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FLOOD RISK MAPPING IN THE IRTYSH RIVER BASIN 
USING SATELLITE DATA

Abstract: Floods are among the most frequent and devastating natural disasters, caus-
ing significant economic damage and loss of life worldwide. Effective flood risk manage-
ment relies on accurate modeling techniques that can predict vulnerable areas and assess 
potential impacts. In this study, flood dynamics are simulated in the Irtysh River Basin near 
Ust-Kamenogorsk, a city in East Kazakhstan prone to seasonal flooding using high-resolution 
satellite imagery and digital elevation data. The primary objective is to visually model flood 
risks based on terrain characteristics. The study utilizes imagery sourced from the Mapbox 
platform, which combines data from MODIS, Landsat 7, Maxar, and the Google Earth Engine, 
providing access to Sentinel-2 surface reflectance imagery at 10-meter resolution. Elevation 
data from the Copernicus global digital elevation model, with a 30-meter resolution, is used to 
simulate flood progression. The flood simulation involves calculating flood depth relative to 
the terrain’s elevation, allowing for a pixel-by-pixel determination of submerged areas. Each 
simulation incrementally increases water levels to generate a sequence of images, showcasing 
the progression of flooding over time. The study describes hydraulic soil characteristics us-
age, and focuses on visualizing flood risk based on terrain data and water level changes. The 
simulation results indicate that flooding initially impacts riverbanks as water flow starts from 
the northwest of the city with critical infrastructure becoming vulnerable once water levels 
exceed 2 meters from the lowest elevation point. These findings highlight the potential of 
high-resolution satellite imagery and terrain data for flood risk assessment and improving ur-
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ban flood preparedness. The results provide valuable insights into flood progression enabling 
more informed decision-making for disaster mitigation.

Keywords: Flood map, Python, Mapbox, Google Earth Engine, Digital Elevation Models.

Introduction 
East Kazakhstan is a region characterized by its diverse topography, ranging from expan-

sive steppes and dense forests to rugged mountains. This geographical variety, coupled with 
seasonal weather patterns, makes it particularly susceptible to flooding. Understanding and 
predicting these flood events is crucial for the safety and development of the region. Flood 
animation and modeling have been the focus of extensive research due to their crucial role in 
flood risk management and mitigation. The methodologies employed range from traditional 
hydrodynamic models to more contemporary machine learning (ML) and deep learning (DL) 
approaches [1].

Hydrodynamic models have long been the standard for simulating flood behavior. These 
models rely on the physical principles of fluid dynamics to represent the movement of water 
through river networks and floodplains. Commonly used models include the one-dimensional 
(1D) HEC-RAS (Hydrologic Engineering Center’s - River Analysis System) and two-dimensional 
(2D) models like MIKE 21 and TELEMAC. These models are praised for their accuracy in sim-
ulating flood extents, depths, and velocities but require extensive calibration data, which can 
be a limitation in data-scarce regions. Studies have shown that these models are highly ef-
fective in small to medium-sized catchments. For instance, Bellos and Tsakiris [2] developed a 
hybrid method combining hydrodynamic and hydrological techniques, which proved effective 
for small catchments prone to flash floods. Another study [3] utilized a 2D hydrodynamic ap-
proach to evaluate hydrological responses in small watersheds, highlighting the importance 
of high-resolution data in improving model performance.

The advent of Machine Learning (ML) and Deep Learning (DL) has introduced new avenues 
for flood modeling, offering an alternative to traditional hydrodynamic methods. These da-
ta-driven models, such as Artificial Neural Networks (ANNs) and Recurrent Neural Networks 
(RNNs), have shown promise in predicting flood events with minimal physical input data. 
Recent research emphasizes the potential of DL models, particularly for handling complex da-
tasets involving multiple hydrological variables. Reference [4] conducted an extensive review 
of ML and DL applications for flood inundation modeling, concluding that DL models gener-
ally outperform traditional methods in terms of accuracy. However, it was also pointed out 
challenges such as the lack of standardized datasets and the limited ability of ML models to 
incorporate expert hydrological knowledge. Despite these drawbacks, DL models are gaining 
traction due to their ability to generalize across different hydrological conditions and catch-
ment characteristics. Comparative studies indicate that while DL models can achieve higher 
predictive accuracy, they often lack the interpretability and physical grounding of hydrody-
namic models. This has led to a growing interest in hybrid approaches that integrate both 
data-driven and physically based models. For instance, Bulti and Abebe [5] reviewed various 
flood modeling methods and advocated for the integration of empirical and physically based 
models to enhance flood prediction in urban areas.

