
104 Scientific Journal of Astana IT University
ISSN (P): 2707-9031   ISSN (E): 2707-904X

VOLUME 21, MARCH 2025

USING MLOPS FOR DEPLOYMENT OF OPINION MINING MODEL 
AS A SERVICE FOR SMART CITY APPLICATIONS 

Abstract: This paper presents the MLOps strategy, which adapts the automation principles 
of DevOps to the deployment and lifecycle management of artificial intelligence (AI) models. 
By leveraging high-performance automation, MLOps ensures seamless AI development and 
operations integration, enabling efficient and reliable model deployment. The study demon-
strates this approach by implementing the Astana Opinion Mining macro-service customized 
for sentiment analysis. This macro-service evaluates public opinions based on a criteria tax-
onomy for assessing the urban environment’s sustainable development. As a smart city ap-
plication, the system facilitates the collection and analysis of citizen feedback to assess the 
performance of city services and inform urban planning decisions. Technologically, the MLOps 
strategy employs containers and microservices to construct robust data and process pipelines. 
Four core pipelines were developed in this research: data collection, feature engineering, ex-
perimentation, deployment, and maintenance. The data collection pipeline is achieved through 
automated crawling from diverse sources such as social media and other internet platforms. 
The feature engineering pipeline ensures data preprocessing by removing noise, identifying 
message languages, categorizing topics, and preparing data for further analysis. The experi-
mentation pipeline incorporates services for data labeling, model training, and performance 

Aigerim Mussina
PhD student of Computer Science, Department of Computer Science
mussina.aigerim95@gmail.com, orcid.org/0000-0002-7043-0810
Al-Farabi Kazakh National University, Kazakhstan

Didar Yedilkhan
PhD, Head of the Scientific and Innovation Center “Smart City”
d.yedilkhan@astanait.edu.kz, orcid.org/0000-0002-6343-5277
Astana IT University, Kazakhstan

Yermek Alimzhanov
Master of Mathematics, Director of Digital Institute of Lifelong Education
ermek.alimzhanov@astanait.edu.kz, orcid.org/0000-0002-8758-2220
Astana IT University, Kazakhstan

Aliya Nugumanova
PhD, Head of the Scientific and Innovation Center “Big Data and 
Blockchain Technologies”
a.nugumanova@astanait.edu.kz, orcid.org/0000-0001-5522-4421
Astana IT University, Kazakhstan

Sanzhar Aubakirov
PhD, Department of Computer Science
aubakirov.sanzhar@gmail.com, orcid.org/0000-0002-8416-527X
Al-Farabi Kazakh National University, Kazakhstan

Aigerim Mansurova 
Master of Technical Sciences
222215@astanait.edu.kz, orcid.org/0009-0003-1978-9574 
Astana IT University, Kazakhstan

DOI: 10.37943/21CPQX5616

Copyright © 2025, Authors. This is an open access article under the Creative Commons CC BY-NC-ND license
Received: 07.12.2024            Accepted: 24.03.2025         Published: 30.03.2025



105DOI: 10.37943/21CPQX5616
© Aigerim Mussina, Didar Yedilkhan, Yermek Alimzhanov, 
    Aliya Nugumanova, Sanzhar Aubakirov, Aigerim Mansurova

evaluation customized to sentiment analysis tasks. Finally, the deployment pipeline and main-
tenance pipeline deliver trained models to end-users, ensuring their continual improvement 
and adaptation. Using this MLOps framework, four models of sentiment analysis were tested 
in Russian: «Blanchefort,» «Sismetanin,» «MonoHime,» and «Dostoevsky.» The «Blanchefort» 
showed an accuracy of 71,43%. The resulting MLOps framework is fault-tolerant, scalable, and 
enables real-time urban environment assessments. By automating workflows, the architecture 
enhances operational efficiency, offering practical applications for smart city initiatives and 
sustainable urban development, contributing to better decision-making. 

Keywords: Sentiment Analysis; Smart City; Urban Environment; Opinion Mining; Microser-
vice Architecture

Introduction
The current decade is characterized by a steady increase in the number of software prod-

ucts that use advanced achievements of artificial intelligence. More and more solutions based 
on machine learning are moving from the category of research projects to the category of in-
dustrial applications. Accordingly, more work is being devoted to accelerating and standardiz-
ing the development of such applications. At the same time, the changeable and experimental 
nature of machine learning often contradicts the requirements of reliability, explainability, 
reproducibility, and scalability imposed on the quality of software products. It thereby causes 
a gap between the process of developing machine learning models and the process of their 
operation [1]. MLOps, as a methodology for optimizing the life cycle of machine learning, is a 
paradigm designed to bridge this gap [2], [3]. Its goal is to manage the quality of production 
and operation of machine learning models [4], [5]. 

In this paper, the MLOps is employed methodology to design the Astana Opinion Min-
ing macro service, which collects, processes, and analyzes feedback from Astana residents 
published on social media platforms regarding the performance of municipal utilities, trans-
portation, social, and other services. The primary objective of this service is to support de-
cision-making at the operational level, providing city authorities with an understanding of 
citizens’ specific needs while highlighting any shortcomings in the city’s services. Additionally, 
this service aims to contribute to the overall assessment of the city’s sustainable development 
at the strategic level according to the SULPiTER methodology to calculate the sustainability 
index of the urban environment of Astana in the concept of smart cities [6], forming part of 
a digital framework for urban planning and management alongside other smart city applica-
tions.

Our work is motivated by research on the bottom-up concept of smart cities development, 
which emphasizes the importance of open innovation processes [7], [8] and crowdsourcing [9], 
[10] as key mechanisms for managing change. Active and passive crowdsourcing are consid-
ered promising tools for both evaluating and supporting management and planning processes 
in the context of smart cities development [11], [12]. Passive crowdsourcing, which involves 
collecting big data from social networks, covers a much larger audience than active crowd-
sourcing, which is represented by specialized mobile applications, electronic voting systems, 
and other means. 

According to [8], passive crowdsourcing has significant potential due to the abundance of 
unused and unaffected open data on the Internet. However, in terms of data quality, passive 
crowdsourcing is significantly inferior to active crowdsourcing since big data in social net-
works are often heterogeneous, noisy, unrepresentative, or unreliable [13], [14]. Accordingly, 
developing an opinion extraction service that can function flawlessly in a real work environ-
ment, processing heterogeneous, noisy, and contradictory data streams from social networks, 
goes far beyond the standard machine learning process launched in a local academic system 



106 Scientific Journal of Astana IT University
ISSN (P): 2707-9031   ISSN (E): 2707-904X

VOLUME 21, MARCH 2025

[15]. This study of leveraging MLOps methodology and passive crowdsourcing hypothesizes 
that a modular NLP-driven opinion mining system can efficiently process and analyze noisy 
social media data to provide actionable insights for smart city decision-making at operational 
and strategic levels.

The contribution of our work lies in the fact that we use the MLOps methodology; we im-
plement the modular architecture of the Astana Opinion Mining macro-service, customized for 
various tasks and infrastructure facilities, based on the taxonomy of criteria for sustainable 
development of the urban environment. For each criterion, a list of keywords in two languages 
(Kazakh and Russian) is automatically generated based on Topic Modeling, according to which 
reviews are searched, and a list of sites and social media is set where these reviews can be 
found. The feedback obtained by the crawler is fed into the NLP pipeline, where it undergoes 
processing, validation, relevance assessment, and classification based on a defined criteria 
taxonomy. The resulting texts are further analyzed using the trained Opinion Mining model to 
extract aspect-oriented polarities. A diagram of the data flows for the proposed macro service 
is presented in Figure 1.

Figure 1. Data Flow Diagram for a macro service for collecting, processing and analyzing feedback 
from citizens of Astana Opinion Mining.

The macro service can be accessed through two methods: 1) through the web interface as a 
tool for collecting and measuring public opinion in the context of customizable tasks and ob-
jects; 2) through the API as a module within smart city applications to support decision-mak-
ing at the operational and strategic level. 

