemes. Critically, they underscored that while the real-time 
recalculation of these metrics significantly enhances early fraud detection, it introduces laten-
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cy and throughput challenges – demanding near-instantaneous processing of vast, continually 
updating trade logs.

A parallel research trajectory applies multi-layer Social Network Analysis (SNA) specifically 
to cross-border remittances. In Zhao and Liu’s work [17], specialized centralities at various 
financial layers (such as peer-to-peer versus bank-to-bank) uncovered hidden corridors often 
exploited in large-scale laundering operations. The authors observed an appreciable jump in 
detection accuracy—especially for covert, smaller transactions – yet warned that integrating 
heterogeneous data sources from multiple layers could inflate system complexity and da-
ta-cleaning overhead. Similarly, Verma and Devi [18] combined embedded node features (like 
account type or historical risk rating) with SNA centralities to obtain highly granular alerts, 
thereby reducing false positives in complex, multi-layer settings. While their integrated ap-
proach demonstrated promising results in pilot studies, they also acknowledged the increased 
need for domain expertise to tune and interpret the expanded feature sets.

Despite these algorithmic and methodological gains, effective analytical tools must also be 
accessible to human investigators – a point emphasized by Moreno et al. [19] in their exam-
ination of visual analytics for large-scale AML detection. Through user-centered evaluations 
of interactive dashboards, they found that overlaying real-time SNA metrics, such as degree or 
betweenness, onto intuitive graphical interfaces accelerated the discovery of abnormal clus-
ters by nearly 40%. However, the authors also noted that the learning curve for interpreting 
high-dimensional transaction networks could impede adoption, necessitating focused training 
programs. Finally, Jha et al. [20] proposed a “hybrid AI” paradigm that blends rule-based detec-
tion, neural network embeddings, and SNA attributes, achieving more proactive AML coverage 
across diverse financial products. While their approach notably improved the detection of 
emerging fraud typologies, they cautioned that fragmented institutional structures—or a lack 
of cohesive data-sharing protocols – could nullify these benefits. Taken together, these studies 
highlight both the immense promise of dynamic, multi-layer graph analytics for AML and the 
significant operational, technological, and institutional hurdles that practitioners must navi-
gate to implement them on a scale.

Research Aim and Objectives
This study aims to develop and validate a graph-based methodology that leverages central-

ity metrics – particularly degree, betweenness, and closeness – to detect suspicious transac-
tions within financial networks. By applying social network analysis techniques in a real-time 
data context, the research seeks to provide a cohesive set of tools for the early detection of 
money laundering schemes and related illicit activities. Accordingly, the primary goal is to 
model financial transactions as a directed graph, where nodes represent senders and benefi-
ciaries and edges signify transaction flows. This representation may also integrate additional 
features, such as transaction volumes or timestamps, to enhance analytical precision.

In pursuit of this goal, the research entails the dynamic calculation of centrality metrics to 
identify nodes exhibiting atypical patterns that could indicate potential involvement in money 
laundering or fraud. It also involves the establishment of a real-time monitoring system capa-
ble of recalculating these measures as new transactions are recorded, thus allowing for rapid 
alerts when certain thresholds of suspicious activity are surpassed. A comparative analysis of 
degree, betweenness, and closeness centralities will help determine how each measure, indi-
vidually and jointly, can illuminate behavioral anomalies in the network.

Validation of the proposed methodology is envisioned through a combination of case stud-
ies and simulation experiments that mirror the complexity of large-scale, real-world financial 
ecosystems. Performance evaluations will be carried out to assess metrics such as precision, 
recall, and F1-scores, alongside an examination of scalability for higher-volume networks. The 
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study will conclude with the formulation of practical guidelines for financial institutions seek-
ing to adopt social network analysis in their anti-money laundering strategies, including rec-
ommendations for potential integration with machine learning approaches and consideration 
of additional metrics – such as eigenvector centrality – that may further optimize early-stage 
detection of illicit transactions.

The overall structure of the proposed approach, including the use of centrality metrics and 
their integration into transaction network analysis, is illustrated in the conceptual model be-
low (see Figure 1).

