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INTEGRATED MODEL FOR FORECASTING TIME SERIES 
OF ENVIRONMENTAL POLLUTION PARAMETERS

Abstract: The quality of life in large urban areas is considerably diminished by air pollution, 
with major contributors being motor vehicles, industrial activities, and fossil fuel combustion. 
A major contributor to air pollution is coal-fired and thermal power plants, which are com-
monly found in emerging markets. In Astana, Kazakhstan, a rapidly expanding city’s significant 
reliance on coal for heating and considerable building exacerbate air pollution. This research 
is essential for improving urban development practices that support sustainable growth in 
rapidly expanding cities. Using time series data from four monitoring stations in Astana using 
fractal R/S analysis, the study looks at long-term patterns in air pollutant levels, especially 
PM10 and PM2.5. The stations’ Hurst exponents were determined to be 0.723, 0.548, 0.442, 
and 0.462. Additionally, the flow window method was used to study the Hurst exponent’s dy-
namic behavior. The findings showed that one station’s pollution levels had long-term mem-
ory, which suggests that the time series is persistent. While anti-persistence was noted in the 
third and fourth sites, data from the second station indicated nearly random behavior. The 
Hurst exponent values explain the October 2021 spike in pollution levels, which is probably 
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caused by thermal power plants close to the city. The fractal analysis of time series could 
serve as an indicator of environmental conditions in a given region, with persistent pollution 
trends potentially aiding in predicting critical pollution events. Anti-persistence or temporary 
pollution spikes may be influenced by the observation station’s proximity to pollution sources. 
Overall, the findings suggest that fractal time series analysis can act as a valuable tool for 
monitoring environmental health in urban areas.

Keywords: urban air pollution; R/S analysis; time series analysis; Hurst exponent; PM10; 
PM2.5

Introduction
Chemical, physical, or biological pollutants that alter the composition of the atmosphere 

are referred to as indoor or outdoor air pollutants by the World Health Organization (WHO) 
[1]. Common sources of pollution include the usage of cars, industrial processes, and the com-
bustion of fossil fuels. Landfills, mining, waste management, and agricultural activities are 
other causes. The extensive usage of thermal and coal-fired power plants is the primary cause 
of pollution in emerging nations. In order to create mechanical energy that powers electric 
generators, thermal power plants transform fuel’s chemical energy into thermal energy. In a 
similar vein, coal-fired power plants use coal, a major environmental pollutant, to provide both 
heat and energy, particularly during the colder months. Greenhouse gases that contribute to 
climate change are also released when fossil fuels are burned. However, carbon dioxide emis-
sions in the global energy system have only dropped by 1% in more than three decades since 
the UN Framework Convention on Climate Change was adopted. Global power generation is 
still dominated by fossil fuels, with renewable energy sources making up only 8.2% of the to-
tal. In 2021, energy-related emissions reached historic highs due to a 59% rise in the world’s 
energy consumption [2].

Air pollution has detrimental effects on public health, including higher mortality, neuro-
logical problems, respiratory and cardiovascular illnesses, and pregnancy issues [2], [3]. Addi-
tionally, there is evidence that greater air pollution levels are associated with higher type II 
diabetes death rates [4]. As the consequences of climate change and air pollution from fuel 
combustion intensify over time, the detrimental effects are particularly apparent for pregnant 
women and children [5].

The public’s health is seriously threatened by pollutants such as sulfur dioxide, nitrogen 
dioxide, carbon monoxide, and particulate matter. PM2.5 particle pollution killed 4.2 million 
people in 2020, the same number as in 2015. There was a 5% drop in the average mortality 
rate per 100,000 inhabitants. Anthropogenic emissions were responsible for 80% of these 
fatalities, whereas fuel combustion was directly responsible for 35%. Notably, the number of 
coal-burning-related fatalities dropped from 687,000 in 2015 to 561,000 in 2020, an 18% 
decrease. Stricter air pollution regulations in China and less coal use in Europe is mostly to 
blame for this decline. The quality of life is greatly impacted by the rise in air pollution, par-
ticularly in places with high population densities. Approximately 99 percent of people on 
the planet breathe air that has at least one pollutant level beyond tolerable limits, according 
to WHO estimates [1]. This issue disproportionately affects low and middle-income nations. 
Seven indicators spanning urban services, economics, culture and leisure, urban transporta-
tion, social connections, safety, and environmental conditions have been established based 
on the ISO 37120:2018 standard to evaluate the quality of life in cities [6], [7], [8]. Air and 
noise pollution, climatic comfort, cleanliness, and wastewater treatment are examples of en-
vironmental indicators. The combined impacts of several pollution sources, including industry, 
coal-fired power plants, and extensive transportation infrastructure, deteriorate air quality in 
major urban agglomerations. The purpose of this study is to examine the features of urban air 
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pollution and provide methodical approaches for tracking air quality and purification levels, 
which are essential for urban growth and planning. If these initiatives are successful, the ur-
ban population’s quality of life may improve, and morbidity may decline.