Literature Review 
MLOps is an emerging field of research, and existing works can be broadly categorized into 

three classes: 1) methodological research on the ideology, concepts, trends, and challenges of 
MLOps; 2) instrumental research that focuses on MLOps development platforms and technolo-
gies; 3) applied research that describes specific cases of MLOps application. This classification 
is consistent with the definition of MLOps given in [16], according to which MLOps includes 
several aspects, such as (a) conceptual attitudes, (b) development culture, (c) best practices.



107

a. Methodological research
The work of [4] is worth noting, as it significantly contributes to the systematization of 

MLOps research. The authors of this work developed an MLOps taxonomy to better understand 
the methods and prospects of this emerging field of knowledge. Based on the most important 
conclusions obtained from the taxonomy, they are trying to formulate a new standard for ma-
chine learning projects. While data preparation, training, and testing have traditionally been 
considered the key elements of pipelines in machine learning projects, the new standard em-
phasizes the importance of continuous monitoring, sustainability assessment, and explicable 
artificial intelligence. The proposed standard also attaches special importance to key perfor-
mance indicators (KPIs), which should correspond to the metrics used by data specialists to 
assess the quality of the models being developed. 

The work [17] contributes to forming MLOps standards by offering a three-level meta-mod-
el that defines the primary artifacts for designing MLOps-based applications. At the upper 
level, the operational context is defined, describing the conditions under which the transfer of 
models can be carried out. For example, a task can be reused in a new context if the task struc-
tures are equivalent, even if the domains have different feature spaces. This level also contains 
detailed information about the models involved in the work, and the models themselves, in 
turn, are determined by the optimal tuning of their hyperparameters. At the middle level, oper-
ational policies regarding security, privacy, performance, and model monitoring are set. Finally, 
instances of technological components of machine learning are defined at the lower level. 

In [18], the MLOps methodology is considered from the point of view of data quality. The 
authors point out that MLOps problems are often associated with data management problems, 
given the strong dependence of machine learning models’ quality on the source data quality. 
They are trying to develop a fundamentally new MLOps methodology based on a joint under-
standing of data quality and subsequent (downstream) machine learning processes. At the 
same time, as the authors note, their methodology requires not only novelty but also practical 
value for a much larger number of machine learning scenarios and models than were consid-
ered in their previous works (see, for example, [19], [20], [21]). 

In [22], a pipeline based on traditional DevOps practices is proposed, which includes the 
stages of developing machine learning models. Compared to traditional DevOps, the pipeline 
has a new validation module that supports two additional cycles: optimization and debugging. 
Suppose the module determines that the machine learning model is unsuitable for the avail-
able data or algorithms. In that case, it returns to the planning stage to optimize the model. 
And only after optimization and debugging the machine learning code is integrated into the 
overall system code. 

In [23], approaches to the organization of the life cycle of a machine learning project are 
considered from the standpoint of technical, organizational, behavioral, and temporal aspects. 
The authors consider MLOps projects as sociotechnical systems and distinguish four levels of 
training in the life cycle of these projects: 1) machine learning; 2) training users to work with 
the pipeline; 3) training the project team and/or organization in continuous development and 
operation; 4) training the project team and/ or organization to improve and re-engineer de-
sign solutions to extract new ideas or values. Thus, another step is being taken toward expli-
cable, responsible, and human-centric artificial intelligence. [24] also discusses the problems 
of understanding MLOps in the context of responsible artificial intelligence and offers a guide 
to action for implementing responsible MLOps, consisting of 5 steps. 

In [25], the analysis of the literature on the organization of machine learning projects is 
carried out in the form of a search for answers to 3 research questions: 1) what are the prob-
lems in the development of machine learning projects; 2) why exactly MLOps is a concept 
designed to solve these problems, what is its difference from DevOps; 3) how to apply the key 

DOI: 10.37943/21CPQX5616
© Aigerim Mussina, Didar Yedilkhan, Yermek Alimzhanov, 
    Aliya Nugumanova, Sanzhar Aubakirov, Aigerim Mansurova



108 Scientific Journal of Astana IT University
ISSN (P): 2707-9031   ISSN (E): 2707-904X

VOLUME 21, MARCH 2025

principles of DevOps to MLOps. The authors identify two main problems in designing machine 
learning systems: at the management level and the dependency level. At the management lev-
el, the problem is caused by the heterogeneity of machine learning system components, which 
may require different environments, configurations, or tools. The authors note that managing 
the entire life cycle of machine learning, when each part is performed in its environment, is a 
difficult task. At the dependency level, one of the biggest problems is data, which is unstable. 
As in [18], it is emphasized here that the data used for training and testing are crucial in ma-
chine learning projects since an error occurring in the data can lead to a completely different 
system behavior. In order to use reliable data, the quality of which is guaranteed, the authors 
pay special attention to the problems of implementing data versioning.

b. Instrumental research
One of the most detailed reviews of development tools for MLOps projects is presented in 

[26]. The authors proceed from the position that currently, there is not a single open-source 
tool that can create a fully automated MLOps pipeline, and therefore, consider all technologies 
and tools separately for each part of the pipeline. The paper also deeply analyzes the roles of 
pipeline participants, and it is noted that if earlier the role of a data specialist was limited to 
experiments and modeling, now close cooperation with development or operation engineers 
is necessary for the successful deployment of a machine learning model. After discussing the 
requirements for the pipeline implementation, the authors tested 26 open-source tools and 
form a ranked list of tools based on the developed performance indicators.

In [27], the authors compared eight commercially available MLOps frameworks in terms 
of functionality: data versioning, hyperparameter configuration, model versioning and exper-
iments, pipeline versioning, availability of continuous development and delivery, model de-
ployment, and performance monitoring. Frameworks were also compared according to such 
an important indicator as supported programming languages and libraries. The authors found 
that most frameworks had limitations in providing developers with automated MLOps dash-
boards based on the user interface. Accordingly, this limitation should encourage researchers 
to expand the horizons of knowledge in the direction of integrated MLOps automation.

In [28], a comprehensive literature review is conducted to identify and analyze tools sup-
porting the creation of MLOps pipelines. The study includes 13 MLOps development tools 
evaluated by three groups of characteristics: 1) main features (including openness, scalability, 
elasticity, support for continuous integration and delivery, usability, and API support); 2) data 
management functions; 3) model management functions. The analysis results show that most 
MLOps tools support the same functions but use different approaches that can give different 
advantages depending on the user’s requirements. As a future work, the authors plan to devel-
op methods that facilitate the integration of various MLOps tools.

There are works in which the authors propose their platforms for implementing MLOps con-
cepts. In [29], a framework is proposed that helps to implement MLOps best practices on an 
industrial scale. The framework is assembled from modules that can be recomposed to adapt 
to different use cases. All datasets and machine learning artifacts (for example, models) are 
carefully monitored and versioned within the framework. The machine learning experiment 
process is standardized, and two cloud providers are presented to scale the learning and fore-
casting process in an industrial environment.

In [30], the Edge MLOps framework was developed, which supports boundary computing 
and provides continuous training on the model, its deployment, delivery, and monitoring. The 
framework successfully passed the test tests on predicting air quality, automatically retraining, 
integrating, and deploying models when their performance fell below a certain threshold. 
All trained and retrained machine learning models have been serialized in the Open Neu-
ral Network Exchange (ONNX) format, which ensures model compatibility when exporting 



109

and deploying to production environments. In [31], the Tiny-MLOps framework is proposed, 
designed to specialize standard practices for managing machine learning models, including 
their deployment on distant peripheral devices. The developers have adapted all the stages of 
model orchestration to the limited resources available on typical IoT devices.

In [32], the Pangea tool is presented, designed to automatically create suitable runtime 
environments for deploying analytical pipelines in the mining industry. These pipelines are di-
vided into different stages to perform each in the most suitable environment (peripheral, fog-
gy, cloud, or local), optimizing the use of hardware and software resources. Pangea allows one 
to create the necessary infrastructure from scratch or provide it with the necessary resources 
and code to run pipelines and deploy pipelines. Also, in addition to the working mode, Pangea 
allows the creation of a local environment for testing and benchmarking models.