Figure 1. Conceptual Model of Research

Methods and Materials
Let us introduce the basic definitions necessary for applying centrality metrics for fraud 

detection purposes. In graph theory, a simple graph G (N, V) is a collection of two sets - the set 
of vertices of the graph N and the set of its edges E – unordered pairs of different elements of 
the set N. In this study, nodes are senders and beneficiaries, and edges are transactions that 
connect senders and beneficiaries and represent the transfer of money from the sender to the 
beneficiary. One of the most popular areas where graphs are used is Process Mining, an area 
that focuses on discovering, analyzing, and optimizing business processes based on event log 
data, and Social mining, an area that focuses on identifying social connections in social net-
works. However, in this study, the connections are not found in social networks, but in banking 
transactions.

The characteristic "centrality" allows us to determine the degree of importance of a graph 
node based on its location. Let's consider several ways to calculate it.

A. Degree centrality
Degree centrality measures how important a particular node is in terms of the number of 

connections it has to other nodes in the network, and for a weighted graph is calculated as 
follows:

 (1)

Where:
- i is the index of the vertex in question
- wij is the weight of the edge (i, j)
- N is the number of vertices in the graph.

B. Eigenvector centrality
The disadvantage of the previous measure is that it takes into account only the nearest 

neighbors of the node in question, while this measure takes into account the "influence" of the 
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(central) nearest neighbors themselves. The principle of the measure can be described as fol-
lows: "if my friends are influential, then I will be more influential." The formula for calculating 
this measure is:

 (2)

Where: 
- i is the index of the vertex in question 
- wij is the weight of the edge (i, j)
- λ is some normalization coefficient
To calculate eigenvector centrality, we need to transform this formula by introducing the 

notations,

 (3)

 (4)

Where 
-  is the vector consisting of the centrality values of each vertex
- W is the weight matrix of the graph in question
Using the entered notations, the original formula is transformed to Wv = λv, and this is al-

ready a classic problem of finding the eigenvectors of a matrix; as a final answer, it is necessary 
to take the eigenvector corresponding to the maximum eigenvalue.

C. Closeness centrality
The previous measures are usually classified as structural, while the next two measures 

under consideration are usually classified as geometric, since they are based on the shortest 
paths in the graph. Closeness centrality Cc(i) for the i-th vertex of the graph is calculated by 
the formula:

 (5)

Where 
- i and	j are vertex indices of the graph under consideration
- dij is the shortest path from vertex i to vertex j, meaning the minimum number of edges 

one must traverse to get from i to j
This measure has a straightforward physical meaning: the smaller the distances from ver-

tex i to the other vertices j in the graph (in the extreme case dij – 1, i.e., vertices i and j are 
connected by an edge), the smaller the denominator in the formula for Cc(i) becomes, and thus 
the greater its centrality value. It is important to note that this measure only makes sense for 
connected graphs, as the presence of isolated vertices or entire components would make the 
shortest paths to these objects effectively infinite, with all the resulting consequences.

D. Betweenness centrality
This measure is very popular, and often in various literary sources on Network Science, when 

the term "centrality" is mentioned, it is precisely betweenness centrality that is meant. The 
formula for calculating the value of this measure for the i-th vertex of the graph will already 
look more complicated:
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 (6)

Where
- σjk is the number of shortest paths from vertex j to vertex k
- σjk(i) is the number of shortest paths from j to k that pass through vertex i
Summation in this formula is performed over all possible pairs of vertices (j,k)

Simply put, this measure shows how often the vertex i acts as a “transshipment point” 
when traveling from one vertex of the graph to any other. It is quite effective in identifying 
“bottlenecks” in a graph – vertices that are part of one or several edges connecting two clearly 
defined clusters.

After the most important vertices by centrality have been identified, additional analysis of 
these vertices is carried out in order to clarify their role in the resulting social graph.

For a deeper analysis of the node with the highest betweenness centrality in the graph, 
several directions can be considered:

Neighbor analysis: study the nodes that are directly connected by a vertex. This helps to 
understand which nodes interact with the node most frequently.

Subgraph: Create a subgraph that includes the maximum-betweenness vertex and its 
neighbors to better understand its role in the local structure.

Roles in different paths: how often a given node participates in the shortest paths between 
other nodes. To do this, we select random pairs of nodes and check how often a node partici-
pates in linking them.

Structural holes: A high-betweenness vertex often serves as a bridge between several oth-
erwise unconnected parts of the graph.

Visualization: We visualize the subgraph by highlighting the vertex and its neighbors to 
better see its position in the network.

These methods make it possible to understand why exactly a given peak ended up in the 
top for mediation.
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Results and Discussion
Let's conduct an analysis on the application of the above methodology using masked trans-

action data from one bank using Python.

