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FEATURE SELECTION METHODS FOR LSTM-BASED RIVER 
WATER LEVEL AND DISCHARGE FORECASTING

Abstract: Accurate forecasting of river discharge and water levels is essential for effective 
water resource management, flood mitigation, and public safety. This study compares correla-
tion-based and PCA-based feature selection methods for LSTM forecasting models in the study 
area at Uba River basin, within Shemonaiha city in the East Kazakhstan region. The dataset 
spans from 1995 to 2021, with 1995 to 2019 used for training and validation and 2020 to 
2021 for testing. Both feature selection methods reduced the original predictor set to 13 fea-
tures while generally maintaining predictive accuracy. An ensemble of 10 LSTM models was 
trained using 60-day input sequences to forecast discharge and water levels over a 10-day 
horizon, reducing variance from random initialization and stabilizing predictions. Performance 
was evaluated using the Nash-Sutcliffe Efficiency. Results showed that correlation-based se-
lection performed comparably to the full-feature baseline in 2020 test set, suggesting that 
removing highly correlated predictors did not decrease short-term forecasts capacity of the 
model. The model with PCA-based selected features, while slightly lagging at longer lead 
times in 2020, exhibited advantages in most lead times with 2021 forecasts. However, overall 
predictive performance declined in 2021 compared to 2020, indicating that the hydrological 
conditions deviate more from the historical training record, and suggesting the need for model 
updates with relevant historical training data. Both feature selection methods successfully re-
duced dimensionality, while preserving performance capacity, though neither was universally 
superior across all forecast lead times. These results emphasize the value of systematic fea-
ture selection in hydrological modeling and highlight the importance of model adaptability to 
evolving environmental conditions.

Keywords: LSTM; feature selection; water level forecasting; ERA5-Land; PCA; flood moni-
toring.

Introduction 
Forecasting hydrological parameters such as river discharge and water level is an essential 

task for effective water resource management, flood monitoring and disaster prevention [1]. 
Accurate and timely predictions allow decision-makers to develop and implement strategies 
for reducing flood risks, optimizing reservoir operations, and ensuring public safety. Traditional 
approaches such as statistical or physically based models have been widely used in hydrologi-
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cal forecasting, however, they often require simplified assumptions and may fail to capture the 
complex, nonlinear relationships in hydrological systems [2]. With the advent of deep learn-
ing, neural networks, particularly Long Short-Term Memory or LSTM networks have emerged 
as powerful tools for time-series prediction [3].

Despite the widespread use of LSTM networks in hydrological forecasting [4], [5], identify-
ing the most relevant predictors to ensure robust and efficient model performance remains a 
challenge. Including irrelevant or redundant features can lead to overfitting, increased com-
putational cost, and reduced interpretability. To address these concerns, feature selection or 
dimensionality reduction techniques are employed to refine the input set. Both Principal Com-
ponent Analysis (PCA)-based feature selection and correlation-based feature selection aim to 
identify key predictors by reducing the original set of variables. While PCA highlights features 
that contribute most to variance, correlation-based selection eliminates redundant variables 
by assessing their relationships, ensuring that the selected predictors are both informative and 
minimally correlated. A systematic comparison of these methods in the context of LSTM-based 
hydrological forecasting is therefore important for understanding the trade-offs in complexity, 
interpretability, and predictive performance.

In this study, we investigate how correlation-based and PCA-based feature selection in-
fluence LSTM forecasting of river discharge and water level. Specifically, we compare these 
approaches to a full-feature baseline across multiple lead times and varying hydrological 
conditions to assess predictive accuracy. We organize the remainder of this paper as follows. 
Section 2 reviews the relevant literature and presents an overview of LSTM networks along 
with the feature selection methods considered. Section 3 details the dataset and the exper-
imental design, including the application of correlation-based and PCA-based approaches. 
Section 4 discusses the forecasting results, providing an in-depth comparison of the different 
feature subsets. Finally, Section 5 concludes by summarizing the main findings and offering 
directions for future work.

Literature review
Hydrological forecasting of discharge and water levels is crucial for water resources man-

agement and traditionally, forecasting relies on empirical or process-based models, but ma-
chine learning methods like LSTM networks have gained prominence for their ability to model 
complex, nonlinear temporal dependencies. LSTMs, a type of recurrent neural network, can 
learn long-term relationships in hydrological time series and have achieved accuracy on par 
with or exceeding that of conceptual hydrologic models [6], [7].