The work [33] provides a detailed overview of the applicability of server technologies and 
tool platforms for implementing MLOps projects. It discusses the advantages that they can 
provide to the machine learning pipeline. The authors identified nine serverless platforms 
studied in MLOps works; among them, the AWS Lambda platform was the leader in the num-
ber of mentions. The authors pointed out the main problems of using serverless platforms in 
machine learning projects: the cost, ensuring a sufficient number of scalable resources, and 
the problem with output latency.

The paper [34] provides an overview of the fully customizable end-to-end SOLIS method-
ology. This methodology provides easy deployment and configuration of machine learning 
pipelines, allowing even non-specialists to participate in designing and delivering models to 
end users. The proposed architecture is scalable and allows using several tensor computing 
platforms, such as Tensorflow and Pytorch, to deploy neural network models. The stages of the 
SOLIS pipeline are fully customizable, so the project is not limited to any specific area and has 
a wide range of applications.

In [35], the CodeReef open framework is proposed for exchanging components necessary to 
provide cross-platform MLOps in non-virtualized, portable, configurable, and reusable open-
source packages. The work aims to support the initiatives of MLOps communities on reproduc-
ibility, automate machine learning tests, and ensure the portability of MLOps models based on 
real cases.

c. Practical research
One of the interesting practice-oriented works is [36], which proposes a digital twin of a 

smart home integrated with MLOps and provides an adequate energy consumption prediction. 
To predict hourly electricity consumption, models from the XGBoost library are used, which 
are trained on consumption characteristics for the last 23, 24, and 25 hours. After training 
the models, the one with the most minor root-mean-square error for each combination of 
hyperparameters is selected. The digital twin integrated with machine learning models was 
successfully tested on a residential building equipped with IoT smart meters and smart sock-
ets for 19 months, with measurements performed every second. 

In [37], an MLOps pipeline is proposed to predict the market price of electricity using an 
artificial neural network. The pipeline includes a version control system, a machine learn-
ing system, testing services, model services, function storage, and deployment services. When 
building the pipeline, the authors used PyTorch as a machine learning library, Python as a 
scripting language, Jenkins as a continuous integration server, and Django as a web interface 
development environment. The proposed MLOps methodology was then generalized and suc-
cessfully applied to two more cases. 

In [38], the MLOps methodology is considered from the perspective of developing an in-
terface that provides greater transparency, fairness, explainability, and continuous monitoring 
for machine learning models. The authors provide the Dales tool, a Python library that imple-

DOI: 10.37943/21CPQX5616
© Aigerim Mussina, Didar Yedilkhan, Yermek Alimzhanov, 
    Aliya Nugumanova, Sanzhar Aubakirov, Aigerim Mansurova



110 Scientific Journal of Astana IT University
ISSN (P): 2707-9031   ISSN (E): 2707-904X

VOLUME 21, MARCH 2025

ments an interface independent of the machine learning model for interactive explainability 
and fairness. The interface is designed considering the functionality of various explicable ma-
chine learning tools; thus, it is aimed at unifying existing solutions. 

Authors of [39] describe VMware’s experience implementing a machine learning project to 
detect and diagnose performance problems in enterprise solutions deployed in a production 
environment. Firstly, a pipeline was created for continuous training and maintenance, which 
helps to update models in a few hours, which took the company about six months. Secondly, 
a monitoring module was implemented to visualize performance anomalies and form a user’s 
idea of how machine learning models work. Thirdly, new models and performance diagnostics 
were automated to be delivered in a dynamically changing environment. Fourth, an experi-
mental environment has been set up to test the behavior of the model, which allows us to 
assess how well the models respond to specific production scenarios.  

The authors of [40] and [41] describe the practice of developing a medical software product, 
Oravizio, designed to assess the risks of joint replacement operations. This product has come 
a long way, from machine learning experiments to certification by all regulatory requirements 
for medical machine learning systems. Although Oravizio was developed and implemented 
before the emergence of the MLOps concept, its design goals align with the characteristics of 
MLOps, making it a good example of continuous software development in machine learning 
projects.  

Finally, [42] and [43] are works whose subject matter is entirely relevant to extracting 
opinions from social media we are investigating. The authors [42] design a pipeline of Da-
taOps/MLOps operations performed on data automatically extracted from Twitter to analyze 
user reviews of tourist services in Italy. The authors describe in detail the pipeline compo-
nents responsible for data collection and preprocessing, thematic modeling, analysis of social 
networks, and classification of tweets but do not disclose the mechanisms of linking these 
components into a single pipeline. In this sense, [43] contains more technical details of im-
plementing sentiment analysis based on MLOps. The paper describes the application of the 
Amazon Web Services ecosystem, starting with the annotation of training data using Ground 
Truth and ending with the deployment of the model using MLflow SageMaker.

Methodology
The architecture of the Astana Opinion Mining macro service is proposed and conceptual-

ized as a cloud-based microservice structure encompassing four distinct yet interconnected 
pipelines. Each pipeline, represented as a series of microservices, serves a specific function 
within the overall system, as illustrated in Figure 2. The initial stage of our process is the 
data collection pipeline. While termed a ‘pipeline,’ this stage is more accurately a collection of 
loosely interconnected components, predominantly consisting of crawlers that operate both 
asynchronously and autonomously. However, its designation as a pipeline is forward-looking 
and will be described below. Following this, the Feature Engineering pipeline is dedicated to 
preprocessing data and preparing it for further analysis. Subsequently, the Experimentation 
pipeline is engaged in developing a machine-learning model tailored to the specific require-
ments of the task, which, in this instance, is sentiment analysis. The final stage, the Deployment 
and Maintenance pipeline, synthesizes the outputs from the preceding pipelines to deliver a 
comprehensive solution to the end user. This entire process is underpinned by a cloud-based 
microservice architecture, notable for its flexibility, ease of scalability, and the autonomy af-
forded to each microservice.



111

Figure 2. Proposed MLOps architecture.

Generally, the proposed architecture can be as following method presented step by step 
below: 

Step 1: Data Collection Pipeline:
   1.1. Collect text data from YouTube, Telegram, Facebook, and HTML sources using crawlers.
   1.2. Store the collected data in a database.
   1.3. Add the data to a processing queue.
Step 2: Feature Engineering Pipeline
   2.1. Fetch data from Queue.
   2.2. Clean the noisy data.
   2.3. Define the language and topic of each message.
   2.4. Preprocess the text.

DOI: 10.37943/21CPQX5616
© Aigerim Mussina, Didar Yedilkhan, Yermek Alimzhanov, 
    Aliya Nugumanova, Sanzhar Aubakirov, Aigerim Mansurova



112 Scientific Journal of Astana IT University
ISSN (P): 2707-9031   ISSN (E): 2707-904X

VOLUME 21, MARCH 2025

   2.5. Store processed features in the Feature Store.
   2.6. Push processed data back into the Queue for experimentation.
Step 3: Experimentation Pipeline
   3.1. Fetch processed features from Queue.
   3.2. Label data for supervised learning tasks.
   3.3. Store labeled data into a Database (DB).
   3.4. Train machine learning model using labeled data.
   3.5. Evaluate model performance.
   3.6. Store trained model in the Model Store.
   3.7. Based on evaluation, optionally go back to Step 3.2. for improvements.
Step 4: Deployment and Maintenance Pipeline
   4.1. Deliver trained model from the Model Store to production.
   4.2. Store deployment audit logs in the Audit DB.
   4.3. Monitor model performance and provide explanations for predictions.
Each of these pipelines presented step-by-step operates within the overarching cloud-

based microservice architecture. This approach provides notable advantages, including en-
hanced flexibility, scalability, and independence for each microservice. Such a configuration 
allows for easy adaptation and growth in response to evolving data requirements and techno-
logical advancements.

a. Data Collection pipeline
Contrary to a traditional pipeline, this component is characterized by loosely coupled ele-

ments, primarily crawlers, functioning asynchronously and autonomously. This design choice 
emphasizes the system’s modular nature, allowing for independent operation and flexibility in 
data acquisition. The Astana Opinion Mining service considers external resources of different 
structures and purposes, such as YouTube video hosting, the Telegram social network, and a 
website with residents’ appeals: https://aitu.city. The primary data for analysis are text data 
generated by the user. On YouTube, this is the text of the comment; on Telegram, this is the 
text of the message; and on the website http://aitu.city, this is the text of the appeal. Although 
only user-generated text is currently being utilized, all available data from external sources is 
being collected for potential inclusion in the general data model. This data can later be trans-
ferred to the general data model. For example, YouTube likes correlate to emoji reactions on 
Telegram. Each microservice stores the collected information in its local database and sends it 
to the next module through its queue. Data transformation from all sources must occur in the 
subsequent module. This will allow crawlers to be developed independently of other modules, 
and changes in the next module will not entail chain changes in the data collection module.