Moreover, advancements in geospatial technologies have significantly improved the spatial 
resolution of flood models. Ben Khalfallah and Saidi [6] demonstrated the application of HEC-
RAS coupled with Geographic Information System (GIS) tools for spatiotemporal floodplain 
mapping, which enhances the accuracy and usability of flood risk assessments. Recent advanc-
es in flood modelling have been driven by the integration of satellite imagery and advanced 
data processing. Tools such as FLOMPY [7] and workflows using Sentinel-1 time series data 
[8], [10] have greatly improved the accuracy and efficiency of flood mapping. Additionally, 



142 Scientific Journal of Astana IT University
ISSN (P): 2707-9031   ISSN (E): 2707-904X

VOLUME 19, SEPTEMBER 2024

platforms like the Google Earth Engine, combined with Sentinel-1 and Landsat data [9], allow 
for rapid and large-scale flood monitoring. Synthetic Aperture Radar (SAR) based assessments 
[11], [12] and remote sensing techniques [13], [14] are also crucial for refining flood predic-
tion models, improving both scalability and adaptability to effectively manage flood risks in 
different environments.

Besides, the proposed model has significant potential by including additional hydrological 
parameters, which would greatly improve its accuracy and reliability.  One way to achieve this 
is through several models developed using python, such as    the Brooks-Corey model [15], 
which can calculate the hydraulic properties of soil based on its texture. Additionally, some 
literature highlights the application of more comprehensive model improvement approaches. 
For instance, in work [16], the need for a step-by-step approach to modeling hydrological 
processes is discussed due to their complexity and data uncertainty. Similarly, the authors 
[17] also consider mathematical modeling of watersheds with an emphasis on the gradual 
inclusion of various hydrological processes to improve the accuracy and reliability of models. 
Furthermore, the MIKE SHE system [18], which is an integrated model of surface and ground-
water, uses a modular approach that allows adding new model components as needed.

Reflecting the progress in the field of geospatial technologies, the primary goal of this arti-
cle is the construction of the animation of a flood map on the Irtysh River near the city of Ust-
Kamenogorsk in the East Kazakhstan region. Therefore, the main objectives of the study are:

•	 Acquiring and filtering the satellite imagery and digital elevation models for Ust-
Kamenogorsk to ensure high-quality data.

•	 Identification and analysis of potential flood-prone areas by the calculation of water 
level rises relative to elevation data.

•	 Analysis and visualization of the simulation model using the capabilities of Mapbox and 
Google Earth Engine.

The study highlights the potential of integrating high-resolution satellite imagery with 
elevation data to construct a flood simulation model that enhances urban flood prepared-
ness. This approach contributes to the disaster risk management field by offering a replicable 
framework, adaptable to other flood-prone regions, and capable of further refinement through 
the incorporation of additional parameters such as meteorological and hydraulic data. 

Methods and Materials

Data description
The modelling and mapping to visually represent potential flood scenarios and risks are 

performed utilizing high-resolution satellite imagery and terrain data, focusing on the Ust-
Kamenogorsk city in the East Kazakhstan region. For the study, high-resolution satellite im-
agery is obtained through the Mapbox and Google Earth Engine platform. In Mapbox platform 
the imagery is sourced from a combination of open and proprietary datasets including MODIS, 
Landsat 7, Maxar’s products. Google Earth Engine is used to obtain Sentinel 2 surface reflec-
tance imagery at 10m resolution. For terrain modeling, the elevation data is collected from the 
Copernicus global digital elevation model which represents the Earth’s surface, incorporating 
buildings, infrastructure and vegetation at 30 m spatial resolution. As mentioned, the study 
area is centered on the city, with the delineation of its boundaries represented in the following 
Fig. 1.
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Figure 1. Boundary box of the study area.

To ensure high-quality data for the analysis, Sentinel-2 satellite images were carefully se-
lected based on three key criteria: spatial coverage, cloud cover, and seasonal timing. First, 
images were filtered to include only those with a minimum of 60% spatial coverage over the 
region of interest. Second, images with cloud cover percentages below 10% were prioritized 
to minimize atmospheric interference and enhance the clarity of the surface features. Finally, 
images were restricted to those captured during the spring and summer months to coincide 
with periods of maximum vegetation growth and relevant hydrological conditions. Addition-
ally, the preprocessing steps involved using both satellite imagery and terrain elevation data 
to create comprehensive composite images, allowing for detailed spatial analysis of the study 
area. In the Fig. 2, the satellite and elevation map are illustrated.

