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CONTROL SYSTEMS SYNTHESIS FOR ROBOTS ON THE BASE 
OF MACHINE LEARNING BY SYMBOLIC REGRESSION

Abstract: This paper presents a novel numerical method for solving the control system 
synthesis problem through the application of machine learning techniques, with a particu-
lar focus on symbolic regression. Symbolic regression is used to automate the development 
of control systems by constructing mathematical expressions that describe control functions 
based on system data. Unlike traditional methods, which often require manual programming 
and tuning, this approach leverages machine learning to discover optimal control solutions. 
The paper introduces a general framework for machine learning in control system design, 
with an emphasis on the use of evolutionary algorithms to optimize the generated control 
functions. The key contribution of this research lies in the development of an algorithm based 
on the principle of small variations in the baseline solution. This approach significantly en-
hances the efficiency of discovering optimal control functions by systematically exploring the 
solution space with minimal adjustments. The method allows for the automatic generation 
of control laws, reducing the need for manual coding, which is especially beneficial in the 
context of complex control systems, such as robotics. To demonstrate the applicability of the 
method, the research applies symbolic regression to the control synthesis of a mobile robot. 
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The results of this case study show that symbolic regression can effectively automate the pro-
cess of generating control functions, significantly reducing development time while improving 
accuracy. However, the paper also acknowledges certain limitations, including the computa-
tional demands required for symbolic regression and the challenges associated with real-time 
implementation in highly dynamic environments. These issues represent important areas for 
future research, where further optimization and hybrid approaches may enhance the method’s 
practicality and scalability in real-world applications.

Keywords: control synthesis, machine learning control, symbolic regression, evolutionary 
algorithm.

Introduction
This research presents an innovative approach to control system synthesis based on ma-

chine learning methods, specifically symbolic regression. Unlike traditional control system 
development methods, where programming and tuning are performed manually, the proposed 
approach automates the process of generating control functions by utilizing evolutionary al-
gorithms to search for optimal solutions. Symbolic regression allows for the creation of math-
ematical expressions that describe control functions based on data obtained during the oper-
ation of the system.

The main contribution of the research lies in the development and application of a machine 
learning algorithm based on the principle of small variations of the baseline solution. This 
method significantly improves the efficiency of solution discovery and reduces the time re-
quired for the synthesis of complex control systems. The example of control system synthesis 
for a mobile robot demonstrates that symbolic regression can automate the process of devel-
oping control functions, eliminating the need for manual programming, which is particularly 
important in the context of robotics, where the complexity of control systems increases as the 
functional capabilities of control objects grow.

Modern control systems, regardless of their complexity—from simple regulators to intelli-
gent systems—are essentially programs executed on the onboard processor of the controlled 
object. These programs are manually written by programmers with specialized knowledge in 
control systems, which imposes significant constraints on the development process. The code 
for complex robotic systems can reach millions of lines, and while the technological process 
of writing such programs can be effectively organized, automating the process itself remains 
a challenging task. To minimize programmer effort, code repositories like GitHub are increas-
ingly being used, where ready-made program fragments or similar solutions can be found and 
adapted for specific control systems. However, this approach does not address the issue of 
growing code complexity as robots are tasked with solving more intricate problems.

The increasing complexity of programs is inevitably linked to growing demands on the 
control system. The rise in the number of sensors, interactions between components and ex-
ternal systems, as well as the need for adaptation to dynamically changing environments, 
leads to an exponential increase in the volume of code. To address similar challenges, AlKhlidi 
et al. proposed the Modified Fuzzy Particle Swarm Optimization (MPSO) algorithm for path 
planning, which ensures the calculation of optimal, collision-free paths for mobile robots in 
complex environments, improving both speed and resource efficiency.[1] This process reaches 
a point where the length and complexity of the software may become major obstacles in the 
development of more advanced intelligent systems, including those aspiring to implement 
artificial intelligence (AI). Thus, one of the key barriers to creating fully-fledged AI lies not only 
in the complexity of the mathematical models and algorithms but also in the automation of 
the system development process itself.
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Programs that implement control systems are essentially expressions in programming lan-
guages that mathematically describe control functions. Therefore, these mathematical expres-
sions could theoretically be derived from solving mathematical problems that describe the 
dynamics of control objects and their interaction with the environment [2], [3].