The results of the pipeline are full-data-model and general-data-model. The full-data 
model includes all social platform-specific meta-data tailored to each platform’s unique data 
structure and content type. For Telegram, the model encompasses a comprehensive set of 
fields such as id, message, date, message_id, telegram_chat_id, telegram_user_id, as well as 
metadata about message status like deleted, deletion_date, views, and threading information 
including message_date, reply_to_message_id, and message_thread_id. This allows a detailed 
analysis of the platform’s user interactions and message dynamics.

Similarly, YouTube’s model is designed to capture rich video and user interaction data, in-
cluding fields like id, video_id, text, user_id, user_name, viewer_rating, like_count, and timing 
details captured in published_at and updated_at. Additionally, it tracks engagement metrics 
such as total_reply_count and parent_id, which are crucial for understanding viewer interac-
tions with the content.



113

For the local website aitu.city, the model is structured to hold key information relevant to 
user-generated content, encompassing id, message, user_name, and temporal data like pub-
lish_date. It also includes views, votes, location, and status, offering a comprehensive view of 
user engagement and content relevancy within the website’s context.

The general model, designed to aggregate data across these platforms, is more streamlined. 
It focuses on the essential fields of message, date, and osn_name (online social network name). 
This model facilitates a unified view of the data, enabling cross-platform analysis and insights 
while retaining the essence of user-generated content across different digital environments.

While the data collection pipeline currently functions primarily as a set of connectors for 
data collection from diverse sources, its designation as a pipeline is forward-looking. We an-
ticipate extending and enriching this module with additional submodules that will not only 
collect data but also transform it into an enriched general-data-model.

b. Feature Engineering pipeline
This segment of the architecture is dedicated to the preprocessing of data. It involves me-

ticulous refinement of raw data, ensuring that the input for the subsequent stages is optimized 
for accurate analysis. The pipeline’s design facilitates efficient processing, which is essential 
for handling large volumes of data. The functional architecture of the module is centered 
around a singular base microservice responsible for executing four distinct tasks integral to 
the system’s operation.

 The first initial task encompasses receiving messages from the antecedent pipeline, fol-
lowed by their storage in the database. It is designed to operate without any supplementary 
processing during the message reception phase. This strategy is pivotal for ensuring the un-
interrupted and efficient reception of data, thereby minimizing the potential for data loss and 
avoiding accumulating unprocessed messages in the queue. The operational protocol entails 
retrieving 10 messages per session from the queue for processing.

The second task involves a crucial filtering process to eliminate extraneous elements such as 
noise and spam from the data stream. A streamlined data cleaning methodology is employed, 
wherein messages containing predefined keywords are selectively removed. This process is 
resource-efficient and was developed following an in-depth analysis of the data, leading to 
the identification of a set of keywords and phrases (e.g., «https,» «link,» «candid photos») 
commonly associated with irrelevant messages. The inclusion criteria for these keywords are 
structured to ensure their effective exclusion from subsequent processing stages. Statistical 
data analysis revealed that approximately 2% of daily messages fall into the “noise” and spam 
category. Furthermore, an evaluation of message content established that messages compris-
ing fewer than five words typically lack substantive information. Consequently, such messages 
were excluded from further analysis, accounting for approximately 40% of daily message vol-
ume. This approach, structured and methodical, is integral to maintaining the relevance and 
quality of data within the system, ensuring that only pertinent information is forwarded for 
subsequent processing stages.

The module’s third task encompasses the preprocessing of text and the extraction of textual 
characteristics. This task, along with the second task, operates on a minute-by-minute basis 
within an independent thread. In each iteration, a batch of up to 100 unprocessed messages 
is retrieved from the database for processing. At the outset of data preprocessing, a critical 
step involves determining the language of each message. For language classification, the 
«nikitast/lang-classifier-roberta» model is utilized [44]. The preprocessing phase includes two 
primary processes: text cleaning and lemmatization. The removal of punctuation marks and 
stop words is executed using resources from the NLTK library, tailored for Kazakh, Russian, 
and English languages, and further enhanced by inputs from our laboratory experts [45]. For 

DOI: 10.37943/21CPQX5616
© Aigerim Mussina, Didar Yedilkhan, Yermek Alimzhanov, 
    Aliya Nugumanova, Sanzhar Aubakirov, Aigerim Mansurova



114 Scientific Journal of Astana IT University
ISSN (P): 2707-9031   ISSN (E): 2707-904X

VOLUME 21, MARCH 2025

lemmatization, the SnowballStemmer tool within the NLTK library is employed for English text 
[46], whereas for Russian, the pymystem3 Python module is used [47]. After these preprocess-
ing steps, the module engages in the extraction of underlying topics from the messages. This 
extraction aligns with the thematic areas relevant to the Smart City project, encompassing 
domains such as transport, urban infrastructure, healthcare, and education. The non-negative 
matrix factorization (NMF) method is employed for this purpose. A critical component of this 
process involves the creation of a thematic dictionary for each Smart City topic. This diction-
ary, comprising keywords and concepts in Kazakh, Russian, and English, serves as the basis for 
isolating pertinent data. For instance, in the context of transport and urban infrastructure, a 
comprehensive dictionary is compiled, encompassing a wide array of terms pertinent to this 
domain: «buses», «trolleybuses», «trams», «metro», «trains», «minibuses», «taxi», «bicycles for 
rent», «car rental», «public transport», «municipal transport», « regular bus», «long-distance 
bus», «vehicle», «freight transport», «passenger transport», «transport network», «transport 
hub», «railway station», «bus station», «airport», «transport system», «infrastructure», «route», 
«schedule», «stop», «platform», «parking», «passenger», «driver», «conductor», «ticket», «travel 
ticket», «paid parking», «fare», «map», «free travel», «parking», «crossroads», «traffic flow», 
«traffic jams», «traffic», «speed limit», «pedestrian crossing», « traffic light», «pass», «road 
marking», «ring road», «overpass», «underpass». The application of the NMF (Non-negative 
Matrix Factorization) technique facilitates the extraction of transport-related themes from the 
text data, which has been preliminarily filtered using the specially compiled dictionary. Table 
1 presents a synopsis of five distinct topics identified using the NMF method. The designation 
of each topic is derived from the analysis of the most contributive terms and keywords, as de-
termined by their TF-IDF (Term Frequency-Inverse Document Frequency) weights.

In the realm of topic modeling, the first identified topic centers around the challenges as-
sociated with public transportation. The second topic delves into issues related to bus stop 
locations for fixed-route vehicles, emphasizing the public’s need for sheltered waiting areas, 
particularly in inclement weather conditions. The third topic addresses the broader road in-
frastructure issues, highlighting scenarios where traffic flow is hindered or completely halted 
due to road closures. The fourth topic examines the quality of service, pricing, and convenience 
factors of online taxi services, including prominent providers like Yandex and Uber. The fifth 
topic explores the management and upkeep of parking facilities within the urban infrastruc-
ture. This systematic approach to topic identification extends across all analyzed messages. 
Table 2 illustrates a segment of the dataset that has been labeled following these identified 
themes.