This research aims to investigate the long-term memory of time series data on hazardous 
material concentrations gathered from four sites in Astana. The following tasks were estab-
lished in order to accomplish this goal:

1. To better understand the dynamic behavior of the Hearst index, compute the Hearst index 
using fractal analysis of time series of air pollution data and find long-term memory models.

2. Examine variations in Astana’s pollution levels with dangerous compounds, including 
variables like the weather and the city’s closeness to possible pollution sources, particularly 
emissions from burning coal during the heating season.

Materials and Methods
Urban air pollution is a complicated issue brought on by a number of variables. Every city 

has unique features that impact pollution levels, including climate, topography, industrial ac-
tivity, and transportation hubs. These elements must be examined independently in order to 
create efficient urban planning techniques that lower pollution levels and enhance inhabit-
ants’ health and standard of living. As previously stated, a rise in the concentration of danger-
ous chemicals in the air is linked to a number of illnesses, which further strains the healthcare 
system. Furthermore, the rise in consumption brought on by population expansion in big cities 
makes pollution much worse. Thus, it is essential to take action to enhance urban environ-
mental conditions. Planning the location of possible pollution sources away from residential 
areas and increasing the usage of renewable energy sources are advised for rapidly expanding 
metropolitan regions.

Large urban agglomerations and rapidly expanding cities like Kazakhstan’s capital, Astana, 
are particularly affected by this problem. The Bureau of National Statistics estimates that 
there were 1.458 million people living in Astana as of May 1, 2024. The city’s yearly popula-
tion growth rate surpasses 4%, indicating a healthy balance between migration and natural 
population increase. Along with extensive building, this population boom has increased the 
demand for water and power, which in turn has increased the emissions of toxic compounds. 
The city’s heavy reliance on coal for heating systems is another significant element influencing 
the degree of environmental pollution.

Astana relies so largely on coal, during the heating season, the air’s concentration of partic-
ulate matter (PM2.5) rises sharply. Astana is the second coldest capital in the world, with an 
average annual temperature of 3.5°C. Its location in a climatically distinct continental zone 
guarantees a long warm season. Despite the fact that the city’s high average wind speeds 
aid in the natural dispersion of dangerous materials, the winter pollution levels nevertheless 
surpass WHO guidelines. Although Astana’s average yearly wind speed is between 5 and 7 m/s 
[10], the city nonetheless has a significant pollution concentration, particularly during the 
lengthy warm season. The city’s extensive usage of coal for heating systems and electricity 
generation accounts for a major portion of this. Central heating season of Astana often lasts 
for over seven months, increasing the amount of solid particles and combustion products in 
the air.

The city’s total pollution level is influenced by a number of variables, including the fast 
population expansion of over 4% annually, in addition to the pollution caused by heating. The 
majority of Astana’s pollution sources are stationary, in line with the research [11]. According 
to WHO guidelines [13], Astana’s average yearly air quality index (AQI) is around 53 points, 
with summertime averages of 35 points [12]. However, because coal burning is so common in 
the winter, pollution levels rise sharply.
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75% of Kazakhstan’s heat supply, including central heating systems and coal-based elec-
tricity generation, comes from coal combustion, according to the World Bank [14]. The na-
tion’s substantial reliance on coal has resulted in persistently high levels of air pollution; the 
average PM2.5 concentration is around 22 micrograms per cubic meter, far higher than the 
WHO-recommended threshold of 5 micrograms per cubic meter.