A. Loading and preparing data
We use the following libraries:

- pandas (pd)- for working with data in tables (Excel);
- networkx (nx)- for constructing graphs;
- plotly.graph_objects (go)- for creating interactive 3D graphics.

Loading data from an Excel file (DATA.xlsx), containing transactions between senders and 
receivers, into an object DataFrame (df ) using pandas. The data structure is oriented to repre-
sent unique identifiers of the sender Sender_BIN and the recipient Beneficiary_BIN.

B. Construction of the graph
Using the NetworkX library, we create a directed graph based on sender-receiver pairs, 

where each transaction between two entities is a directed edge, which allows us to visualize 
and analyze the connections between entities as nodes and edges. The graph uses columns 
Sender_BIN and Beneficiary_BIN, indicating senders and recipients in transactions.

C. Visualization of the graph
The graph visualization is implemented using the Plotly library. The layout of the nodes is 

configured, the distance between them and their position are controlled for visual display. For 
this, spring_layout, where parameters k, iterations and scale regulate the visual presentation of 
the graph. The resulting transaction graph is shown in Figure 2.

Figure 2. From-To Network Graph

In addition to the standard 2D layout, the same transaction network is also rendered using 
an interactive 3D visualization, which provides enhanced clarity for observing structural clus-
ters and node positioning (see Figure 3).
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Figure 3. From-To Network Graph in 3D Visualization

D. Calculating centralities
To analyze the importance of nodes in a network, centrality measures are used:
• Degree centrality shows the number of direct connections of a node;
• Closeness centrality reflects how close a node is to all others;
• Eigenvector centrality indicates nodes with high importance through their connection 

with other important nodes;
• Betweenness centrality identifies nodes through which many shortest paths pass.

For example, snippet sorts nodes by their betweenness centrality values   and outputs the 
top 10 nodes with the highest influence in the graph. Betweenness centrality values between-
ness centrality indicate how important a node is for transmitting information by measuring 
its participation in the shortest paths between other nodes. The higher the value, the more 
significant the node is in the network structure.

Table 1. Top 10 most influential nodes based on betweenness centrality values

Node number Betweennes centrality value
Node 729 0.00024152492420198153
Node 1500 0.00018672574645268257
Node 1873 0.0001770763911582743
Node 870 0.00017205292972288062
Node 829 0.00016549113941275785
Node 694 0.00014992953826333907
Node 1274 0.00013251781270987348
Node 9 0.00013110257393336028
Node 97 0.00012659954146263642
Node 3164 0.0001223967111566275
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Node 729 has the highest value (0.00024152492420198153), making it the most signifi-
cant "middleman" or "center" in the graph. Other nodes, such as 1500 and 1873, also have rel-
atively high betweenness centrality values, although lower than node 729. Computed nodes 
can play an important role in combating fraud, as they are critical points through which the 
greatest number of shortest paths link different parts of the graph pass.

E. Selecting key nodes
We determine the top 10 nodes for each centrality metric to identify the most significant 

network nodes in terms of their influence and role in the transaction structure. We calculate 
key centrality metrics for graph nodes and select the top 10 nodes with the highest values   in 
four categories: by degree, by proximity, by eigenvector, and by intermediation.

Node 729 stands out as important across all centrality measures, indicating its key role in 
the graph. Other nodes such as 870, 866, 829 also appear in several metrics, confirming their 
importance and versatility in the graph.

F. Visualization of subgraphs
Function implemented visualize_subgraph to create subgraphs around the central node, vis-

ualizing direct and indirect connections. In the subgraph, nodes are highlighted in different 
colors (central - red, direct connections - blue, indirect - green), which allows you to observe the 
structure of the local network and evaluate the influence of key nodes on neighboring ones. 
The result is shown below.

G. Finding common connections
The final stage of analysis looks for common direct and indirect connections between top 

nodes, which can be useful for identifying clusters and interconnected groups in the network.
Analyzing common links between top nodes helps identify clusters and patterns of inter-

actions. Nodes with many common links (both direct and indirect) are more tightly integrated 
into the network and may indicate highly interconnected groups of nodes that are important 
for the transfer of information or resources.