However, the complexity of modern mathematical models and the lack of universal meth-
ods for solving them complicate the automation of control synthesis processes. In control 
theory, these problems are typically solved for individual, simplified models, allowing for the 
development of control theory methods, but excluding external disturbances and uncertain-
ties. As a result, while a mathematical solution can be found, a new challenge arises—how to 
adapt this solution to real-world conditions. The implementation process for specific control 
systems becomes particularly difficult when the model cannot account for all possible impacts 
or environmental changes.

Moreover, traditional approaches to developing control systems are constrained by existing 
programming methods, where each solution is manually adapted to a specific task and control 
object. Despite significant advances in software tools and technologies, the question of fully 
automating control synthesis remains unresolved. In this context, one of the promising areas 
for further research is the application of machine learning methods, particularly symbolic re-
gression, to automate the synthesis of control systems. In our work, we employ principles of 
genetic programming, as detailed in [4], to search for optimal control solutions using symbolic 
regression.

Proposed Methodology
Symbolic regression, as a machine learning method, is capable of constructing mathemat-

ical expressions for control functions based on data obtained during the system’s operation. 
This enables the automatic discovery of optimal solutions for complex control tasks, elimi-
nating the need for manual coding. The main advantage of symbolic regression lies in its use 
of evolutionary algorithms to search for solutions, significantly reducing the time required 
for solution discovery and improving solution quality. However, the challenge of generating 
real-time solutions remains, as complex control synthesis tasks still demand substantial com-
putational resources. Willms and Yang addressed similar real-time computational challenges 
by proposing an efficient dynamic system for robot-path planning, which reduces the time 
complexity and enhances the system’s real-time responsiveness [5].

For obtaining the results presented in the figures, symbolic regression based on genetic 
programming was used. Data for training were collected using models of robots in dynamic 
conditions. Symbolic regression automatically generated mathematical expressions that de-
scribe the control functions. Evolutionary search algorithms were applied to optimize the 
obtained solutions, and small variations of the baseline solution were utilized to enhance the 
efficiency of discovering optimal trajectories. This approach allowed the rapid generation of 
control laws, significantly reducing the need for manual intervention, particularly in complex 
systems such as robotic control.

The research methodology is based on a combination of symbolic regression and evolution-
ary algorithms. Unlike traditional approaches that require complex mathematical modeling 
and manual tuning, symbolic regression automatically generates control functions by optimiz-
ing them based on system data. The advantage of the proposed method lies in its flexibility 
and ability to adapt to various types of control systems, which is especially crucial for tasks 
with high dynamics and environmental variability.

Various approaches are used in modern control systems, including classical numerical 
methods, Model Predictive Control (MPC), gradient methods, and evolutionary algorithms. 
Each has its strengths and weaknesses, and analyzing them helps highlight how the symbolic 
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regression-based approach can improve or complement these methods.
Classical numerical methods, such as Linear-Quadratic Regulation (LQR) and optimal control, 

provide precise solutions for linear and some nonlinear systems. However, as noted by Kwaker-
naak and Sivan (1972) [6] and Anderson and Moore (1990) [7], these methods rely on accurate 
mathematical models, limiting their flexibility in dynamic environments with uncertainties. In 
contrast, symbolic regression can adapt to changing conditions by automatically generating 
control functions based on system data, making it more suitable for nonlinear systems.

Model Predictive Control (MPC) is popular for real-time control because it uses system mod-
els to predict future behavior and compute optimal control actions. However, as Camacho 
and Bordons (2004) [8] and Mayne et al. (2000) point out [9], MPC faces high computational 
demands, particularly in fast-changing systems. Symbolic regression offers a way to reduce 
computational costs by generating control functions from data without requiring complex 
real-time calculations, while still adapting to system dynamics.

Gradient methods are commonly used to tune controller parameters and perform well for 
smooth, differentiable systems. However, as Boyd and Vandenberghe (2004) [10] highlight, 
they can get stuck in local minima and require significant time to converge, especially in 
high-dimensional systems. Symbolic regression, by using evolutionary algorithms, avoids 
these pitfalls, providing a more reliable global optimization process.

Evolutionary algorithms, such as genetic programming, have long been used for optimization 
in control systems, particularly for solving complex, multi-dimensional problems. However, as 
noted by Goldberg (1989) [11], these methods can be slow due to random fluctuations in the 
search process during crossover and mutation operations. Symbolic regression mitigates this 
by applying the principle of small variations to the baseline solution, reducing fluctuations 
and accelerating the optimization process.