Table 1. Topics identified by NMF

Keywords Topic

'bus', 'route', 'minute', 'wait', 'why', 'drive', 'walk', 'ride', 'new', 'scheme', 'picture', 
'change', 'interval', 'reduce', 'motion', 'application'

Problems of public 
transport

'stop', 'warm', 'supply', 'ride', 'stand', 'warm', 'whole', 'freeze', 'station', 'near', 
'city', 'do', 'reach', 'regular', 'poke', 'clean'

The need for warm bus 
stops

'traffic', 'road', 'day', 'turan', 'why', 'stand', 'overlap', 'know', 'little', 'street', 'ride', 
'big', 'concert', 'appear', 'ask', 'airport'

Traffic jams and other 
problems on the road

'taxi', 'yandex', 'work', 'order', 'drive', 'uber', 'airport', 'price', 'expensive', 'driver', 
'expensive', 'touch', 'fare', 'show', 'taxi driver', 'cheap'

Taxi prices

'parking', 'paid', 'place', 'driver', 'courtyard', 'whole', 'pay', 'city', 'clean up', 'child', 
'in general', 'akimat', 'crossing', 'car', 'find', 'free'

Parking lots



115

The final step in the processing sequence involves systematically recording several key 
elements within the microservice database. This includes the original message, its processed 
form, the identified language of the message, and the ascertained topic based on the sample 
analysis. Additionally, the database records the date on which each message underwent pro-
cessing.

In the concluding task of this stage, the model, which encapsulates the original message, 
its preprocessed version, the determined language, and the identified topic, is dispatched to 
two distinct queues. These queues serve as conduits, channeling the processed data to the 
subsequent stages in the pipeline. This methodical progression ensures a seamless flow of 
information through the different phases of the system.

Table 2. Examples of messages and their identified topics.

No Comments Topic

1 “How cool I don't need to use a taxi, I use bike sharing, but it's economical” Taxi prices

2 “The business center was chosen very unsuccessfully, there are practically 
no parking lots”

Parking lots

3 “If there are no regular stops, then what can we say about warm stops. 
Again, at minus 30 to stand in the cold”

The need for com-
fortable bus stops

4 “Taxi drivers already pay taxes to the platform that gave them the oppor-
tunity to work. And what are they asking to pay for? They pay tax for cars, 
they pay for roads, they pay fines, they pay for gasoline, they pay for the 
Internet on the phone. Make some of this free or at least cheaper”

Problems of public 
transport

5 “Guys, which air-conditioned buses are going towards the beginning of 
Seifullin street.”

The need for com-
fortable bus stops

6 “Summer traffic jams: roads do. Traffic jams in winter: snow is being 
cleaned. Spring traffic jams: everything melts. Traffic jams in the fall: 
school starts)) It's just me, thoughts out loud))”

Traffic jams and 
other problems on 
the road

c. Experimental pipeline
This pipeline is central to the development of the machine learning model and the crux 

of our sentiment analysis task. It encompasses the rigorous process of model creation, from 
initial experimentation to fine-tuning, ensuring that the model is tailored to the specific re-
quirements of sentiment analysis within the smart city context.

The experimental pipeline comprises three primary modules: data labeling, model training 
and evaluation, and model storage.

The data labeling module is at the forefront of the pipeline, equipped with automated capa-
bilities to ensure a consistent influx of data from established sources. This module is designed 
with an interactive interface, enabling users to label incoming data selectively. The versatility 
of the module’s interface allows for easy transition among various annotation tasks. In senti-
ment analysis, for instance, each message is labeled None, Positive, Negative, or Neutral. For 
tasks like message classification, the interface offers predefined categories like «Relevant,» 
«Noise,» and «Spam» for user selection. This dynamic and user-friendly interface of the data 
labeling module significantly enhances the efficiency of the annotation process, which is vital 
for the quality of data used in subsequent model training and evaluation stages.

The current approach involves manual data labeling, which is resource-intensive but pro-
vides high-quality labeled data. To optimize this, semi-supervised learning approaches could 
be applied. These methods use a small amount of labeled data and a larger amount of unlabe-

DOI: 10.37943/21CPQX5616
© Aigerim Mussina, Didar Yedilkhan, Yermek Alimzhanov, 
    Aliya Nugumanova, Sanzhar Aubakirov, Aigerim Mansurova



116 Scientific Journal of Astana IT University
ISSN (P): 2707-9031   ISSN (E): 2707-904X

VOLUME 21, MARCH 2025

led data. This can significantly reduce the human effort needed for labeling without substan-
tially compromising the quality of the training data.

The subsequent element of this pipeline is the model training module, which operates by 
receiving Python code files through a REST API to construct a machine learning model. This 
file is uploaded by a machine learning engineer and must adhere to specific criteria for the 
code to be viable:

1. Training data must be sourced from the database containing labeled data.
2. The model in training should be configured to process textual input.
3. Post-training, the model needs to be stored as a binary file.
4. In the context of sentiment analysis, the model should categorize data into three classes: 

positive, negative, and neutral.

The REST API integrates several critical parameters:
• Code Expiry: This parameter defines the duration for which the code remains executable.
• Execution Frequency: Considering that data labeling is not instantaneous, initial model 

training might not yield optimal results. Therefore, establishing a regular schedule for 
code execution, such as weekly activation every Saturday morning for a month, is recom-
mended.

• Accuracy Threshold: This is set based on the desired quality of the model. Only models 
surpassing this accuracy benchmark proceed to the next stage.

Before the model is archived, it undergoes an evaluation phase. Models that demonstrate 
accuracy above the predefined threshold are then stored in the Model Store component. The 
resultant model is saved as a binary file in the Model Store, which is structured as a git re-
pository to facilitate model versioning. This setup allows subsequent pipelines to efficiently 
retrieve the model directly from the repository.

d. Deployment and Maintenance pipeline
The Deployment and Maintenance pipeline is the culmination of the process, where the 

data refined by previous pipelines and the sentiment analysis model are put into action. This 
pipeline primarily handles applying the model to a continuous stream of processed messages 
from various social networks.

Central to this pipeline is the model delivery microservice. Its key function is to retrieve 
the most up-to-date model from the model store and implement it on incoming data from 
the Feature Extraction pipeline. The outcomes, specifically the sentiment classifications of the 
messages, are then systematically recorded in the database. This record includes the senti-
ment results and annotations regarding which model generated these results.

The Apache Superset platform [48] is employed for monitoring and oversight purposes. 
Hosted on our servers, Superset is integrated with the local databases of all the microservices, 
offering a comprehensive and adaptable monitoring solution. The dashboard of the Superset 
platform is customized to display pertinent information, providing a clear and detailed over-
view of the system’s performance and outputs.

Results and Discussion
This section presents the results of the implemented architecture. While architecture was 

successfully implemented the proposed, it is worth noting that model training requires sig-
nificant resources. As a result, a Python 3 server accelerator was employed based on Google 
Compute Engine (GPU). In future work, we plan to connect our servers equipped with graphics 
processors.



117

a. Architecture Implementation
All microservices projects are under the git version control tool with common settings and 

a common CI/CD. Continuous Integration (CI) helps build and test the code before its direct 
deployment to production. Continuous deployment (CD) with microservice architecture allows 
quick software solutions delivery to the customer. 

Our end-user application was built using the IDEAL paradigm, which fits the data collection 
and processing system. IDEAL means that the application should be [Isolated state] isolat-
ed, [Distributed] have a distributed architecture, be [Elastic] flexible in the sense of horizon-
tal scaling, be controlled by [Automated] automated systems, and its components should be 
[Loose coupling] loosely coupled [49]. In our architecture, we used the following technologies:

• Docker Swarm allows to create a fault-tolerant, scalable, easily and quickly recoverable 
system. Automating the recovery of containers after a failure, due to health-checking, 
provides fault tolerance. Due to the function of container replication, horizontal scaling 
of applications is achieved in accordance with the load. All microservices are managed 
by Docker Swarm and can be seen via web-interface runned by Portainer framework [50] 
(see Figure 3).

• RabbitMQ is used to create queues between microservices [51]. Queues give us the abil-
ity to process huge amounts of data asynchronously, consistently, and fault-tolerantly 
(See Figure 4). 

• Traefik gives the ability to manage http traffic within the docker swarm ingress network. 
• OpenStack manages resources and virtual machines, which greatly simplifies the work 

with server hardware.

Figure 3. Screenshot from Portainer web user interface for Docker Swarm.