Not only have LSTMs improved accuracy, but they also enable leveraging large-scale da-
tasets. Studies have built LSTM models using continental-scale data to predict flow in both 
gauged and ungauged basins [8]. By integrating static catchment attributes with dynamic 
inputs, regional LSTM models transfer learned hydrological behavior to ungauged locations, 
yielding highly accurate predictions for ungauged basins [9]. This shows that rather than rely-
ing solely on physical equations, we can learn the river response from data if we provide the 
right inputs.

The performance of LSTM models in hydrology is highly dependent on the input features 
provided. The selection and engineering of predictor variables can markedly influence model 
accuracy [10]. In the work [11], it is noted that determining the relevant environmental covari-
ates like rainfall, evaporation, land use indices for streamflow modeling is essential to building 
accurate ML models. By excluding redundant variables, one can improve model interpretability 
and prevent the accuracy deterioration that occurs when irrelevant inputs introduce noise [12].

Two common feature selection approaches in hydrologic ML are correlation-based selection 
and PCA-based reduction. Correlation-based methods evaluate the relationship of each candi-



51

date predictor with the target or among predictors to select a subset, whereas PCA transforms 
the original variables into a smaller set of orthogonal components that explain most variance. 

A comprehensive comparison of eight filter-based input variable selection methods for 
monthly streamflow forecasting was conducted in [13]. Among these methods were: Pearson 
correlation coefficient, partial correlation, mutual information, and gamma test. In operational 
forecasting contexts, correlation-based selection is often the first step. For instance, we might 
include only the gauges that show the highest correlation with a river’s flow when training 
LSTM. By doing so, the model focuses on a few strong signals rather than many weak ones. 
The authors of [14] took this a step further by using an attention mechanism in an LSTM to 
dynamically focus on informative inputs for flood forecasting.

As for the PCA, in hydrology it has been used to condense highly correlated variables, for 
example, readings from multiple gauge stations, or a suite of climate indices into a smaller 
set of components before feeding them to an LSTM. Alternatively, it can be used to assess the 
contribution of individual features to the PCA components. In a study on groundwater level 
prediction the authors of [15] employed a hybrid PCA-LSTM model to streamline the data 
fed into the LSTM network. Moreover, a study focusing on evaporation prediction integrated 
PCA with LSTM models to address issues related to correlated predictive factors [16]. The 
application of PCA minimized multicollinearity among input variables, thereby enhancing the 
LSTM model’s performance in forecasting evaporation rates. Another study [17] explored the 
impact of dimensionality reduction techniques on improving the generalization capability of 
LSTM models for streamflow prediction, and evaluated methods like PCA, Kernel PCA, t-SNE, 
and autoencoders. Authors of [18] applied improved Principal Component Analysis or i-PCA to 
reduce the dimensionality of daily and monthly rainfall data from 1901 to 2021, enhancing 
the predictive accuracy of a 1D-CNN for flood forecasting.

In summary, prior studies consistently demonstrate that feature selection techniques, in-
cluding both correlation-based and PCA-based methods, can effectively reduce input dimen-
sionality in LSTM models while preserving predictive accuracy. These approaches address 
high collinearity and complexity in hydrological data and improve model interpretability by 
focusing on the most informative predictors. However, the optimal selection strategy may vary 
across catchments, time scales, and target variables, highlighting the need for further system-
atic comparisons of correlation-based and PCA-based feature selection approaches for river 
discharge and water level forecasting.

Methods and Materials
Data collection
The study area is located in the Uba River basin, within Shemonaiha city in the East Kazakh-

stan region. The area experiences a continental climate where seasonal variations significantly 
contribute to river discharge and water level fluctuations. To capture the hydro-meteorological 
conditions affecting river discharge and water level, data from three principal sources covering 
the period 1995–2021 was collected:

• Gauging station measurements – the gauging station coordinates are 50.61°N, 81.87°E.
• Meteorological station records – the meteorological station coordinates are 50.6°N, 

81.9°E.
• ERA5-Land [19] reanalysis data – extracted for a grid cell bounded by (50.55°N, 81.85°E) 

and (50.65°N, 81.95°E).
The visual representation of the study area is illustrated in Fig. 1.
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Figure 1. Visual representation of the study area, where blue marker – gauging station, 
green marker – meteostation, red bounding box – ERA5-Land grid cell.

Daily measurements of river discharge and water level were obtained from Kazhydromet, 
recorded at a gauging station located on the Uba River near Shemonaiha city. The observa-
tions of gauging station cover the 1995–2021 time period and the critical water level for this 
station is 430 cm. Local meteorological observations from the Shemonaiha city station were 
also provided by Kazhydromet. Although records date back to 1960, this study uses data from 
1995–2021 to match the gauging station time span. The station measurements include air 
temperature (mean, maximum, minimum), relative humidity (mean, minimum), precipitation 
and soil surface temperature (mean, maximum, minimum).