The symbolic regression approach offers several advantages over existing methods:
Automation of Synthesis: Unlike manual tuning and programming, symbolic regression au-

tomates the creation of control functions from data, significantly reducing time and resource 
requirements for complex control systems.

Flexibility and Adaptability: It works effectively with dynamic systems where traditional 
analytical models may be challenging to develop and automatically adapts to environmental 
changes, making it ideal for robotics and other complex systems.

Handling Nonlinear Problems: Symbolic regression is particularly suited for nonlinear sys-
tems, where traditional methods often struggle.

Reduced Computational Costs: Unlike computationally intensive methods like MPC, sym-
bolic regression minimizes resource demands by automating the search for optimal solutions 
without requiring continuous real-time predictions.

The primary limitation of symbolic regression is its computational complexity during the 
solution search phase, which can hinder real-time applications in highly dynamic systems. 
However, further research into optimizing symbolic regression techniques, such as hybrid ap-
proaches, could help overcome this challenge.

Thus, the use of symbolic regression methods in machine learning offers promising op-
portunities for automating the creation of control systems, which is particularly relevant for 
robotic systems where control complexity increases as the functional capabilities of the con-
trolled objects expand. Kala et al. improved path planning algorithms by integrating dynamic 
programming with accelerating nodes, significantly boosting computational efficiency in dy-
namic robotic environments [12].  Methods presented in [13] have been used to describe the 
dynamics of nonlinear systems, such as mobile robots, enabling better modeling of complex 
robot behavior and control in real-world environments. The machine learning framework for 
the control system using symbolic regression methods is shown in Fig. 1.
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Figure 1. Machine learning framework for the control system

The classical optimal control problem
Machine learning enables solving mathematical problems of any complexity by reducing 

the requirements for finding a solution. For example, any mathematical problem in control, 
optimal control, control synthesis, identification, filtering, etc., is always formulated as an op-
timization problem, and optimization algorithms are always used in machine learning. How-
ever, these algorithms never find a strict optimum in machine learning. The solution found is 
deemed satisfactory by the researcher based on the value of the performance criterion. An-
other characteristic of solving problems using machine learning is the lack of strict proof that 
the obtained solution meets the requirements of the problem. Instead, this proof is validated 
through examples. If, for most examples, the found solution satisfies the researcher in terms 
of accuracy and performance criterion, the conclusion is made that the solution is acceptable.

Consideration is given to the classical optimal control problem.

(1)

where x – state vector, u – control vector, U – compact set, x0 – initial state vector, xf – termi-
nal state vector, tf – time to reach the terminal state, it is typically not specified but is bounded, 
tf  ≤ t+, t+ – positive value, J – control performance criterion value.

Formulation of the optimal control problem
The task is to find the control as a function of time. If the obtained control is substituted 

into the right-hand side of the system model, the resulting system will have a particular solu-
tion that, starting from the given initial state, reaches the terminal state with an optimal value 
of the performance criterion. However, the time-dependent control function cannot be directly 
implemented in a real system, as this would result in an open-loop control system. To imple-
ment the solution, it is refined the formulation of the optimal control problem. The control is 
sought in the form of a function of the state vector and time.

(2)

For the optimal particular solution, there must exist a neighborhood such that if another 
particular solution of the system, starting from a different initial state, enters this neighbor-
hood at some point, it will not leave the neighborhood but will instead approach the optimal 
solution. In other words, the optimal trajectory should have an attractive property, meaning 
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the system of differential equations in the region of the optimal solution must be a contract-
ing mapping.

To solve the extended optimal control problem, it is used the solution of the control syn-
thesis problem. In the control synthesis problem, the model of the control object, constraints 
on the control inputs, terminal state, and the control performance criterion are also given, but 
the initial conditions are specified as a region in the state space.

(3)

The control is sought in the form of the following function:

(4)

where h(x^*-x) is the control function, structure and parameters that must be found as a 
result of solving the control synthesis problem. If the obtained control function is substituted 
into the control system model, we get a system of equations that describes the closed-loop 
control system.

(5)

A contracting mapping plays a key role in the stability of trajectories, ensuring that the 
system remains within a small neighborhood of the terminal state (6). This allows the system 
to move steadily towards the target, even with small deviations from the trajectory, which is 
particularly important for complex dynamic objects like robots.