 
For top nodes, direct and indirect link analysis is performed to identify which entities are 

directly or indirectly connected to key nodes. Function analyze_connections returns a list of 
direct and indirect links for each node.
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Table 2. Analysis of direct and indirect connections for top 10 nodes

Node number Direct connections Indirect connections
Node 729 15 22
Node 1500 8 4
Node 1873 5 6
Node 870 3 11
Node 829 4 23
Node 694 8 11
Node 1274 7 7
Node 9 16 5
Node 97 4 7
Node 3164 2 2

The subgraphs of the most influential nodes by betweenness centrality are displayed in 
Figures 4 to 13.

Nodes with a large number of direct and indirect links (Fig.4), (Fig.11) are the central ele-
ments of the network. They can quickly reach other nodes and probably play a significant role 
in the transmission of information.

Nodes with a small number of direct but significant number of indirect links (Fig.7), (Fig.8) 
indicate nodes that, although they do not have many direct contacts, can influence a signifi-
cant number of nodes through intermediate links.

Nodes with a small number of both direct and indirect links (Fig.13) are generally consid-
ered less important for disseminating information or resources throughout the graph.

Figure 4. Subgraph for node 729                         Figure 5. Subgraph for node 1500

Figure 6. Subgraph for node 1873                       Figure 7. Subgraph for node 870
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Figure 8. Subgraph for node 829                           Figure 9. Subgraph for node 694

Figure 10. Subgraph for node 1274                         Figure 11. Subgraph for node 9

Figure 12. Subgraph for node 97                      Figure 13. Subgraph for node 3164

The identified nodes represent companies that acted as intermediaries in financial trans-
actions. Structural analysis determined that these companies actively interact with many dif-
ferent counterparties, which indicates its possible involvement in the withdrawal of money or 
participation in shadow schemes. The reason for its dubiousness appeared due to the unchar-
acteristic activity of the identified company – a high degree of connectivity with nodes.

Thus, the frequency of using this company as a transshipment can be determined by analyz-
ing its centrality in the graph and identifying suspicious patterns of behavior.

Network analysis based on calculated node centralities revealed key points through which 
the largest flows of information and resources pass. Identification of nodes with high degree 
and internodal centrality allowed us to identify central elements of the structure responsible 
for the distribution of transaction flows. Nodes with high eigenvector centrality demonstrat-
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ed importance for the entire network, as they exert influence through their connections with 
other significant nodes.

The approach of using centrality metrics to analyze interaction networks has significant 
potential in practice. In the financial sector, it can be used to monitor transactions and identify 
anomalous patterns associated with money laundering or fraud. It can also be useful for op-
timizing logistics and communications in complex networks, such as transportation systems 
or corporate supply chains, as it identifies key nodes on which to focus monitoring and man-
agement.

The conducted analysis showed the effectiveness of this approach in identifying structural 
features and important elements of the network. Future research can focus on developing 
algorithms for automatic detection of suspicious nodes in real time and on integrating the 
proposed approach with other data analysis methods.

Limitations and Potential Sources of Bias
Despite the positive results, the proposed approach has a number of limitations that must 

be considered when interpreting the findings.
First, the graph structure and centrality calculations depend on the completeness and qual-

ity of the input data. If certain transactions are unregistered or intentionally concealed—for 
example, through intermediaries or shell companies—key nodes may be excluded from the 
analysis, leading to distorted centrality values. This issue is particularly relevant in low-trans-
parency cross-border operations. It should also be noted that significant effort is required to 
normalize and clean the data before applying graph analysis.

Second, the centrality metrics used—such as betweenness and eigenvector centrality—as-
sume that all connections are equally significant. In practice, differences in transaction vol-
ume, currency, or participant type (e.g., individuals versus legal entities) can significantly affect 
a node’s actual importance. Incorporating edge weights and attribute-based analysis could 
improve precision but would increase model complexity and raise data requirements.

A third limitation arises from the static nature of the network snapshot. Suspicious activity 
may unfold dynamically over time, and without a temporal component, short-term anomalies 
or episodic schemes may remain undetected.

In addition, high centrality does not necessarily indicate illicit activity. Structurally central 
positions may also be occupied by legitimate entities such as payment providers, brokers, or 
financial institutions with high transaction volumes. For this reason, graph-based analysis 
should be complemented by contextual information such as Know Your Customer (KYC) data, 
geographic distribution of transactions, client profiles, and other relevant sources.

A promising direction for future research is the development of adaptive models that ac-
count for temporal changes in the network, the use of weighted centrality metrics, and the 
integration of graph analysis with machine learning techniques.