ERA5-Land, produced by the European Centre for Medium-Range Weather Forecasts (ECM-
WF), is a global reanalysis product that offers daily and sub-daily meteorological variables at 
approximately 9 km resolution [19]. The hydrometeorological features were extracted from 
ERA5-Land using Google Earth Engine [20], a platform for geospatial analysis with the follow-
ing steps: 

A polygon was defined to represent the bounding coordinates of ERA5-Land grid cell area, 
which cover both gauging station and meteorological station. This region of interest ensures 
that the extracted ERA5-Land data reflects the local hydro-meteorological conditions.

Google Earth Engine was queried for ERA5-Land data and filtered by the time span of gaug-
ing station and by the region of interest. In total, 24 variables were selected to capture key 
meteorological and land-surface processes, including: air temperature (2 m, skin temperature), 
soil temperature and moisture (multiple depths), snow parameters (cover, density, depth, water 
equivalent, snowmelt), hydrological fluxes (precipitation, runoff, evaporation), other indicators 
(dew point temperature, lake temperature, skin reservoir content).

The resulting daily time series of selected variables was exported from Google Earth En-
gine as a CSV file.

All datasets were synchronized to construct a time series of hydrometeorological features 
for LSTM-based forecasting. After collection and preprocessing, the final dataset comprised of 
9862 rows and 36 columns including the date column.
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Correlation-based feature selection 
A straightforward yet effective approach to feature selection is to exclude predictors that 

exhibit strong pairwise correlations. High correlations among features often indicate redun-
dancy, as multiple variables may be conveying essentially the same information. Retaining all 
such redundant features can unnecessarily increase model complexity, reduce interpretability, 
and potentially lead to overfitting. In this work, we computed a Pearson correlation matrix for 
all candidate predictors (Fig. 2).

Figure 2. Pearson correlation matrix for all candidate predictors.

Any two features with an absolute correlation value exceeding a predetermined thresh-
old were flagged as ‘highly correlated’. From each pair of highly correlated features, one was 
removed from the feature set. The correlation threshold is set to 0.7, although the choice is 
heuristic, it is widely used across various domains, as correlations above this value are typi-
cally considered strong [21], [22]. Because discharge and water level are our primary target 
variables for LSTM forecasting and we aim to forecast their future values based on their past 
observations, we explicitly protected them from removal even if they appeared in a highly 
correlated pair. 

By applying this threshold-based rule, we reduced our original feature set to 13 retained 
predictors and removed 22 redundant features. The final subset includes both observed hydro-
meteorological variables such as discharge, water level, mean air temperature, mean relative 
humidity, and precipitation, as well as reanalysis based variables: runoff sum, skin reservoir 
content, snow density, snow evaporation sum, soil temperature at 100 to 289 cm depth, total 
precipitation sum, volumetric soil water at 0 to 7 cm depth, and volumetric soil water at 100 
to 289 cm depth.
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PCA-based feature selection 
PCA is a widely used dimensionality reduction technique that transforms a set of possibly 

correlated variables into a smaller number of uncorrelated variables called principal compo-
nents. Unlike correlation-based methods, which focus on pairwise relationships between fea-
tures, PCA identifies directions in the feature space that captures the maximum variance in the 
data. While PCA is traditionally used for projection onto a reduced subspace, it can also assist 
in feature selection by highlighting variables that contribute most strongly to the principal 
components with the highest variance. Feature selection using PCA was performed through 
the following steps:

• Data standardization
• Principal components computation
• Feature contribution analysis
• Ranking and Selection
PCA was applied to compute the principal components of the dataset. Each principal com-

ponent represents a linear combination of the original features, with coefficients indicating 
their contribution. Before applying PCA, all numerical features excluding the date variable 
were standardized. Standardizing ensures that variables measured on different scales do not 
disproportionately influence the principal components due to their larger numeric range. 

Parallel analysis was used to determine how many principal components to retain [23]. In 
this approach, random datasets matching the dimensions of the actual data were generated, 
and the eigenvalues of their correlation matrices were computed. The eigenvalues from the 
real dataset were compared against the 95th percentile of the random eigenvalue distribu-
tion, retaining only those components with eigenvalues exceeding this threshold. This ensures 
that retained components capture meaningful variance rather than random noise. In Fig. 3 the 
choice of the number of components is illustrated:

Figure 3. Parallel analysis to choose the number of components.