To solve this control synthesis problem, machine learning methods based on numerical 
symbolic regression techniques are employed. Symbolic regression is a method that constructs 
mathematical expressions to describe control functions. This approach enables efficient auto-
mation of the search for optimal solutions, especially for complex systems where traditional 
analytical methods may not be applicable.

Symbolic regression methods encode mathematical expressions and search for the optimal 
solution in the space of possible codes. However, one of the main drawbacks of these methods 
is that during the execution of genetic algorithm operations, significant changes to the codes 
can occur. This leads to operations like crossover and mutation drastically altering the struc-
ture of the solution, making the search process akin to random search.

By its nature, random search does not guarantee finding an optimal solution within a rea-
sonable time frame. Recent advances in symbolic regression, such as the work on controllable 
neural symbolic regression, offer a promising avenue to address these limitations by integrat-
ing deep learning and symbolic models to better control the structure of expressions while 
optimizing for time efficiency [14]. Genetic algorithms tend to experience significant fluctua-
tions in the search process due to the high variability of the codes, making it difficult to find 
a stable, optimal solution. In such cases, the control synthesis problem becomes extremely 
challenging to automate. Without applying additional constraints or improved heuristics dur-
ing the crossover and mutation phases, the solution search process may become suboptimal 
and prolonged. Masehian and Sedighizadeh’s review underscores the importance of heuristic 
approaches in overcoming the limitations of classic robot motion planning methods [15].

To accelerate the solution search process, the symbolic regression method should employ 
the principle of small variations of the baseline solution. In this case, the set of possible solu-
tions consists of the symbolic regression code of one baseline solution and ordered sets of 
codes representing small variations of this baseline solution. The genetic algorithm operation 
is performed on the ordered sets of codes for small variations according to classical rules. A 
drawback of the control synthesis problem is that, due to its complexity, it cannot be solved in 
real-time on the control object’s onboard system.
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Another approach to solving the presented optimal control problem is the synthesized 
control method. Initially, the control synthesis problem is solved to ensure the stability of the 
object relative to a point in the state space. The control is sought in the form (4).

At the second stage, we consider the model of the closed-loop control system.

(6)

For this system, it is solved the optimal control problem with the initial performance crite-
rion. It is used the vector as the control input , ...determining the position of a 
stable equilibrium point in the state space. In synthesized control, a stable equilibrium point 
always exists in the neighborhood of the optimal trajectory, towards which the control object 
tends to move. Khalil et al. expanded on this concept by focusing on distributed path plan-
ning for multi-robot systems, enhancing obstacle avoidance and enabling the coordination of 
multiple robots in real-time environments [16]. As a result, the object’s trajectory always lies 
within the region where the conditions for a contracting mapping are satisfied. In this method, 
the control synthesis problem for ensuring stability is also solved at the design stage, and its 
solution is implemented on the control object’s onboard system. Regardless of the current sit-
uation, this problem does not need to be solved again onboard. The optimal control problem 
is then solved in real-time on the control object.

As an example, consideration is given to the control synthesis for a car-like robot.

(7)

where 
For the system (7), the initial conditions are specified , terminal state 

, and the performance criterion

(8)

where p_1, p_2 are penalty coefficients and p1 = 1, p2 = 2, 

(9)

The synthesized control method was used to solve the problem. Initially, the control syn-
thesis problem was solved using the symbolic regression method. Machine learning produced 
the following result. 

(10)

where

(11)
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(12)

At the second stage, the optimal control problem was solved based on approximating the 
control using a piecewise constant function. In a similar vein, Tang et al. explored how mul-
ti-objective particle swarm optimization (PSO) can be utilized for robot path planning, ad-
dressing uncertainties and optimizing the robot’s trajectory in dynamic environments [17].

Figure 2 shows the optimal trajectory of the mobile robot’s movement on the plane. In the 
same figure, the projections onto the plane are depicted as small black squares {x1, x2} of the 
optimal values of the state vectors that were found x* = [x1

* x2
* x3

* x4
*]T these vectors determine 

the position of the stable equilibrium point.

Figure 2. Optimal trajectory of the synthesized control

The optimal trajectory shown in Figure 2 was calculated using symbolic regression meth-
ods, which automatically generated control functions based on the robot’s current state and 
surrounding environmental data. The process began by defining a control problem where the 
robot needed to move from an initial point to a target point while avoiding obstacles. Sym-
bolic regression was used to find optimal control laws, utilizing evolutionary algorithms to 
iteratively search for and optimize control functions.
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Once the optimal control functions were determined, they were applied to the robot’s state-
space model. This allowed the trajectory to be calculated by solving the system’s differential 
equations, ensuring that the robot followed the optimal path while avoiding obstacles. The 
small black squares on the figure represent key points where the robot’s state reached stable 
equilibrium, further confirming that the control system successfully maintained the desired 
trajectory.