Ethical Considerations and Practical Risks
Graph-based anti-money laundering (AML) systems provide powerful tools for detecting 

suspicious financial activity, but their application raises significant ethical, legal, and opera-
tional concerns that must be addressed to ensure responsible deployment. While centrality 
metrics offer interpretable insights into network structure, they may incorrectly flag legitimate 
entities simply due to their position within a transactional graph—particularly in highly con-
nected or intermediary roles. These false positives can lead to reputational harm, unwarranted 
investigations, service disruptions, and potential legal liability.

Beyond the risk of incorrect classification, there are profound concerns related to data priva-
cy, regulatory compliance, and algorithmic fairness. The analysis of financial networks typically 
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involves sensitive client information, including personal identifiers, transaction histories, and 
behavioral profiles. Mishandling such data—whether through leakage, unauthorized access, or 
lack of safeguards—can violate privacy regulations and erode public trust. Notably, the Gen-
eral Data Protection Regulation (GDPR, EU 2016/679) and the Sixth Anti-Money Laundering 
Directive (6AMLD, EU 2018/1673) impose strict requirements for data minimization, lawful 
processing, and auditability in financial institutions. Similarly, the Financial Action Task Force 
(FATF) promotes a risk-based approach to ensure proportionality and protection of individual 
rights.

To mitigate these risks, institutions must implement robust technical and organizational 
controls. Key measures include:

• Anonymization or pseudonymization of sensitive data prior to analysis;
• End-to-end encryption and role-based access control throughout data pipelines;
• Audit logging of system decisions and investigator actions to ensure accountability;
• Bias monitoring and fairness assessments to prevent disparate treatment of clients based 

on geography, demographics, or behavioral clustering;
• Regular model validation and explainability testing, especially in high-impact use cases.

It is also critical to integrate human oversight into the decision loop. Suspicious entities 
identified by centrality metrics—such as those falling in the top 5% for betweenness or ei-
genvector scores—should undergo contextual review before any enforcement action is taken. 
Investigators should evaluate transaction volume trends, Know Your Customer (KYC) data, peer 
group behavior, and jurisdictional risk factors. For instance, an entity flagged for high network 
centrality may be deprioritized if its counterparties include reputable financial institutions 
with historically low risk, or escalated if it interacts with known high-risk entities or exhibits a 
sudden increase in transaction velocity.

To facilitate such decisions, the system architecture should support explainable interfac-
es, including graph visualizations, annotated paths, and rationales for alerts. For example: 
“Node 729 was flagged for appearing in 83% of shortest paths between two high-risk transaction 
clusters over a 48-hour period, with a 60% increase in transaction volume relative to baseline.” 
This transparency allows for informed decision-making and reduces the likelihood of unwar-
ranted escalation.

Ultimately, the ethical deployment of graph-based AML technologies requires a balance 
between analytical power and institutional responsibility. Ensuring data protection, procedur-
al fairness, and explainability is not only a matter of regulatory compliance - it is essential for 
sustaining the legitimacy and effectiveness of financial surveillance in modern institutions.

Technological Constraints and Real-Time Applicability
One of the key challenges in applying graph-based approaches to AML tasks is the high 

computational load. Calculating centrality metrics—particularly betweenness and eigenvector 
centrality—requires substantial resources, which complicates the analysis of large-scale data 
in real-time environments.

This limitation reduces the scalability of such solutions and calls for the implementation of 
more efficient technical strategies. Possible approaches include approximate algorithms, data 
aggregation prior to analysis, parallel processing, stream-based graph computation, and the 
use of graphics processing units (GPUs) to accelerate calculations. Modern graph analytics li-
braries, such as cuGraph, can significantly reduce execution time by leveraging hardware-level 
parallelism.

Recent advancements in real-time anomaly detection have demonstrated that integrating 
stream-based machine learning models with dynamic network features can significantly en-
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hance the responsiveness and adaptability of AML systems. For instance, the Graph Feature 
Preprocessor enables real-time subgraph-based feature extraction for financial crime detec-
tion, improving model accuracy and throughput. Similarly, SLADE employs self-supervised 
learning to detect dynamic anomalies in edge streams without labeled data, facilitating rapid 
adaptation to evolving patterns in financial transactions [22], [23].