DOI: 10.37943/21CPQX5616
© Aigerim Mussina, Didar Yedilkhan, Yermek Alimzhanov, 
    Aliya Nugumanova, Sanzhar Aubakirov, Aigerim Mansurova



118 Scientific Journal of Astana IT University
ISSN (P): 2707-9031   ISSN (E): 2707-904X

VOLUME 21, MARCH 2025

Figure 4. Screenshot of RabbitMQ admin web user interface.

The technical side of our microservices:
• Data collection modules are written in Java and use public social networking APIs. For 

example, Telegram provides access to its TDLib library, with which you can create a 
bot-user and include it in public Telegram channels [52]. Youtube provides an API with 
Google Key authorization for parsing videos and comments. Not all information about 
comments is available. For example, only the content owner could see the number of 
dislikes on the video. The website crawling does not require additional APIs, it is enough 
to download pages and define the parsing algorithm for a particular website.

• The Data Labeling module is written in Java. Since this microservice works only with the 
incoming stream of data it needs a simple designed UI for data labeling specialists. For 
the native UI, the Vaadin open-source web application development platform is used 
[53].

• Modules in the Feature Engineering pipeline and modules for model training, evaluation 
and delivery are written in Python, because it is more lightweight and has convenient 
libraries for data processing and machine learning.

• PostgreSQL was used as a database in each pipeline.
• For the current stage of our work the capabilities of the Apache Superset tool are suffi-

cient to represent the data in all pipelines of the architecture.
The monitoring board consists of data statistics and actual data example parts. The data 

statistics part presents the number of messages in pipelines and number of messages accord-
ing to social networks (see Figure 5). The amount of messages according to the criteria for sus-
tainable development of the city (see Figure 6) and according to the sentiment (see Figure 7) 
are presented in the diagrams. 

The source code for the crawler designed for Telegram can be found within the GitHub pro-
ject located at https://github.com/orgs/knowledge-extraction-system/repositories. This pro-
ject is expected to expand over time to include the code for additional microservices.



119

Figure 5. Apache Superset screenshot of the monitoring dashboard. Data statistics.

Figure 6. Apache Superset screenshot of the number of messages according to the criteria.

Figure 7. Apache Superset screenshot of the messages amount by sentiment.

b. Sentiment analysis
The sentiment analysis task is not new and already has solutions for different languages. 

However, as the Kazakh language is a low-resource language [54], large language models 
(LLMs) must be improved. Our approach, focusing on task-specific models, demands signif-
icantly fewer training resources than LLMs’ extensive requirements. Unlike LLMs, which are 
trained on massive datasets demanding high computational power and storage, our models 
utilize a smaller, more specialized dataset, reducing computational load and energy consump-
tion. This aspect is particularly beneficial in the framework of MLOps, where managing re-
sources efficiently is crucial. Moreover, integrating these lighter, specialized models into a fully 
automated MLOps pipeline enhances manageability and cost-effectiveness. It enables quicker 
training and deployment cycles, which is essential for the dynamic nature of sentiment anal-

DOI: 10.37943/21CPQX5616
© Aigerim Mussina, Didar Yedilkhan, Yermek Alimzhanov, 
    Aliya Nugumanova, Sanzhar Aubakirov, Aigerim Mansurova



120 Scientific Journal of Astana IT University
ISSN (P): 2707-9031   ISSN (E): 2707-904X

VOLUME 21, MARCH 2025

ysis tasks. In contrast, the integration of LLMs into such pipelines, although powerful in their 
capabilities, can pose challenges due to their size and complexity, especially in scenarios 
requiring continuous training and deployment. This presents a trade-off between the broad 
capabilities of LLMs and the practicality and resource efficiency of specialized models, under-
scoring the importance of aligning model choice with the specific requirements and resource 
constraints of the sentiment analysis task in smart city applications.

The implemented solution was divided into two branches: the Kazakh and Russian languag-
es. In this study, we will delve into the reviews and opinions citizens express on transportation. 
However, our approach extends beyond a narrow scope and encompasses a broader perspec-
tive. As mentioned, we employ the SULPITER methodology to gather and analyze reviews and 
opinions about smart city indicators. The proposed pipeline allows us to collect data on vari-
ous aspects of smart city indicators, including but not limited to transportation. This flexibility 
is further enhanced by the Model Delivery module, which enables us to fine-tune our model to 
incorporate and analyze other relevant indicators. 

For the Kazakh language, the pre-trained multilingual XLM Roberta model has been fine-
tuned [55]. The model was fine-tuned on labeled data in the Kazakh language obtained from 
the Data Labeling database. After the first training, eight epochs were passed on data in the 
amount of 1091 messages, which consisted of 339 neutral, 328 positive, and 424 negative 
samples. The dataset was divided into train and test subsets that contain 873 and 218 records, 
respectively. After fine-tuning, the training accuracy was equal to 79.2%, and accuracy on the 
test data showed 68.97%. It is not enough for deploying in practical applications. Data aug-
mentation was performed for that point, and the updated dataset comprised 6999 messages. 
The labeled dataset consists of 2170 neutral, 2450 positive, and 2379 negative samples.  The 
accuracy of the newly trained model on test data is 83.71%. Training accuracy statistics are 
presented in Figure 8. Here, we see that the model overtrained after the fourth epoch and 
obtained 96.73% accuracy after eight epochs of fine-tuning.

Figure 8. Fine-tuning of XLM RoBERTa model on the sentiment dataset.

During the experiment, four models of sentiment analysis were tested in Russian: «Blanche-
fort», «Sismetanin», «MonoHime» and «Dostoevsky». The goal was to evaluate the effective-
ness of these models and choose the most suitable one for sentiment analysis. It is important 
to note that each model uses its own classification system, which could lead to a loss of ac-
curacy when comparing the results. For example, the Dostoevsky model has five classification 
classes, while other models operate with three classes. To ensure comparability of the results 
and eliminate the problem of different classification systems, a module was developed that 
allows to translate gradations and classify texts into three classes: negative (2), positive (1) 



121

and neutral (0). A comparative analysis revealed that the Blanchefort model showed the best 
accuracy of sentiment analysis (see Table 3). It achieved an accuracy of 71%, which confirms 
the expected range of results of baseline models of deep transfer learning for sentiment anal-
ysis in Russian, ranging from 70% to 76% [56].

Table 3. Comparison of sentiment analysis scores for four models.

F1 score Accuracy Model
0.72 71.43% Blanchefort
0.51 54.55% Sismetanin
0.59 59.74% MonoHime
0.46 46.75% Dostoevsky

Thus, the results obtained confirm that the «Blanchefort» model is the most effective for 
this study. There is still room for further investigations to explore and improve the quality 
and precision of the language models. Using recently available datasets (e.g. the largest Rus-
sian-language dataset of reviews [57]) or collecting our own we can elaborate on improving 
the performance of sentiment analysis in smart city applications which is crucial for gaining 
the trust of public authorities and stakeholders. 

To calculate the Sentiment-based Perception Score (P), we follow a formula for calculating 
the Perception Score:

 (1)

where Positive and Negative Sentiment Counts are the numbers of instances where senti-
ment analysis determines a positive or negative sentiment respectively in the citizen feedback 
or data; Total Sentiment Count is the total number of instances where sentiment analysis 
was performed on the citizen feedback or data. The result will be a score ranging from -1 to 
1, where a positive score indicates a predominantly positive perception, a negative score in-
dicates a predominantly negative perception, and a score close to zero suggests a neutral or 
mixed perception. Then, the Sentiment-based Perception Score is included as a component 
within a comprehensive formula for evaluating the sustainable development of a smart city. 
This formula incorporates empirically determined weights assigned to each indicator.

Conclusion
Using the MLOps methodology, we successfully implemented a cloud-based microservices 

architecture for the Astana Opinion Mining macro-service. The architecture was customized 
to support various tasks and infrastructure facilities based on a taxonomy of criteria for sus-
tainable development in the urban environment. The crawled data from external resources 
undergo processing, validation, and classification based on the taxonomy criteria via the NLP 
pipeline. The resulting aspect-oriented polarities are extracted using a well-trained Opinion 
Mining (Sentiment Analysis) model. We have recently incorporated Topic Modeling as a simple 
yet effective approach to extracting relevant aspects. In our future work, we plan to enhance 
our capabilities by developing models for aspect-based sentiment analysis (ABSA) using a 
unique ABSA dataset specifically curated for city problems, enabling a more fine-grained anal-
ysis of citizen sentiments and opinions. This will further enrich our understanding of urban 
challenges and support targeted interventions for sustainable urban development.