Kazakhstan’s air is polluted by about 3.5 thousand industrial companies. They operate in 
the oil and gas complex, non-ferrous and ferrous metallurgy, and thermal power engineering. 
They are spread throughout 80 cities. As to the 2015 statistics, Karaganda (596.4 thousand 
tons), Pavlodar (552.9 thousand tons), Aktobe (134.3 thousand tons), East Kazakhstan (127.2 
thousand tons), and Atyrau (110.6 thousand tons) are the five biggest cities in terms of air 
pollution (Figure 1). Approximately 2 million Kazakhs now reside in regions with high air pol-
lution levels. The Karaganda region’s industrial cities of Temirtau and Balkhash are on the list 
of cities with the worst air, as reported by Kazhydromet.

Figure 1. The amount of emissions in the Republic of Kazakhstan.

Introducing biotechnological filtration systems, which employ certain moss species to filter 
the air by releasing oxygen, is one potential way to enhance Astana’s air quality. The study’s 
proposal calls for the development of a network of moss-based biological filters that may be 
integrated into the Smart City system [15]. The Astana University of Information Technology 
is currently installing and testing the system. To find the best place for these filters, a model 
created [16] in a different study resolves the discrete optimization issue. This methodology 
enables filters to be strategically placed to enhance monitoring and air quality by forecasting 
air quality indicators in many places [17]. However, because of the nonlinear dispersion of 
pollution and the features of Astana, it is crucial to examine the structure of time series and 
the existence of long-term memory prior to utilizing techniques for predicting pollution lev-
els. Fractal analysis techniques like range scaling analysis (R/S analysis) and trend deviation 
oscillation analysis (DMI) can be applied for this.

The quality of long-term memory has been applied to air pollution time series by several 
writers. For instance, the dynamic link between atmospheric carbon dioxide emissions and 
the Organization for Economic Cooperation and Development’s (OECD) Industrial Production 
Index (IPI) across both short and long time periods was examined using multifractal approach-
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es in [18]. In order to ascertain if the time series of changes in air pollution contains several 
distinguishing features, the MF-DFA approach was employed in [19] since the expansion of 
industry and urbanization upsets the natural equilibrium and raises air pollution. The city 
of Zhengzhou in China was the focus of this inquiry. Singularity spectrum, extended Hurst 
index, Renyi index, and logistic graphs of fluctuation functions were used to show the multi-
fractality of Zhengzhou air quality time series. Another study [20] examined long-term data 
on variations in meteorological conditions, gaseous pollutants (CO, NO2, NOX, SO2, and O3), 
and particulate matter (PM2.5, PM10) concentrations at 412 stationary monitoring stations 
in Germany between January 2008 and December 2018.The Hearst index research indicates 
that Germany’s air pollution levels exhibited a consistent trend during the course of the study. 
Other nations have carried out comparable research. Reference [21] examined the dynamics of 
time series of air quality indicators in 50 US states after examining the statistical properties of 
particulate matter (PM10 and PM2.5). The study made use of a long-term memory system that 
was partially integrated [21]. The study’s overall findings differed by state: western regions 
showed greater resilience, whereas eastern states frequently saw a fall in the Hearst index. In 
[22], the long-term reliance of Mexico City on air pollution was assessed using the R/S meth-
odology. However, this trait has evolved throughout time. R/S analysis was employed in [23] to 
demonstrate the erratic behavior and long-term memory of PM10 particle emissions gathered 
in Athens, Greece. Furthermore, a number of studies have estimated the Hurst parameter using 
nonparametric techniques, such as deviant variation analysis (DFA) [24] and multifractal de-
viant oscillation analysis (MF-DFA) [25]. Specifically, the DFA approach was used to estimate 
shorter time series of air pollution [26], [27]. Considering the pertinent empirical features, 
these techniques are all appropriate for examining the time series of air pollution as they 
are all founded on the idea of long-term memory and are connected. Fractal analysis of air 
pollution time series is therefore crucial for assessing the persistence of hazardous material 
emissions into the atmosphere and determining long-term memory, particularly in metropol-
itan agglomerations.

Experimental Methods and Area of Study
More than 1.4 million people live in the metropolitan agglomeration of Astana [9]. Situated 

on a steppe plain, the city occupies an area of 797.33 km². Its climate is distinctly continental, 
with long, severe winters marked by strong winds and dry summers. Astana’s geographic po-
sition has a beneficial impact on air pollution levels since the wind direction helps disperse 
dangerous compounds, bringing their concentration down below WHO guidelines. However, 
the operation of coal-fired power plants for district heating and the usage of coal for heating 
residential buildings cause pollution levels to rise dramatically during the lengthy cold sea-
son, which lasts for about seven months.

