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DEEP NEURAL NETWORK AND CNN MODEL OF DRIVING BEHAVIOR 
PREDICTION FOR AUTONOMOUS VEHICLES IN SMART CITY

Abstract: This research applies deep neural networks (DNN) and convolutional neural 
networks (CNN) to the modeling and prediction of driving behavior in autonomous vehicles 
within the Smart City context. Developed, trained, validated, and tested within the Keras 
framework, the model is optimized to predict the steering angle for self-driving vehicles in 
a controlled simulated environment. Utilizing a training dataset comprised of image data 
paired with steering angles, the model achieves autonomous navigation along a designated 
track. Key innovations in the model’s architecture, including parameter fine-tuning and struc-
tural optimization, contribute to its computational efficiency and high responsiveness. The 
integration of convolutional layers facilitates advanced spatial feature extraction, while the 
inclusion of repeated layers mitigates information loss, with implications for potential future 
enhancements. Clustering algorithms, including K-Means, DBSCAN, Gaussian Mixture Model, 
Mean-Shift, and Hierarchical Clustering, further augment the model by providing insights into 
driving environment segmentation, obstacle detection, and driving pattern analysis, there-
by enhancing complex decision-making capabilities amid real-world noise and uncertainty. 
Empirical results demonstrate the efficacy of Gaussian Mixture and DBSCAN algorithms in 
addressing environmental uncertainties, with DBSCAN displaying robust noise tolerance and 
anomaly detection capabilities. Additionally, the CNN model exhibits superior performance, 
with lower loss values on both training and validation datasets compared to an RNN model, 
underscoring CNN’s suitability for visually driven tasks within autonomous systems. The study 
advances the field of autonomous vehicle behavior prediction through a novel integration of 
neural networks and clustering algorithms to support sophisticated decision-making in auton-
omous driving. The findings contribute to the development of intelligent systems within the 
Smart City framework, emphasizing model precision and computational efficiency.
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Introduction
Self-driving cars have become a trending subject with significant improvement in tech-

nologies in the last decade. The purpose of the study is to train a neural network to drive an 
autonomous car agent on the tracks of Udacity’s Car Simulator environment. Udacity has re-
leased the simulator as an open-source software and enthusiasts have hosted a competition 
(challenge) to teach a car how to drive using only camera images and deep learning. Autono-
mously driving a car requires learning to control the steering angle, throttle, and brakes. In the 
practice mode on the track, driving behavior is imitated by a behavioral cloning technique. In 
the simulator, a dataset is produced by a user-driven car in training mode, and the deep neural 
network model then operates the vehicle autonomously. In the end, the automobile was able 
to perform admirably on Track 1. The research hopes to eventually achieve the same precision 
on real-time data.

To simulate a real-world setting, Udacity published an open-source simulator for self-driv-
ing cars. The task is to use a model built by deep neural networks to simulate human driving 
behavior on the simulator. To replicate how a human would drive, the idea is known as behav-
ioral cloning. Two tracks and two modes–training mode and autonomous mode–are included 
in the simulator. The user creates the dataset while operating the simulator while operating 
the vehicle in training mode. The «good» driving data is another name for this type of data. 
The deep learning model is then tested on the track to see how it does after being trained 
using the user data. The problem is solved through the following steps.

1. Data collection: Use a simulator to drive the car in training mode with a joystick or 
keyboard, generating a driving log and a set of images.

2. Machine learning model: Develop a machine learning model using Deep Neural Networks 
in Keras, trained on the collected data.

3. Autonomous driving: Once trained, the model provides steering angles and throttle 
commands to drive the car autonomously in the simulator.

4. Simulation: The model’s outputs are sent back to the simulator to keep the car on track 
autonomously.

Literary review
The Smart city concept nowadays comes true with self-driven vehicles which will come 

soon one of the most sustainable parts of Smart cities all over the world. In the Republic of Ka-
zakhstan since 2019 a huge amount of works are devoted to Smart city development process-
es like Methodical rules for Smart city in RK, National and International standards accredited 
by Kazakhstan government and many scientific papers related to Smart city development in 
RK [12] [13] like Almaty development strategy till 2025 in short-term and till 2030 long-term 
(Aim 6. Smart city) and many projects for Smart city like Smart city Akkol, Ikomek 109 and 
others [16], [17], [18]. The self-driven vehicles will give opportunities to develop Smart Roads 
[10], [11] strategy in everyday life and will provide modern complex data mining technologies 
for smart city urban mobility [19], [20], road safety, traffic and passengers flows predictive 
models more accurately build for smart city, manage parking in city more effectively and using 
Greentech with reduce traditional energy resources [1], [2].