To identify the most influential features, the loadings of each feature on the principal com-
ponents were examined. The absolute values of these loadings were computed and weighted 
by the fraction of variance explained by each principal component. This approach ensures that 
components with greater explanatory power contribute more to the feature selection process. 
The total weighted contribution of each feature across the first five principal components was 
aggregated, and features were ranked accordingly (Fig. 4).
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Figure 4. Feature importance by weighted contribution across the first five principal components.

The top 11 features from this ranking were selected. Additionally, we manually retained 
two target variables, discharge and water level, resulting in a final subset of 13 features. Re-
tained features list includes observed variables like discharge, water level, air temperature 
(mean, min, max), soil surface temperature (mean, min, max), as well as reanalysis variables 
like soil temperature at 28-100 cm depth, dewpoint temperature at 2m, total evaporation 
sum, temperature at 2m, volumetric soil water at 0-7 cm.

Model training and testing
A series of LSTM neural networks were employed to forecast future river discharge and 

water level. LSTMs are particularly well suited for sequence modeling tasks with temporal 
dependencies and have demonstrated effectiveness in hydrological forecasting applications. 
To further enhance robustness, an ensemble of LSTMs was trained for each feature set, as 
ensemble have been shown to reduce variance produced by random initialization of weights 
and stochastic nature of optimizers, while improving predictive performance compared to a 
single model. Experiments were conducted using Google Colab, which provides a cloud-based 
environment with access to an NVIDIA Tesla T4 GPU.

All networks in the ensemble (Fig. 5) followed the same architecture, each model contained 
a single LSTM layer of 32 hidden units, followed by a dense layer outputting predictions for 
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multiple future time steps for discharge and water level simultaneously. The LSTM layer em-
ploys a hyperbolic tangent activation function, while the dense layer is linear. The models 
were optimized via the mean squared error loss function and the Adam optimizer with learn-
ing rate set to 0.001.

Figure 5. Ensemble of LSTM models for discharge and water level prediction.

As a preprocessing step for the training of LSTMs, time series were organized into over-
lapping windows of 60 input time steps for each model, predicting the subsequent 10-time 
steps for both discharge and water level. For standardization, minimum and maximum values 
were computed on the training set, then applied to the validation and test sets to avoid data 
leakage. The full dataset was split by calendar years, retaining years not targeted for testing 
as the combined training and validation set, and reserving specific years which are 2020 and 
2021 as independent test sets. The details of the training, validation, and test set splits are as 
follows:

• Training set (X_train): 8,155 samples of shape (60, num_features).
• Validation set (X_val): 907 samples of shape (60, num_features).
• Test set 2020 (X_test_2020): 297 samples of shape (60, num_features).
• Test set 2021 (X_test_2021): 296 samples of shape (60, num_features).
The number of features varies depending on the experimental setup:
• Full feature set: 35 features
• Reduced feature set: 13 features
For each of the three feature sets, 10 separate LSTM models were trained. Training was 

performed for 20 epochs with a batch size of 32. To evaluate performance, the models were 
applied to the two separate test years, and ensemble statistics were derived by aggregating 
predictions across the 10 trained models.

Evaluation metrics 
To assess the performance of the time series discharge and water level forecasting models, 

we use the Nash-Sutcliffe Efficiency or NSE as the primary evaluation metric. NSE is widely 
used in hydrological modeling to measure how well simulated values match observed data. 
The NSE metric quantifies the predictive accuracy of a model by comparing its performance to 
that of a simple mean predictor. It is defined as:
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(1)

where  is the observed discharge or water level at time step i,  is simulated dis-
charge or water level,  is the mean of observed values, and n is the number of observations.

In the context of this study, higher NSE values indicate more accurate forecasts of river dis-
charge or water level. Lead time refers to the time interval between when a forecast is made 
and when the predicted event occurs. We compute NSE separately for each lead time, specif-
ically 1 through 10 days to reveal how predictive capacity evolves or reduces as the forecast 
horizon increases. Negative NSE values signify that the model predictions are less reliable 
than simply using the average of past observations. This makes NSE a robust and interpretable 
criterion for evaluating time-series forecasts in hydrological applications, as it directly relates 
model performance to baseline expectations derived from observed data variance.

Results
In this section, we present the results of our analysis of LSTM based river discharge and 

water level forecasts using different feature selection methods, including the full feature set, 
correlation reduced, and PCA reduced approaches, focusing on how these methods influence 
predictive performance and capture hydrological variability in the 2020 and 2021 test periods. 