Thus, the resulting solution has practical applications, allowing for real-time analysis of 
the city’s situation. The architecture is easily scalable, fault-tolerant, and automated. With its 

DOI: 10.37943/21CPQX5616
© Aigerim Mussina, Didar Yedilkhan, Yermek Alimzhanov, 
    Aliya Nugumanova, Sanzhar Aubakirov, Aigerim Mansurova



122 Scientific Journal of Astana IT University
ISSN (P): 2707-9031   ISSN (E): 2707-904X

VOLUME 21, MARCH 2025

ability to process, validate, and classify data based on a taxonomy of sustainable development 
criteria and extract aspect-oriented polarities through advanced sentiment analysis, the solu-
tion offers real-time insights and analysis of the urban environment.

Acknowledgement
This research has been funded by the Committee of Science of the Ministry of Science and 

Higher Education of the Republic of Kazakhstan (Grant No.BR24992852 “Intelligent models 
and methods of Smart City digital ecosystem for sustainable development and the citizens’ 
quality of life improvement”)

References 

[1] Borg, M. (2022). Agility in Software 2.0 – Notebook Interfaces and MLOps with Buttresses and Re-
bars. In Lecture notes in business information processing (pp. 3–16). https://doi.org/10.1007/978-
3-030-94238-0_1 

[2] Bernardi, L., Mavridis, T., & Estevez, P. (2019). 150 Successful Machine Learning Models: 6 lessons 
learned at booking.com. Proceedings of the 25th ACM SIGKDD International Conference on Knowl-
edge Discovery & Data Mining, 1743–1751. https://doi.org/10.1145/3292500.3330744 

[3] Bosch, J., Olsson, H. H., & Crnkovic, I. (2021). Engineering ai systems: A research agenda. Artificial 
intelligence paradigms for smart cyber-physical systems, 1-19. https://doi.org/10.4018/978-1-
7998-5101-1.ch001 

[4] Testi, M., Ballabio, M., Frontoni, E., Iannello, G., Moccia, S., Soda, P., & Vessio, G. (2022). MLOps: 
A Taxonomy and a Methodology. IEEE Access, 10, 63606–63618. https://doi.org/10.1109/ac-
cess.2022.3181730 

[5] Karamitsos, I., Albarhami, S., & Apostolopoulos, C. (2020). Applying DevOps Practices of Con-
tinuous Automation for Machine Learning. Information, 11(7), 363. https://doi.org/10.3390/
info11070363 

[6] Rubini, L., & Della Lucia, L. (2018). Governance and the stakeholders’ engagement in city logistics: 
the SULPiTER methodology and the Bologna application. Transportation Research Procedia, 30, 
255–264. https://doi.org/10.1016/j.trpro.2018.09.028 

[7] Witanto, J.N., Lim, H., & Atiquzzaman, M. (2018). Smart government framework with geo-crowd-
sourcing and social media analysis. Future Generation Computer Systems, 89, 1–9. https://doi.
org/10.1016/j.future.2018.06.019  

[8] Lin, Y., & Geertman, S. (2019). Can social media play a role in urban planning? A literature review. 
Computational Urban Planning and Management for Smart Cities 16, 69-84.

[9] Steils, N., Hanine, S., Rochdane, H., & Hamdani, S. (2021). Urban crowdsourcing: Stakeholder se-
lection and dynamic knowledge flows in high and low complexity projects. Industrial Marketing 
Management, 94, 164–173. https://doi.org/10.1016/j.indmarman.2021.02.011 

[10] Alizadeh, T. (2018, May). Crowdsourced smart cities versus corporate smart cities. In IOP confer-
ence series: Earth and environmental science (Vol. 158, No. 1, p. 012046). IOP Publishing.

[11] Ilieva, R.T., & McPhearson, T. (2018). Social media data for urban sustainability. Nature Sustaina-
bility, 1(10), 553–565. https://doi.org/10.1038/s41893-018-0153-6  

[12] Schrammeijer, E. A., Van Zanten, B. T., & Verburg, P. H. (2021). Whose park? Crowdsourcing citizen’s 
urban green space preferences to inform needs-based management decisions. Sustainable Cities 
and Society, 74, 103249. https://doi.org/10.1016/j.scs.2021.103249  

[13] Ghermandi, A., & Sinclair, M. (2019). Passive crowdsourcing of social media in environmental 
research: A systematic map. Global Environmental Change, 55, 36–47. https://doi.org/10.1016/j.
gloenvcha.2019.02.003 

[14] Mcardle, G., & Kitchin, R. (2016). Improving the Veracity of Open and Real-Time Urban Data. Built 
Environment, 42(3), 457–473. https://doi.org/10.2148/benv.42.3.457  

[15] Palladini, A. (2022). Streamline machine learning projects to production using cutting-edge MLOps 
best practices on AWS (Doctoral dissertation, Politecnico di Torino).



123

[16] Kreuzberger, D., Kühl, N., & Hirschl, S. (2023). Machine Learning Operations (MLOps): Over-
view, Definition, and Architecture. IEEE Access, 11, 31866–31879. https://doi.org/10.1109/ac-
cess.2023.3262138 

[17] Van Den Heuvel, W., & Tamburri, D.A. (2020). Model-Driven ML-Ops for Intelligent Enterprise Ap-
plications: Vision, Approaches and Challenges. In Lecture notes in business information process-
ing (pp. 169–181). https://doi.org/10.1007/978-3-030-52306-0_11  

[18] Renggli, C., Rimanic, L., Gurel, N. M., Karlas, B., Wu, W., & Zhang, C. (2021). A Data Quality-Driven 
View of MLOps. IEEE Data(Base) Engineering Bulletin, 44(1), 11–23. https://www.microsoft.com/
en-us/research/publication/a-data-quality-driven-view-of-mlops/ 

[19] Karimi, M. R., Gürel, N. M., Karlaš, B., Rausch, J., Zhang, C., & Krause, A. (2021, March). Online active 
model selection for pre-trained classifiers. In International Conference on Artificial Intelligence 
and Statistics (pp. 307-315). PMLR.

[20] Renggli, C., Karlaš, B., Ding, B., Liu, F., Schawinski, K., Wu, W., & Zhang, C. (2019). Continuous inte-
gration of machine learning models with ease. ml/ci: Towards a rigorous yet practical treatment. 
Proceedings of Machine Learning and Systems, 1, 322-333.

[21] Renggli, C., Rimanic, L., Kolar, L., Hollenstein, N., Wu, W., & Zhang, C. (2020). On automatic feasi-
bility study for machine learning application development with ease. ml/snoopy. arXiv preprint 
arXiv:2010.08410.

[22] Moreschini, S., Lomio, F., Hastbacka, D., & Taibi, D. (2022). MLOps for evolvable AI intensive soft-
ware systems. 2022 IEEE International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), 1293–1294. https://doi.org/10.1109/saner53432.2022.00155 

[23] Mucha, T.M., Ma, S., & Abhari, K. (2022, August). Beyond MLOps: The Lifecycle of Machine Learn-
ing-based Solutions. In AMCIS.

[24] Matsui, B.M., & Goya, D.H. (2022, May). MLOps: A Guide to its Adoption in the Context of Responsi-
ble AI. In Proceedings of the 1st Workshop on Software Engineering for Responsible AI (pp. 45-49).

[25] Zhao, Y. (2021). Machine learning in production: A literature.
[26] Ruf, P., Madan, M., Reich, C., & Ould-Abdeslam, D. (2021). Demystifying MLOps and Presenting 

a Recipe for the Selection of Open-Source Tools. Applied Sciences, 11(19), 8861. https://doi.
org/10.3390/app11198861  

[27] Hewage, N., & Meedeniya, D. (2022). Machine learning operations: A survey on MLOps tool sup-
port. arXiv preprint arXiv:2202.10169.