SDV could be fully integrated with Smart city infrastructure using multi domain data tech-
nologies and ML, AI [21],[22], CNN and RNN algorithms because it has local edge infrastruc-
ture computing system to the central cloud.  4G, 5G technologies and 6G in future prospective 
and their success implementations are used by SDV for sharing the data and collecting with 
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smart city infrastructure.  SDV can send speed parameters, location, weather, road conditions 
back to the cloud, for traffic jam model prediction, with complex analysis for SDV routes opti-
mization in Smart city. SDV car itself could be implemented and modified as the green energy 
flow node for sustainable smart city development [3], [4], [5]. For example, in Almaty in 2025 
it is planned to use aero taxi VTOL vehicles to move between Almaty and Alatau city [13], [14]. 
For Astana, using models for SDVis also actual and novel task for passenger flow prediction 
model and for evaluation time of SDV coming due to the driving behavior prediction [15]. 

There are several studies investigating SDV simulators with the help of various gaming 
tools [23], [24], [25]. These studies utilize the game engine to simulate various driving envi-
ronments and scenarios, enabling researchers to test autonomous driving algorithms, assess 
vehicle responses under different conditions, and gather data for improving SDV functional-
ities. Through such tools, challenges such as object detection, path planning, and obstacle 
avoidance, thus contributing to advancements in autonomous vehicle safety and performance 
can be addressed and solved. For example, in [23] the authors used Epic Gaming’s Unreal En-
gine 4. 

Methods and Materials 
The project employs various technologies for implementation, each chosen for specific rea-

sons. TensorFlow is an open-source library known for dataflow programming and widely used 
in machine learning. In this project, TensorFlow serves as both a math library and a platform 
for large-scale computations. Additionally, Keras, a user-friendly high-level API built on top 
of TensorFlow, is utilized for better model building. NumPy is a Python library that provides 
high-level mathematical functions and supports multi-dimensional matrices and arrays. It is 
used in this project for efficient computations involving neural network weights (gradients). 
Another significant library, scikit-learn is a Python machine learning library featuring various 
algorithms and function packages. It enhances the performance of the project by offering 
diverse machine learning capabilities. Open-Source Computer Vision Library OpenCV is de-
signed for efficient computation, especially for real-time applications. In this project, OpenCV 
is employed for image preprocessing and augmentation techniques, contributing to improved 
results. Conda is an open-source Python distribution that simplifies package management and 
deployment. It is well-suited for large-scale data processing, providing an organized environ-
ment for project development. The project is developed on a personal computer, making use of 
these technologies to facilitate efficient data processing and model training.

Recurrent Neural Networks (RNNs) are a class of artificial neural networks designed for pro-
cessing sequences of data. They are particularly well-suited for tasks that involve sequential 
data, such as natural language processing (NLP), speech recognition, time series analysis, and 
more [7], [8], [9]. RNNs are used for modeling sequences of data where each element in the 
sequence depends on previous elements. This makes them suitable for tasks like predicting 
the next word in a sentence, generating text, or forecasting future values in a time series [6]. 
CNNs are feed-forward neural networks used for learning from data input. They adjust their 
weights through training to match desired outputs. They excel at capturing hierarchical and 
spatial information from images by using filters that scan the input with a defined window size 
and stride, gradually recognizing details like lines, shapes, and objects. CNNs are well-suited 
for classifying images into distinct categories. The model predicts the steering angle, 𝜃, for 
autonomous vehicle navigation based on image data using a CNN. The CNN model follows 
these stages:

a. Image Input Representation
Each input image I is represented as a tensor with dimensions W × H × C, where W and H are 

width and height, and 𝐶 is the number of color channels.
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b. Convolutional Layers
Feature maps 𝐹 are calculated by applying convolutional filters 𝐾 across the input image or 

preceding feature map. For each filter k, the feature map 𝐹𝑘 is:

(1)
where ∗ denotes convolution, 𝑏𝑘 is the bias, and f(⋅) is a non-linear activation function such 

as ELU.
c. Pooling and Flattening
After pooling layers reduce spatial dimensions, the flattened output is fed into fully 

connected (dense) layers.
d. Fully Connected Layers for Regression
The flattened feature map Flattened is processed through dense layers. The final layer 

predicts the steering angle 𝜃 as follows:

(2)
where 𝑊𝑜𝑢𝑡 and 𝑏𝑜𝑢𝑡 are weights and bias, and 𝐹𝑑𝑒𝑛𝑠𝑒 is the dense layer output.
e. Loss Function. The model minimizes a Mean Squared Error (MSE) loss function.
In addition to the primary neural network model, our project leverages three clustering al-

gorithms to enhance autonomous driving capabilities. K-Means clustering algorithm partitions 
the data into K clusters by assigning each point to the nearest centroid. It is simple, fast, and 
efficient for large datasets. However, it assumes that clusters are spherical and equally sized, 
which may not always be the case in real-world data. For a self-driving car project, it might be 
useful for segmenting similar traffic patterns or clustering static objects. 

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) algorithm 
finds core samples of high density and expands clusters from them. It is good at separating 
high-density clusters from noise and can find clusters of arbitrary shapes. This could be par-
ticularly useful in a self-driving context for identifying outliers or ‘noise’ such as pedestrians 
or unexpected obstacles. 

Hierarchical Clustering creates a tree of clusters called a dendrogram, which can be useful 
for understanding the data structure at multiple scales. It’s good for small to medium datasets 
but can be computationally expensive for large datasets. In self-driving cars, it could be used 
for understanding hierarchical relationships in road features. 

Mean-Shift Clustering aims to discover blobs in a smooth density of samples without as-
suming any prior knowledge of the number of clusters. It is not as scalable to high dimension-
ality as K-means but can handle arbitrary shape clusters. In self-driving cars, it could be used 
for tracking applications or identifying vehicle groupings. 

Gaussian Mixture Model (GMM) Clustering uses soft clustering to assign probabilities to 
each point for being in a particular cluster, which can be interpreted as cluster memberships. 
It’s more flexible than K-means because it doesn’t assume clusters have equal size or spherical 
shapes. This can be used for probabilistic modeling of traffic situations for self-driving cars.

When comparing these algorithms for a self-driving car project, the choice depends on the 
specific use case. For instance, if the task is to identify vehicles on the road, a density-based al-
gorithm like DBSCAN might be preferred due to its ability to handle noise. Gaussian Mixture 
Clustering might offer the nuanced probabilistic approach needed if the task is to categorize 
different driving environments. 

Ultimately, the decision would depend on the specific needs of the project, such as:
• The size and dimensionality of the data.
• The computational resources available.
• The need for speed versus accuracy.
• The type of data and expected clustering structure.
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For instance, if the project requires real-time analysis, a faster algorithm like K-Means might 
be more suitable. On the other hand, if the project can afford more computational time for a 
thorough analysis and the data is expected to contain noise or irregular cluster shapes, algo-
rithms like DBSCAN or Gaussian Mixture Clustering might be more appropriate. 

The Training Process
Opened a new python3 notebook and git clone the repo, after that imported all the librar-

ies needed for the training process. It will use TensorFlow backend and Keras at the front 
end. A datadir as the name given to the folder itself and takes the parameters itself.

Using head, showed the first five values for the CSV in the desired format.
As this is picking up the entire path from the local machine, needed the use of the ntpath 

function to get the network path assigned. Finally, declared a name path_leaf and assigned 
accordingly.

Data Normalization & Data Information
Binned the number of values where the number will be equal to 25 (odd number aimed to 

get center distribution). Then, it got the histogram using the np.histogram option on the data 
frame ‘steering’, divided it by the number of bins. Kept samples at 400 and then drew a line. At 
the end the data is centered along the middle which is equal to 0.

Balancing Steering Angle Data for Improved Uniformity
To achieve a more uniform distribution of steering angle data, created a variable called 

removelist. Used a loop to iterate through each bin, examining the steering data. After shuf-
fling the data to ensure a more uniform structure, certain samples were removed from the 
remove_list. This process addresses the bias toward driving straight by reducing the significant 
number of left and right steering angle data points.