Fig. 6 presents the NSE scores for discharge and water level forecasts during 2020 test 
period at lead times of 1–10 days. In both discharge and water level predictions, NSE remains 
higher than 0.85 for short lead times of 1–3 days across all three models. Notably, the correla-
tion-reduced model remains on par with the full-feature model for most lead times, indicating 
that removing highly collinear variables does not substantially degrade performance in 2020. 
The PCA-reduced model performs comparably at shorter horizons but begins to lag at longer 
lead times beyond day 4, indicating that certain event-specific factors may have been lost dur-
ing the dimensionality reduction process.

Figure 6. NSE scores comparison for discharge and water level forecasts for 2020 test year.

To illustrate model behavior on a single 10-day forecast sequence in 2020, Fig. 7 shows pre-
dicted discharge and water-level profiles starting on 2020-04-09. All three models produce 
similar trajectories, and the correlation-reduced forecasts align closely with the full-feature 
baseline. Under the hydrological conditions observed in 2020, it is demonstrated that feature 
selection approaches can optimize inputs without considerably compromising performance.
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Figure 7. Comparison of 10-day discharge and water level predictions starting 2020-04-09.

Fig. 8 compares NSE scores for discharge and water level in 2021, revealing more pro-
nounced model differences compared to 2020. The PCA-reduced model sometimes achieves 
equal or higher NSE than the other approaches at most lead times, while the correlation-re-
duced model experiences a noticeable drop at longer horizons. This suggests that PCA-based 
selection may isolate certain features that prove advantageous in specific flow regimes. Day-
by-day forecasts provide further insight.

Figure 8. NSE scores comparison for discharge and water level forecasts for 2021 test year.
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Fig. 9 presents a 10-day forecast window beginning on 2021-04-09. Here, the PCA-reduced 
model underestimates discharge for much of the sequence, even though it achieves high NSE 
overall when averaged across the entire year which highlights an aggregate vs. instance dis-
crepancy: PCA excels on average, yet it can falter in specific short-term events. In contrast, the 
correlation-reduced model overestimates the peak, but variates lesser from observed values.

Figure 9. Comparison of 10-day discharge and water level predictions starting 2021-04-09.

Despite using the same 1995–2019 historical training set, forecast performance is gen-
erally lower in 2021 than in 2020 for all models. Even though 2020 was also excluded from 
training, its conditions may have been closer to the multi-decadal average, allowing the mod-
els to generalize more effectively which emphasize the need for ongoing retraining or adap-
tive techniques to maintain alignment with evolving hydroclimatic conditions.

Conclusion 
In this study, we investigated the effects of correlation-based and PCA-based feature se-

lection on LSTM forecasts of river discharge and water level. Both approaches substantially 
reduced the dimensionality of the original dataset, yielding input sets that generally preserved 
predictive accuracy across multiple lead times. In particular, the correlation-reduced model 
performed on par with the full-feature baseline in 2020 test set, indicating that discarding 
highly collinear predictors can simplify the model without sacrificing short-term forecast ca-
pacity. By contrast, the PCA-reduced model showed distinct advantages in certain 2021 test 
set forecasts, highlighting that capturing dominant variance structures through principal com-
ponents could benefit under specific hydrological conditions.
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Notably, we observed performance discrepancies between 2020 test set and 2021 test set, 
while the training data covered 1995–2019. The models attained higher NSE scores in 2020, 
suggesting that its hydro-climatological conditions more closely resembled the historical re-
cord used for training. Meanwhile, the somewhat lower performance in 2021 points to the 
potential non-stationary environmental factors and distribution shifts over time, emphasizing 
the need for continuous or adaptive model updates.

Overall, both correlation-based and PCA-based methods proved viable for feature reduc-
tion, reducing model complexity and potentially mitigating overfitting. However, neither ap-
proach was universally superior at every lead time or under all flow conditions. Future work 
could explore hybrid techniques that combine correlation filtering with principal component 
analysis or investigate data-driven feature selection methods like attention mechanisms to 
further refine predictor sets for the specific task of river discharge and water level forecasting. 
Additionally, alternative feature selection approaches such as Mutual Information and Recur-
sive Feature Elimination could be explored to improve predictor selection and improve per-
formance of deep learning models. Mutual Information, by capturing non-linear dependencies 
between variables, could identify hydrological features that provide the most distinct infor-
mation. Recursive Feature Elimination, by systematically ranking and removing less relevant 
predictors, could offer a more structured way to optimize feature selection.

Furthermore, adaptive or continuous retraining, incorporating newly observed data, may 
enhance resilience against evolving hydroclimatic regimes and improve long-term forecast 
accuracy.
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