As part of a collaborative government project, private organizations including Astana IT 
University (Astana, Republic of Kazakhstan), S. Toraighyrov University (Pavlodar, Republic of Ka-
zakhstan), and Promanalit LLP (Pavlodar, Republic of Kazakhstan) and Prometeo Chain System 
KZ Ltd (Astana, Republic of Kazakhstan) evaluated the amount of air pollution in Astana after 
examining the PM10 and PM2.5 particulate matter content (refer to the financing section). 
Pollution was measured at four facilities in Astana (see Figure 2). Four times a day, at 13:00, 
19:00, 13:00, and 19:00, data is gathered. using analyzers that are automatically employed 
for this purpose. Each automatic analyzer is equipped with microprocessors that generate time 
series data on pollution levels. All collected values are transmitted to a central station for 
processing and storage. The data analyzed in this study spans the period from June 1, 2021, 
to July 30, 2022.
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Figure 2. Location of air pollution measurement stations within the city of Astana.

Integrated model for forecasting time series of environmental pollution parameters
The complete model for predicting a time series of environmental pollution parameters 

is discussed in this paragraph. It combines several forecasting models created by predictive 
statistical analysis of pollution indicators. One of the key characteristics of this model is its ca-
pacity to incorporate popular forecasting methods while permitting parameters to be changed 
in response to the outcomes of fractal analysis-based prediction estimations.

The task is to use a time series

to determine estimates of the values in order to generate the most accurate prediction, that 
is, to establish the behavior of the time series of pollutant parameters for a specific number 
of points ahead.

where  – time series forecast .
The challenge must be solved by identifying a functional dependency that, given the time 

series’ known values, would roughly correspond to the anticipated value needed. 

Several metrics, including standard deviation, average absolute error, and average relative 
error, can be used to measure the forecast’s accuracy.
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Let a set of models be given Ф1, Ф2, ..., ФМ , which, based on the time series Q allow to make 
the most accurate forecast, i.e. find the value:

(6)

(7)
…

where  – time series forecast  based on the model  – parameters 
of the forecasting model  – number of parameters of the forecasting model j.

Let the model Ф1 is represented by the usual exponential model of order p ≥ 0. Exponential 
order model p ≥ 0 is determined by the formula:

where  – beginning conditions for the relevant order’s expo-
nential averages [28],  . That is, this model will be defined as 

 .
Let the model Ф2 is represented by the Holt exponential smoothing model, which is used to 

model time series with a pronounced trend component [29]:

 – a prediction made using the Holt time series model one point in advance Q, 

 , accordingly, the model has the form .
The Winters model Ф3 It is applied to systems that show multiplicative seasonality and 

an additive trend component. In this model, the time series value is analyzed separately by 
smoothing the trend, the seasonal component, and the non-seasonal component.

where  – smoothing parameters, P – seasonal cycle period, sn – assessment of the 
seasonal component of the model. This model is denoted by  .

Autoregressive model Ф4 is determined by the formula:

Undefined parameters are computed using the criterion to minimize the sum of RMS errors. 
Since the memory capacity determines how many points the autoregressive model should 
employ, we can construct the model as  .
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The number of points utilized to compute the prediction value is determined by a param-
eter that defines the moving average model. The larger the memory in the time series, the 
larger this parameter should be. That is, the model  is defined 
as follows:

Weighted moving average with a set of normalized weights  , is 
determined by the formula:

This model is denoted by 
 

. The number of models can 
be increased. However, it should be noted that the initial parameters should be chosen con-
sidering the results of the pre-prognostic analysis. By using this method, it will be feasible to 
provide a more accurate prediction of environmental contamination parameters and minimize 
forecasting error for time series. For the development of an efficient environmental monitor-
ing system, this precision is essential.