Figure 1. Balanced Steering Angle Data for Improved Uniformity
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Loading and Manipulating Images with Steering Data
For this process loaded the image into an array to manipulate them accordingly. Defined a 

function named locd_img_steering. After, it was got an image path as an empty list and steer-
ing as empty list and then loop through. It was used as an iloc selector as a data frame based 
on the specific index, it will be used to cut data for now. 

Figure 2. Histograms of training and validation set

Data Augmentation and image pre-processing
Cropped and resized the images from the dataset to focus on the relevant road features. 

About 30% of the top portion of each image was removed, and this modified image was used 
in the training set. 

Figure 3. Zoomed version of the original picture after data augmentation

Figure 4. Shifted version of the original picture after data augmentation



37

To adapt to various weather conditions, such as bright sunny days or low-light situations, in 
the project brightness augmentation applied. 

Figure 5. A darkened version of the original image after data augmentation

The horizontally flipped format of the image (created a mirror image) and included it in the 
dataset to train the model for both left and right turns. 

Figure 6. Flipped version of the original image after data augmentation

Model Training and Architecture

Figure 7. Pre-processed training and validation set images
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Experimental configurations
When building the model, researchers tried their best to experiment with parameter settings 

to achieve the best combination. As a result, we came to the following configuration combi-
nation:

• When training the data, we used sequential models built on Keras with deep neural 
network layers.

• 80% of the data set is used for training, and 20% for testing.
• Epochs = 10, i.e. number of iterations.  

It was also tried with a larger number of epochs, but the model was “overfitted.”
• Batch size = 100.
• Learning rate = 0.0001, i.e. how the coefficients of weights or gradients in the net-

work change.

Network architectures
The network design is based on the NVIDIA model, which NVIDIA has used for the end-to- 

end self-driving test. As such, it is well suited for the project. It is a deep convolutional network 
that works well with supervised image classification/regression problems. As the NVIDIA mod-
el is well documented, work kept focus on how to adjust the training images to produce the 
best result with some adjustments to the model to avoid overfitting and adding non-linearity 
to improve the prediction.

In research the following adjustments added to the model:
• Used the Lambda layer to normalize input images to avoid saturation and improve 

gradients.
• Added an additional dropout layer to avoid overfitting after the convolution layers.
• Included ELU for the activation function for every layer except for the output layer to 

introduce non-linearity.
In the end, the model looks like as follows: 

Figure 8. Adjusted NVIDIA model architecture
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As per the NVIDIA model, the convolution layers are meant to handle feature engineering, 
and the fully connected layer is meant to predict the steering angle. Overall, the model is very 
functional to clone the given steering behavior. Below is a model structure output from the 
Keras which gives more details on the shapes and the number of parameters.

Have developed the Model architecture and are moving from Lenet 5 to the NVIDIA Model 
for traffic sign classification. The behavioral cloning dataset is more complex than MNSIT, with 
images of size (200.66). 5386 images for training are had, while MNSIT has about 60,000 
images. Our behavioral cloning code solves the regression problem by returning the rotation 
angle. For this, a more advanced NVIDIA model was used.

For model architecture:
1. Definition of the model object.
2. Skip the normalization state since it is already normalized.
3. Add a convolution layer with 24 filters and a 5x5 kernel. Use 2x2 subsampling due to 

large images. The input form of the model is (66, 200, 3) and the activation function is «elu».
4. The second layer has 36 filters, 5x5 kernel, and 2x2 subsampling, with an «elu» activa-

tion function.
5. Three additional convolutional neural network layers with 48, 64, and 64 filters respec-

tively, using 3x3 kernels. Remove subsampling in layers 4 and 5 due to size reduction.
6. Add a flattening layer to convert the output array of the previous convolutional neural 

network into a one-dimensional array.
7. The last convolution layer with array shape output (1, 18) and 64 filters.
Completed the NVIDIA model architecture with a single dense output layer that predicts 

the turning angle of a self-driving car. To compile the model, model.compile() is used with the 
mean square error metric and the Adam optimizer. A low learning rate promotes accuracy. To 
prevent overfitting of the data, a dropout layer is used that randomly sets the input nodes to 0 
during updating, thus generating different combinations of nodes for training. The elimination 
layer appliesa factor of 0.5 to convert 50% of the input data to 0. The model is defined as the 
NVIDIA model.