Figure 2. Visual representation of the selected area: 
(a) Satellite imagery depicting the geographic features of the chosen region; 

(b) Elevation map illustrating the topographical variations within the same area.
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The individual satellite and terrain tiles were processed and stitched together to form large, 
continuous mosaics. The tiles, each representing a segment of the region are combined based 
on their geographic position, ensuring that each tile is placed in its correct spatial location. 

Flood modeling and mapping
The flood simulation is conducted by combining high-resolution satellite imagery with de-

tailed elevation data to visualize potential inundation scenarios across the study area. The 
approach involved several steps, including the calculation of depth, generation of an overlay 
to represent water levels, and visualization of flooded areas at incremental water. The flood 
simulation begins by establishing a base flood level, set initially to the minimum elevation 
within the study area. A series of flood levels was simulated by progressively increasing the 
water level in fixed increments. For each flood level Li the relative flood depth D(x, y) at each 
pixel is calculated as:

(1)

where Li is the water level, and E(x, y) is the terrain elevation. Positive values of D(x, y)  
indicated that the pixel was submerged, while negative or zero values indicated that the area 
remained above water. To effectively visualize the flooded areas, a semi-transparent overlay 
was applied to the base satellite image. This overlay was colored blue to represent water and 
adjusted based on the depth. The transparency of the overlay was controlled by an alpha mask, 
with transparency scaled according to the flood depth. The alpha mask A(x, y) is normalized 
using the maximum flood depth at each water level:

(2)

where Dmax represents the maximum flood depth at a given water level. For each incremen-
tal flood level, the resulting image was generated by combining the base satellite imagery 
with the flood overlay. The series of images produced provided a time-sequenced visualization 
of flood progression across the study area, from the initial flood level to a maximum water 
level set by the defined range. These images were saved sequentially, forming a complete set 
of flood simulations across multiple water levels.

Refining flood forecasts through hydraulic characteristics of the soil
When modeling floods, it is important to consider various hydraulic parameters that affect 

the behaviour of the water flow and the level of flooding. Some of these parameters are the 
soil conductivity, which depends on its moisture content, as well as infiltration rate, which di-
rectly affect the volume of runoff and the duration of the flood. The Darcy equation, referenced 
in [19] as equation (3), describes the volume of water passing through a medium in a given 
time, with Darcy’s Law (introduced in 1856) explaining water flow through porous materials 
like sand under atmospheric pressure.

(3)

where Q is the water volume per unit time, s is the surface area, e is its thickness, H is the 
water height, and k is a coefficient reflecting the sand’s properties.

The process of soil water infiltration can be described using the Green-Ampt model, as 
formulated in equation (4), by the authors in reference [20]. This model takes into account the 
initial moisture content and the pressure at the water-soil interface, which allows for a more 
accurate assessment of the process of water penetration into the soil.
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(4)

Where fp denotes the infiltration rate, KS is the saturated hydraulic conductivity, θi and θS 
represent the initial and saturated soil moisture content, respectively, Sr stands for capillary 
pressure, tp is the time it takes for ponding to occur after rainfall begins, R refers to the rainfall 
intensity, Ip is the cumulative infiltration, with Ip = tpR.

Another method for calculating water absorption into the soil involves using Horton’s equa-
tion (5), as referenced by Horton [21]. This equation shows how infiltration starts at a high 
initial rate and gradually decreases to a steady final rate.

(5)

Where f is the infiltration rate at any given moment (in mm/h), fc represents  the final infil-
tration rate (in mm/h), f0 is the initial infiltration rate (in mm/h), k represents the decay con-
stant, t is the time of infiltration (in hours).

Computational tools and software
The flood simulation and data processing tasks are carried out using a combination of 

specialized software and programming libraries. The primary tools employed include Python, 
Mapbox and Google Earth Engine. Mapbox, a platform for interactive mapping, is combined 
with Python data processing capabilities to develop animations that effectively visualize flood 
data. Mapbox provides efficient extraction of landscape and satellite images, allowing to con-
figure geospatial visualizations adapted to specific regions.

Google Earth Engine, a powerful cloud geospatial platform, is also used for analysis and 
acquisition of data. GEE provides access to a vast archive of satellite images and geospatial 
datasets. It is particularly well suited for environmental monitoring and flood modelling due 
to its ability to handle large data volumes and an integrated set of remote sensing and spa-
tial analysis tools. The main advantage of GEE is its ability to quickly process global datasets 
with huge amounts of data, making in comparison with locally processed Mapbox and Python 
workflows.