Comparison with Alternative Detection Methods
Despite their high interpretability and structural informativeness, graph-based centrality 

metrics should be compared with other approaches such as supervised learning (e.g., Random 
Forest, SVM) and clustering algorithms (e.g., DBSCAN, k-means).

Supervised learning methods demonstrate high accuracy when labeled data is available, but 
they tend to lose effectiveness when confronted with new or previously unseen fraud schemes. 
Clustering algorithms can identify hidden groups, but they require precise parameter tuning 
and are often sensitive to noise, which reduces their stability. In contrast, centrality metrics do 
not rely on historical labels, making them especially useful in scenarios with limited training 
data or when detecting emerging anomalies. They also provide insight into the structure of 
interactions within the network—something that is difficult to capture using tabular features 
alone. However, in highly dense or noisy graphs, centrality measures may lose precision. The 
best results are often achieved by combining them with other techniques - for example, in en-
semble models that integrate both structural and statistical approaches.

Practical Implementation in AML Systems
The integration of graph analytics into existing AML infrastructures can be approached in 

several stages. Initially, centrality metrics may be used as a secondary filter after rule-based 
triggers, flagging only those transactions that appear in high-centrality subgraphs. These re-
sults can then be passed into case management tools (e.g., SAS AML, NICE Actimize), with 
interactive dashboards for investigators. GPU-accelerated graph engines like cuGraph and 
streaming pipelines using Apache Flink or Kafka enable real-time screening. For institutional 
adoption, standard operating procedures (SOPs), staff training, and model governance frame-
works must be implemented in parallel to technical deployment.

Conclusion
The present study demonstrates the significant analytical power of network-centric ap-

proaches for detecting potential money-laundering activities in complex financial systems. By 
analyzing direct and indirect connections of top-ranked nodes and examining multiple cen-
trality metrics—particularly degree, betweenness, and eigenvector—it becomes evident that 
certain entities act as pivotal intermediaries in transactional flows. These nodes occupy criti-
cal structural positions, evidenced by both extensive direct ties and numerous indirect linkag-
es, thereby suggesting that they facilitate an unusually large volume of monetary transfers or 
resource exchanges.

Such a finding proves highly relevant for practical applications in finance. The identification 
of these intermediary nodes, which may not always appear overly active on the surface yet 
maintain considerable influence through second- and third-tier connections, illuminates the 
covert architecture of illicit financial operations. In particular, observing uncharacteristic or 
anomalous degrees of connectivity serves as an early warning signal that the entity in ques-
tion could be enabling or concealing unauthorized fund transfers.

Moreover, the results confirm that the integration of centrality-based methods can be ef-
fectively employed beyond mere detection, for instance in optimizing communication paths 
within corporate supply chains or managing routing flows in transportation networks. By pin-
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pointing nodes that shape network structure and control resource movement, stakeholders 
can allocate monitoring resources and risk assessments more judiciously.

Nevertheless, opportunities remain for further refinement. Future research may empha-
size the development of automated real-time modules that continuously update centrality 
measures, enabling more immediate detection and intervention. An additional line of inquiry 
involves the extension of these techniques to encompass emerging digital finance platforms, 
such as cryptocurrencies and decentralized financial systems, where transaction anonymity 
and velocity present unique detection challenges. Overall, these findings underscore the po-
tential of graph-based analytics as a critical tool for financial intelligence, compliance, and 
broader network analysis, reinforcing their value in both academic inquiry and real-world im-
plementation.

Graph-based methods can be integrated into existing financial monitoring infrastructures at 
multiple levels. During the initial screening stage, they can serve as a “second filter” following 
rule-based systems - for example, when a predefined rule flags a group of transactions, a lo-
calized graph can be constructed, and centrality metrics can be calculated. In the investigation 
phase, the results of graph analysis (such as central nodes, their connections, and subgraphs) 
can be automatically transferred to case management systems (e.g., NICE Actimize, SAS An-
ti-Money Laundering) and visualized through interactive dashboards. Formalized decision pro-
tocols can also be introduced—for instance, if a client ranks in the top five by betweenness 
centrality, a mandatory document review is triggered. To scale such an approach, standardized 
procedures for graph interpretation and dedicated training for compliance teams are essential.

This is consistent with the objectives set out in the European Union’s Sixth Anti-Money 
Laundering Directive (6AMLD), which highlights the need for enhanced monitoring capabili-
ties and technological innovation in detecting financial crime [21].
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