To train the model, model.fit() is used, which passes the training data X_Train and y_train. 
Given the limited amount of data, more epochs are required for effective training. It also uses 
data for verification and sets the packet size.

Results
Value loss or Accuracy
The first evaluation parameter considered here is “Loss” over each epoch of the training run. 

To calculate value loss over each epoch, Keras provides “val_loss”, which is the average loss 
after that epoch. The loss observed during the initial epochs at the beginning of the training 
phase is high, but it falls gradually, and that is evident by the screenshots below which show 
the run of Architecture in the training phase.

Figure 9. Loss and val_loss evaluation parameters over each epoch of the training run
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Why do we use ELU over RELU?
Possibility of having a dead RELU – this is when a node in a neural network essentially dies 

and only feeds a value of zero to nodes that follow it. That is why, it changed from RELU to Elu. 
Elu function has always a chance to recover and fix its errors, which means it is in the process 
of learning and contributing to the model. Plotted the model and then save it accordingly in 
h5 format for a Keras file.

Figure 10. Loss value during model training and validation

Evaluating Clustering Algorithms [4-8]
Upon implementing the three clustering algorithms, we observed distinct behaviors:
K-Means showed clear segmentation of road conditions but required prior specification of 

the number of clusters.
• Clustering Time: 16.08 seconds

Figure 11. K-Means Clustering Visualization
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Similar to Hierarchical Clustering, K-means has identified three distinct groups. However, 
the clusters here are more «spread out» across the steering angle range, which may suggest 
a more generalized grouping. K-means clustering is sensitive to the initial placement of cen-
troids and can sometimes result in different outcomes on different runs unless the random 
state is fixed.

DBSCAN excelled in identifying outliers and unusual patterns in driving data, showcasing its 
utility in detecting unexpected road conditions.

• Clustering Time: 42.32 seconds

Figure 12. DBSCAN Clustering Visualization

This plot shows that DBSCAN has classified almost each data point as its own cluster or 
noise. This is indicative of an eps value that is too small, causing the algorithm to fail to 
group nearby points into the same cluster. There’s little to no meaningful clustering here, as 
DBSCAN is very sensitive to the choice of eps and min_samples. The plot shows data points 
distributed across two principal components, suggesting a reduction in dimensionality, like 
PCA. The clustering isn’t visually differentiated by color or shape, making it hard to discern 
distinct clusters or outliers.
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Hierarchical Clustering provided an insightful dendrogram, illustrating the relationship be-
tween different driving behaviors.

• Clustering Time: 0.05 seconds

Figure 13. Hierarchical Clustering Visualization

The data seems to be divided into three main clusters with distinct ranges of steering an-
gles. The transitions between clusters are clear and well-defined. This suggests that hierar-
chical clustering has found a meaningful structure in the data, potentially corresponding to 
different types of turns or driving patterns.

Figure 14. Dendrogram (Hierarchical) Clustering Visualization

The dendrogram provides a visual representation of the clustering process. The height of 
the dendrograms indicates the distance (or dissimilarity) between clusters. The large vertical

distances without horizontal lines cutting through them suggest that a smaller number of 
clusters could be considered.
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Mean-Shift Clustering provided an insightful dendrogram, illustrating the relationship be-
tween different driving behaviors.

• Clustering Time: 2902.64 seconds

Figure 15. Mean-Shift Clustering Visualization

The image displays a color-coded scatter plot for Mean-Shift Clustering, with data points 
across two principal components, indicating clusters by color gradients from yellow to dark 
blue. The plot visually distinguishes clusters but lacks a legend for full clarity.

Gaussian Mixture Model Clustering provided an insightful dendrogram, illustrating the re-
lationship between different driving behaviors.

• Clustering Time: 223.71 seconds

Figure 16. Gaussian Mixture Model Clustering Visualization
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This image shows a Gaussian Mixture Clustering scatter plot with clearly separated clusters 
in different colors, indicating the grouping of data points by the algorithm. The axes suggest 
a PCA reduction.