[28] Recupito, G., Pecorelli, F., Catolino, G., Moreschini, S., Di Nucci, D., Palomba, F., & Tamburri, D. 
A. (2022). A Multivocal Literature Review of MLOps Tools and Features. In 2022 48th Euromi-
cro Conference on Software Engineering and Advanced Applications (SEAA), 84–91. https://doi.
org/10.1109/seaa56994.2022.00021  

[29] Zhao, Y., Belloum, A. S., & Zhao, Z. (2022). Mlops scaling machine learning lifecycle in an industrial 
setting. International Journal of Industrial and Manufacturing Engineering, 16(5), 138-148.

[30] Raj, E., Buffoni, D., Westerlund, M., & Ahola, K. (2021). Edge MLOps: An Automation Framework for 
AIoT Applications. In 2021 IEEE International Conference on Cloud Engineering (IC2E), 191–200. 
https://doi.org/10.1109/ic2e52221.2021.00034 

[31] Antonini, M., Pincheira, M., Vecchio, M., & Antonelli, F. (2022). Tiny-MLOps: a framework for 
orchestrating ML applications at the far edge of IoT systems. In 2022 IEEE International Con-
ference on Evolving and Adaptive Intelligent Systems (EAIS), 1–8. https://doi.org/10.1109/
eais51927.2022.9787703  

[32] Miñón, R., Diaz-De-Arcaya, J., Torre-Bastida, A. I., & Hartlieb, P. (2022). Pangea: An MLOps Tool for 
Automatically Generating Infrastructure and Deploying Analytic Pipelines in Edge, Fog and Cloud 
Layers. Sensors, 22(12), 4425. https://doi.org/10.3390/s22124425 

[33] Barrak, A., Petrillo, F., & Jaafar, F. (2022). Serverless on Machine Learning: A Systematic Mapping 
Study. IEEE Access, 10, 99337–99352. https://doi.org/10.1109/access.2022.3206366 

[34] Ciobanu, R., Purdila, A., Piciu, L., & Damian, A. (2021). SOLIS--The MLOps journey from data acqui-
sition to actionable insights. arXiv preprint arXiv:2112.11925.

[35] Garg, S., Pundir, P., Rathee, G., Gupta, P., Garg, S., & Ahlawat, S. (2021). On Continuous Integration 
/ Continuous Delivery for Automated Deployment of Machine Learning Models using MLOps. In 
2021 IEEE Fourth International Conference on Artificial Intelligence and Knowledge Engineering 
(AIKE), 25–28. https://doi.org/10.1109/aike52691.2021.00010 

DOI: 10.37943/21CPQX5616
© Aigerim Mussina, Didar Yedilkhan, Yermek Alimzhanov, 
    Aliya Nugumanova, Sanzhar Aubakirov, Aigerim Mansurova



124 Scientific Journal of Astana IT University
ISSN (P): 2707-9031   ISSN (E): 2707-904X

VOLUME 21, MARCH 2025

[36] Fujii, T.Y., Hayashi, V.T., Arakaki, R., Ruggiero, W.V., Bulla, R., Hayashi, F.H., & Khalil, K.A. (2021). 
A Digital Twin Architecture Model Applied with MLOps Techniques to Improve Short-Term Energy 
Consumption Prediction. Machines, 10(1), 23. https://doi.org/10.3390/machines10010023 

[37] Subramanya, R., Sierla, S., & Vyatkin, V. (2022). From DevOps to MLOps: Overview and Applica-
tion to Electricity Market Forecasting. Applied Sciences, 12(19), 9851. https://doi.org/10.3390/
app12199851  

[38] Baniecki, H., Kretowicz, W., PiÄ, P., & WiĹ, J. (2021). Dalex: responsible machine learning with inter-
active explainability and fairness in python. Journal of Machine Learning Research, 22(214), 1-7.

[39] Banerjee, A., Chen, C., Hung, C., Huang, X., Wang, Y., & Chevesaran, R. (2020). Challenges and Ex-
periences with MLOps for Performance Diagnostics in Hybrid-Cloud Enterprise Software Deploy-
ments. In 2020 USENIX Conference on Operational Machine Learning (OpML 20). https://www.
usenix.org/system/files/opml20-paper-banerjee.pdf 

[40] Granlund, T., Stirbu, V., & Mikkonen, T. (2021). Towards Regulatory-Compliant MLOps: Oravizio’s 
Journey from a Machine Learning Experiment to a Deployed Certified Medical Product. SN Com-
puter Science, 2(5). https://doi.org/10.1007/s42979-021-00726-1  

[41] Granlund, T., Kopponen, A., Stirbu, V., Myllyaho, L., & Mikkonen, T. (2021, May 1). MLOps Challenges 
in Multi-Organization Setup: Experiences from Two Real-World Cases. https://oraviz.io/, 82–88. 
https://doi.org/10.1109/wain52551.2021.00019  

[42] Stirparo, D., Penna, B., Kazemi, M., & Shashaj, A. (2022). Mining tourism experience on Twitter: a 
case study. arXiv preprint arXiv:2207.00816.

[43] Olsen, R., Ahmed, N., & Alekseev, I. (2022, April 4). Build an MLOps sentiment analysis pipeline using 
Amazon SageMaker Ground Truth and Databricks MLflow. https://aws.amazon.com. Retrieved Sep-
tember 2, 2023, from https://aws.amazon.com/ru/blogs/machine-learning/build-an-mlops-senti-
ment-analysis-pipeline-using-amazon-sagemaker-ground-truth-and-databricks-mlflow/ 

[44] Stepanov, N. (2023, January 7). Nikitast/lang-classifier-roberta. https://huggingface.co. Retrieved 
March 10, 2023, from https://huggingface.co/nikitast/lang-classifier-roberta#roberta-for-sin-
gle-language-classification

[45] NLTK. (2023, January 2). https://www.nltk.org/. Retrieved February 15, 2023, from https://www.
nltk.org/ 

[46] Documentation nltk.stem.snowball module. (2023, January 2). https://www.nltk.org. Retrieved 
February 15, 2023, from https://www.nltk.org/api/nltk.stem.snowball.html#module-nltk.stem.
snowball

[47] Sukhonin, D., & Panchenko, A. (2018, July 4). PYMYSTEM3. https://pypi.org. Retrieved March 10, 
2023, from https://pypi.org/project/pymystem3/

[48] The Apache Software Foundation. (n.d.). Apache Superset. https://superset.apache.org/. Retrieved 
March 10, 2023, from https://superset.apache.org/\

[49] Fehling, C., Leymann, F., Retter, R., Schupeck, W., & Arbitter, P. (2014). Cloud Computing Patterns. 
https://doi.org/10.1007/978-3-7091-1568-8

[50] Portainer.io (n.d.). Portainer. https://www.portainer.io/. Retrieved February 20, 2020, from https://
www.portainer.io/  

[51] Vmware (n.d.). RabbitMQ. https://www.rabbitmq.com/. Retrieved February 20, 2020, from https://
www.rabbitmq.com/  

[52] Telegram. (n.d.). Telegram database library. https://core.telegram.org/tdlib. Retrieved February 20, 
2020, from https://core.telegram.org/tdlib

[53] Vaadin. (2022, June 28). https://vaadin.com/. Retrieved April 10, 2023, from https://vaadin.com/  
[54] Haisa, G., & Altenbek, G. (2022). Multi-Task Learning Model for Kazakh Query Understanding. Sen-

sors, 22(24), 9810. https://doi.org/10.3390/s22249810  
[55] Singh, P., De Clercq, O., & Lefever, E. (2023). Distilling Monolingual Models from Large Multilin-

gual Transformers. Electronics, 12(4), 1022. https://doi.org/10.3390/electronics12041022  
[56] sismetanin/xlm_roberta_base-ru-sentiment-rureviews Hugging Face. (n.d.). https://huggingface.

co/sismetanin/xlm_roberta_base-ru-sentiment-rureviews 
[57] Yandex. (2023). Geo Reviews Dataset. https://github.com/yandex/. Retrieved October 14, 2023, 

from https://github.com/yandex/geo-reviews-dataset-2023 