A comprehensive forecasting model that incorporates all the previously mentioned mod-
els should be developed, along with the findings from the pre-prognostic fractal analysis of 
the time series. The ability to dynamically modify your settings in response to changes in the 
environment is how this approach varies from others. Each of the described models produces 
a certain level of error when implemented. The accuracy of the model is determined by the 
minimum forecasting error. Let the time series plot  the accu-
racy of the forecasting models is monitored, then the error can be calculated for each model 

 by the formula:

 – prediction error of point q(tn), based on the model Ф1 .
Using the following formula, we determine the criterion for choosing a model to execute 

the forecast for each model:

where  – exponentially smoothed point prediction error q(tn), based on the model Ф1 .
If the error argument is the model on which it was calculated, i.e.  . Then, the 

model for which the condition of minimum forecasting error is met is selected to perform the 
forecast:

For the selected list of models, we will use their connection with the results of the pre-fore-
cast analysis. That is, with the calculated value of H(Qn).

The smoothing parameter for the first model indicates how much the series’ past values 
affect the predicted outcome. If this parameter approaches one, the forecast produced by this 
model will closely resemble a naive forecast. Conversely, a forecast may still appear naive if 
the series being predicted exhibits strong persistence. Therefore, a rational formula can be 
established to determine the optimal smoothing parameter within the model.
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In the second model  first smoothing parameter α1 – de-
termines the trend, and the second α2 – the random component. Accordingly, these parameters 
can be determined by the formula:

In the third model  first smoothing parameter α1 – de-
termines the trend, and the second α2 – random component, the third – α3 – seasonality. The 
following formula may be used to compute these parameters if the trend changes points of 
the statistics curve V match the seasonality of P:

In the models ,  and 

 the value of the parameter is determined by the presence 
of long-term memory in the time series. It can be determined by visual inspection of the V 
statistics curve. If the point that shows a sharp change in the upward and downward trend of 
this curve is equal to P, P ∈ N, then the parameter c can be set to P, i.e., models of this form 
will be built: 

This model is unique in that it is adaptable in addition to taking into account the findings 
of the predictive fractal analysis. In other words, it could adjust the model’s parameters in re-
sponse to environmental changes, which is particularly crucial when utilizing these models in 
environmental monitoring systems.

If a time series fluctuates above a certain threshold, it is likely to indicate a stable pollution 
situation, where either a decrease or increase in pollution levels occurs, but the trend remains 
predictable (see Fig. 3). To forecast pollution levels in this scenario, methods that account for 
a strong trend component should be employed, which is crucial for effectively building the 
system for monitoring the environment. Conversely, if such a time series’ values fall under 
the established threshold, it can signal an emergency or unstable changes in pollution levels 
(see Fig. 4). In this case, models that incorporate a significant random component should be 
utilized for predicting pollution levels.
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Additionally, it may indicate a greater impact of random events on the process in question if 
the time series values were originally above the threshold value before beginning to abruptly 
decrease and fall below it. In this situation, you must examine the V statistics’ value to confirm 
that the time series’ long-term memory was indeed lost. This, in turn, means possible emission 
emergencies that need to be addressed promptly. Figure 5 demonstratews such a case when 
the value of the Hurst index decreases sharply, crossing the threshold level. All other cases 
that may occur in the case of time series analysis

should be analyzed separately.

Figure 3. The position of the time series  is above the threshold value .

Figure 4. The position of the time series  is below the threshold value .
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Figure 5. The position of the time series  decreases sharply from above 
the threshold  to below the threshold  .

Critical statistical estimates that may be used to develop forecasting models and an effi-
cient environmental monitoring system are provided by the fractal analysis of the time series 
of environmental pollution parameters.

Results
In the period from June 1, 2021, to July 30, 2022, air pollution levels were monitored in 

four settlements of Astana, Republic of Kazakhstan, to assess air quality and study long-term 
memory. The data was collected four times a day at 13:00, 19:00, 19:00 and 19:00. The loca-
tion of the stations is shown in Figure 2. Three stations are located on the right bank, and one 
on the left bank of the Ishim River. At each station, the content of significant pollutants was 
monitored every six hours, including particulate matter (PM10, PM2.5), sulfur dioxide, carbon 
monoxide, nitrogen dioxide, hydrogen fluoride, benzopyrene, sulfates, nitric oxide, benzene, 
ethylbenzene, chlorobenzene, paraxylene, methaxylene, cumene, orthoxylene, cadmium (Cd), 
copper (Cu), zinc (Zn), chromium VI (Cr), arsenic (As) and other significant pollutants. Since most 
of these indicators had values in time series close to zero, the study focused on the cumulative 
time series of suspended particles PM2.5 and PM10.