RNN (Recurrent Neural Network):
• Learning Epochs: 10
• Loss on the training set: 0.3992 (on the last epoch)
• Losses on the validation set: 0.3208 (on the last epoch)

Figure 17. RNN

CNN (Convolutional Neural Network):
• Learning Epochs: 10
• Loss on the training set: 0.2075 (on the last epoch)
• Losses on the validation set: 0.1597 (on the last epoch)

Figure 18. CNN loss and val_loss evaluation parameters result

Discussion
Analysis of Clustering Algorithms in Autonomous Driving.
The integration of clustering algorithms with neural networks in autonomous driving pre-

sents a novel approach. While K-Means offered straightforward segmentations, its requirement 
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for predetermined cluster numbers was a limitation. DBSCAN’s ability to detect anomalies 
aligns well with the unpredictability of real-world driving conditions. Hierarchical Clustering 
contributed to a deeper understanding of driving data but was computationally intensive for 
larger datasets.

Comparison of Clustering algorithms
1. K-Means Clustering:
• It has clearly defined, non-overlapping clusters which could represent distinct groups like 

different types of vehicles, road conditions, or traffic scenarios.
• The sharp boundaries could be used for making clear decisions when distinct options are 

available.
• The algorithm is fast, as indicated by the relatively short computation time.
2. Hierarchical Clustering:
• It provides a dendrogram which can be useful for understanding the data at multiple 

levels of granularity.
• This could be used to determine the level of detail required for a decision or to classify 

objects hierarchically (e.g., vehicle types, then specific models).
• The scatter plot indicates overlapping regions which might represent gradual transitions 

in scenarios, potentially useful for complex decision-making.
3. DBSCAN:
• It identifies core points and expands clusters from them. This method can identify outliers 

which might be critical in avoiding unexpected obstacles.
• Its clusters have no fixed shapes, which is beneficial for recognizing a variety of object 

forms and groupings on the road.
4. Gaussian Mixture Clustering:
• It provides soft clustering with probabilistic cluster assignments, which could be useful 

for ambiguous situations where decisions are not clear-cut.
• This method may offer a probabilistic understanding of different scenarios, which is valu-

able for predictive modeling.
5. Mean-Shift Clustering:
• It automatically determines the number of clusters and can find clusters of arbitrary 

shapes.
• The overlapping and dense regions might be indicative of the flow of traffic or crowded 

areas.

Comparison of RNN and CNN
1. Loss: Both types of neural networks have achieved low losses on both training and 

validation datasets. However, CNN has lower losses compared to RNN in the last epoch.
2. Overall Performance: CNN demonstrated better performance compared to RNN based on 

loss values. This may indicate that CNN is better suited for this task.
3. Training: Both networks have gone through 10 training epochs, which means they had 

the same number of iterations to train.
4. Validation: CNN also showed better results on the validation set, indicating its ability to 

generalize data better than RNN.

Conclusion
Considering the specific goal of determining where to turn and by what degree, the best 

clustering algorithm would likely be one that can handle noise and provide probabilistic 
outcomes to adapt to the uncertainties inherent in driving scenarios. DBSCAN is excellent for 
its robustness to outliers, which is essential in dynamic environments. Gaussian Mixture could 

DOI: 10.37943/20MNZJ4935
© Akmaral Kuatbayeva, Muslim Sergaziyev, 
    Daniyar Issenov, Didar Yedilkhan



46 Scientific Journal of Astana IT University
ISSN (P): 2707-9031   ISSN (E): 2707-904X

VOLUME 20, OCTOBER 2024

provide the nuanced probabilities needed for making graded decisions (like degree of turning) 
in uncertain conditions.

In contrast, K-Means might be too rigid due to its assumption of spherical clusters, and mean- 
shift could be computationally intensive for real-time applications, as suggested by its long 
computation time. Hierarchical Clustering is informative but may not be practical for real-time 
decisions due to its complexity.

For a self-driving car project, a Gaussian Mixture might be the most suitable if the envi-
ronment contains a lot of uncertainties and probabilistic decisions are required. However, 
DBSCAN could be a strong candidate for its ability to handle complex and noisy urban environ-
ments. The final decision should also consider the computational constraints and the specific 
context in which the self-driving system operates. Integration with other decision-making 
systems and sensor inputs would also be crucial for translating these clustering results into 
steering controls.
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