Results and Discussions
Flood simulation enables the prediction of trends based on rising water levels. The flood 

modeling for the Irtysh River basin around Ust-Kamenogorsk, conducted using Python-Map-
box and Google Earth Engine, produced reliable and visually informative results. The images, 
arranged as a collage, show water levels at 1, 5, 10, and 15 meters above the lowest elevation 
(Fig. 3), effectively illustrating the dynamic progression of flooding throughout the city. Mod-
eling trends indicate that as water levels rise, flooding begins in the northwest and gradually 
spreads southeast, following the elevation map (Fig. 4).
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Figure 3. Flood simulation at water levels of 1, 5, 10, and 15 meters, showing the progression of 
flooding from the northwest to the southeast of the city. (a) Python-Mapbox, b) Google Earth Engine.

Figure 4. Elevation map depicting the landscape.

Although scenarios with water levels exceeding 4 meters are unlikely, this study focuses on 
simulating floods at levels up to 4 meters, providing insights into the most probable impacts. 
In Fig. 5, the red-highlighted areas represent those most vulnerable to flooding at a 4-meter 
water level. Subsequent images will provide a closer look at these areas, offering a detailed 
view of the flooding dynamics and its effects on specific districts.
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Figure 5. The areas of the city most prone to flooding 
at a 4-meter water level are highlighted in red.

The progression of the flood was analyzed in 1-meter increments, allowing for a detailed 
understanding of the flooding process step-by-step. At the initial stage, when the water rises 
by 1 meter from the lowest point in the terrain, flooding remains minimal and is confined to 
areas directly adjacent to the river. This is illustrated in Fig. 6(a) (Python-Mapbox) and Fig. 
7(a) (Google Earth Engine). At this level, the terrain serves as a natural barrier, preventing the 
water from spreading to higher elevations. When the water rises to 2 meters, as shown in Fig. 
6(b) for Python-Mapbox and Fig. 7(b) for Google Earth Engine, flooding begins to affect nearby 
infrastructure and low-lying urban areas. This level marks a critical threshold, as key infra-
structure, such as the “Industroy” concrete factory, located in coastal industrial zones, starts to 
be impacted.

Figure 6. Flood maps of the study area generated with Python-Mapbox, labeled (a) 1 m, (b) 2 m, 
(c) 3 m, and (d) 4 m, showing water level increases and the terrain’s response to rising floodwaters.
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As the water level reaches 3 meters, the flood zone gradually expands, moving towards 
the garden areas and surrounding territories, as illustrated in Fig. 6(c) and Fig. 7(c) for Py-
thon-Mapbox and Google Earth Engine, respectively. With a further rise in water to 4 meters, 
more significant areas will be at risk of flooding, including industrial zones and garage co-
operatives. At the same time, the riverbanks, where the garden plots are located, such as the 
“Svetoch”, “Rybnik”, “Zvezda”, and “Druzhba” associations, will be heavily affected. These chang-
es are clearly visible in Fig. 6(d) (Python-Mapbox) and Fig. 7(d) (Google Earth Engine). Accord-
ing to the analysis, the critical threshold begins at the 2-meter mark, beyond which important 
infrastructure in the low-lying urban areas near the river starts to flood.

Figure 7. Flood maps of the study area generated with Google Earth Engine, labeled (a) 1 m, (b) 2 m, 
(c) 3 m, and (d) 4 m, showing water level increases and the terrain’s response to rising floodwaters.

Conclusion 
This study underscores the critical importance of advanced flood modeling for effective 

risk management in the Ust-Kamenogorsk region. By leveraging Python-Mapbox and Google 
Earth Engine, we successfully simulated potential flood scenarios, revealing that the lowlands 
along the Irtysh River, particularly in the city’s northwestern floodplain, are the most sus-
ceptible to flooding. The consistent results obtained from both Python-Mapbox and Google 
Earth Engine demonstrate the robustness of the modeling framework. Python-Mapbox offers 
enhanced flexibility for detailed, localized visualizations, while Google Earth Engine excels in 
large-scale, cloud-based analyses. 

Future research should focus on expanding the model by integrating the suggested en-
vironmental parameters and extending the model to other vulnerable regions. Additionally, 
exploring the incorporation of hydraulic and meteorological data will further refine the model, 
making it a more robust tool for flood forecasting and management.
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