The dataset is accessible in CSV format in other publications. Descriptive statistics for time 
series data are shown in Table 1.

Тable 1. Descriptive statistics of pollution time series.

Indicator Station
1 2 3 4

Number of observations 1384 1038 1038 1038
Mean 0.219487 0.225809 0.222071 0.225241
Std 0.354448 0.421328 0.366821 0.417980
Min 0.000000 0.000000 0.000000 0.000000
Max 3.400000 3.900000 3.400000 3.900000

The research was conducted using a sliding window of one calendar month with 120 data 
points. The rolling() function from the Pandas package was used to do a fractal analysis while 
examining time data. Descriptive statistics for the smoothed series data are shown in Table 2.

DOI: 10.37943/19IKWT5637
© Andrii Biloshchytskyi, Oleksandr Kuchanskyi, Alexandr 
    Neftissov, Svitlana Biloshchytska, Arailym Medetbek



174 Scientific Journal of Astana IT University
ISSN (P): 2707-9031   ISSN (E): 2707-904X

VOLUME 19, SEPTEMBER 2024

Тable 2. Descriptive statistics of time series of pollution after smoothing.

Indicator Station
1 2 3 4

Number of observations 1280 1038 1038 1038
Mean 0.227144 0.222413 0.226039 0.221515
Std 0.216896 0.233680 0.234858 0.219416
Min 0.090833 0.082500 0.085000 0.095833
Max 1.084167 1.229167 1.141667 1.145833

The issue of missing data was resolved by smoothing the data, which successfully decreased 
the time series’ variance and range.

To investigate the acute emissions of PM10 and PM2.5 particulate matter, data on the 
locations and operations of thermal power plants in Astana were gathered (see Fig. 3). Sta-
tions 2, 3, and 4 are situated closer to thermal power plants, it was observed. Therefore, the 
primary cause of the consistent rise in pollution levels seen in the time series is station 1’s 
considerable distance from these sources of pollution. Table 3 displays the maximum capacity 
of thermal power plants as well as the separation between stations and air quality monitoring 
stations.

Figure 3. Placement of air pollution monitoring stations and thermal power plants.
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Table 3. Distances between observation stations and thermal power plants.

Thermal Power Plant Maximum Capacity, 
Gcal/Year

Distance to the Observation Station, km
1 2 3 4

CHP 1 824 8.93 5.52 12.55 11.83
CHP 2 1140 8.01 6.8 10.71 9.84
CHP 2 WB 795 8.04 6.71 10.81 9.94
CHP 3 440 10.15 6.81 13.73 12.99
South-west 350 6.02 9.57 3.42 3.28
Turan 340 9.14 6.82 11.9 11.75
Min distance 6.02 5.52 3.42 3.28

Long-term memory research was made easier by calculating the Hurst index for every time 
series using R/S analysis. Additionally, a map of thermal networks was examined and data on 
the locations of thermal power plants was gathered in light of the unique features of the city’s 
pollution.

This method may be utilized as an indicator of the local environment, according to the find-
ings of dynamic computations of the Hearst index and the identification of potential pollution 
sources caused by coal burning during Astana’s heating season. When the Hearst indicator 
shows that a time series of pollution is persistent, the source of the pollution is most likely 
situated distant from the monitoring station. In these situations, a gradual rise in pollution 
levels may be anticipated, allowing for the early detection of potentially disastrous pollution 
situations.

However, if the time series shows instability or unpredictability, it indicates the critical or 
near-critical condition of the environment with unpredictable emissions when the monitoring 
station is situated close to the pollution source. The timely adoption of actions to lessen the 
consequences of pollution can be facilitated by this knowledge, which is essential for sensible 
environmental management.

Discussion
The findings derived from the fractal R/S analysis of air pollution time series in Astana, col-

lected from four monitoring stations, highlight significant environmental challenges faced by 
the city. An examination of the air pollutant concentration time series recorded at these four 
locations revealed the presence of long memory. The fractal R/S analysis yielded Hurst expo-
nents of 0.723, 0.548, 0.442, and 0.462 for the respective stations. Additionally, the dynamics 
of the Hurst exponent were explored using the sliding window method.

According to the research, station 1’s time series demonstrates persistence and long-term 
memory, but station 2’s time series is described as almost random. The time series from sta-
tions 3 and 4, on the other hand, show anti-persistence. Notably, these Hurst exponent values 
were impacted by the notable spike in pollution levels that was recorded in October 2021.

During the heating season from October to December, a significant spike in PM10 and 
PM2.5 particulate matter levels were recorded, reaching critical thresholds. This rise can be 
attributed to the inefficiencies of thermal and coal-fired power plants designed for centralized 
heating, as well as the extensive use of combustible fuels for residential heating. The location 
of monitoring stations relative to pollutant emission sources significantly impacts the struc-
ture of the pollutant concentration time series. Specifically, time series from stations near 
thermal power plants exhibit anti-persistent or random characteristics, complicating their 
analysis with standard methods. This phenomenon signifies abrupt emissions that deviate 
from a consistent trend in harmful substance concentrations, potentially indicating a critical 
environmental situation that necessitates prompt action from city environmental services.
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For the time series associated with station 1, situated in a park area and relatively distant 
from pollution sources, the Hurst exponent exceeds 0.7, indicating persistence. Its persistent 
character is further supported by the Hurst exponent’s dynamic analysis for this series. But like 
other locations, this time series also shows a notable rise at the start of the summer and a fall 
in the average daily air temperature. Because of the less noticeable rise, long-term memory is 
confirmed, and the Hurst index may be calculated more easily. These results align with similar 
research, such as the fractal analysis of PM10 concentration time series in Athens [23].

The air pollution data for Astana, prepared for analysis, were collected at four monitoring 
stations with a six-hour interval. While the dataset is ample for analysis, it spans a limited 
timeframe of one year (from June 2021 to July 2022). This limitation restricts the ability to 
evaluate how pollution levels in Astana changed during the heating seasons in previous years, 
which could provide valuable insights into annual trends in pollutant emissions during the 
autumn and winter months.

Also, the factor that may impact conclusions about air quality in Astana is the geographical 
distribution of the monitoring stations. Only one of the four stations is on the left side of the 
Ishim River; the other three are on the right bank. The right bank represents an older part of 
the city, developed several decades ago, and is characterized by aging thermal power plants 
and infrastructure that require modernization. Furthermore, this area contains many private 
households that typically rely on burning fossil fuels for heating. As a result, a significant esca-
lation in air pollution was likely observed during the start of the heating season, from October 
to December.

The Ishim River’s left bank, on the other hand, is a relatively recent location, with most of 
the building occurring within the previous 20 years. This region has experienced improve-
ments in infrastructure and greater access to natural gas for heating. If monitoring stations 
were positioned in this part of the city, it is likely that critical levels of pollution would not 
have been detected.

The findings from this study are significant for the city’s environmental monitoring services, 
as prompt action in response to such pollutant emissions is crucial for safeguarding the health 
of residents and ensuring environmental safety in the region.

Conclusion
Thermal power plants in Astana, which are situated closer to monitoring stations 2, 3, and 

4, are responsible for the noticeable rise in PM10 and PM2.5 particulate matter levels. In con-
trast, the more gradual rise in pollution levels recorded at station 1 is attributed to its greater 
distance from these pollution sources. Furthermore, weather conditions also play a role in 
influencing the intensity of coal combustion and the resulting emissions.

The state’s strategic goal is to facilitate a transition to heating systems that utilize natural 
gas, alongside the development of the necessary infrastructure. Future research could focus 
on examining the effects of this transition on Astana’s environmental conditions, particularly 
concerning air pollution levels of PM10 and PM2.5. Moreover, investigating the impact of the 
city’s rapid population growth, which exceeds 4% annually, could provide insights into the 
pressures placed on the energy system. One promising approach for mitigating air pollution 
is the application of modified biochar, especially for significant emitters like thermal power 
plants [30].

The findings presented in this study are crucial for urban development, particularly regard-
ing the sustainable growth of rapidly expanding urban agglomerations. The results suggest 
that fractal time series analysis can serve as a valuable tool for assessing the ecological state 
of a region. This technique can be used to forecast possible critical pollution levels if a pollu-
tion source is situated distant from a monitoring station and the Hurst exponent shows a con-
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sistent time series. On the other hand, the station’s closeness to pollution sources may cause 
anti-persistence or unpredictability in the pollution time series.
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