From the above, it can be concluded that the symbolic regression methods used for ma-
chine learning in control systems allow for the automatic discovery of mathematical expres-
sions for the control function.

The simulation results using symbolic regression methods produced optimal trajectories 
for the mobile robot, demonstrating high accuracy in control and adaptability to changing en-
vironmental conditions. Compared to classical numerical methods such as LQR, our approach 
does not require an exact mathematical model of the system and can automatically generate 
control functions based on data. This makes symbolic regression a more flexible and effective 
method for working with nonlinear systems, where classical methods show limited perfor-
mance.

Symbolic regression also outperforms Model Predictive Control (MPC), which requires sig-
nificant computational resources for continuous recalculation of optimal control. In contrast, 
our method generates control functions from data and conserves computational resources af-
ter the solution search phase. Compared to evolutionary algorithms, symbolic regression with 
small variations helped avoid random fluctuations and sped up the process of finding optimal 
solutions, making it a more stable and faster method for real-world applications.

Results
The results of the experimental application of symbolic regression methods for solving 

control system synthesis problems demonstrated the effectiveness of this approach. Machine 
learning methods, particularly symbolic regression, were successfully employed to address 
the task of synthesizing control systems. This method enabled the automatic construction of 
mathematical expressions for control functions based on system data, significantly reducing 
the need for manual programming. Symbolic regression proved to be effective in solving com-
plex control problems, including optimal control, system synthesis, identification, and filtering 
tasks, by framing these problems as optimization tasks.

Figure 1 illustrates the machine learning framework for the control system. Based on data 
about the robot’s environment and state, the control function was automatically generated. 
The results confirm that symbolic regression effectively automates the process of creating 
control functions, significantly reducing development time.

Optimization algorithms, such as genetic algorithms, were employed in the machine learning 
process to search for optimal control functions. Although these algorithms did not always find 
strict optima, the solutions obtained were satisfactory according to the quality criteria set by 
the researchers. While no strict proof was provided that the solutions fully met the predefined 
requirements, they performed well in most examples, maintaining acceptable accuracy limits.

In the classical optimal control problem, symbolic regression was applied to determine 
control as a function of time. The resulting system model produced partial solutions that 
guided the system from an initial state to a terminal state, achieving optimal values according 
to the performance criteria. However, directly implementing time-based control functions in 
real-world systems proved impractical, as it would result in open-loop control systems. There-
fore, the control synthesis problem was reformulated, with control functions expressed as a 
function of both the state vector and time, allowing for practical implementation in closed-
loop systems.
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Figure 2 shows the optimal trajectory of the robot’s movement, obtained using symbolic 
regression methods. The optimal trajectory minimizes control costs while avoiding obstacles, 
demonstrating the applicability of the method for real-world robot control tasks.

Symbolic regression successfully generated control functions for systems with predefined 
regions of the state space and boundary conditions. Other researchers, such as Dovgopolik et 
al., have extended this concept with algorithms like the Modified Intelligent Bidirectional Ran-
dom Tree Algorithm, which optimizes path planning in complex environments. The resulting 
closed-loop system, described by a differential equation, was able to transition from any initial 
condition within the defined state space to a terminal state while meeting optimal control 
quality criteria. This approach enabled not just a single optimal trajectory but a set of trajecto-
ries from various initial states, demonstrating the system’s robustness and adaptability.

In numerical experiments with a mobile robot, the synthesized control functions were ap-
plied, and the optimal trajectories generated during these tests closely matched theoretical 
predictions. The use of symbolic regression allowed for the automatic derivation of control 
functions, and small variations of base solutions were explored to improve the search process. 
The experimental results confirmed the effectiveness of this approach, as the projected solu-
tions aligned well with expectations.

The findings suggest that symbolic regression shows potential, for streamlining the devel-
opment of control systems. It effectively addresses classical control problems by simplifying 
the synthesis process and reducing complexity. However, despite its advantages, the com-
plexity of the synthesis process limits its current application in real-time control tasks due to 
significant computational resource demands.

Discussion
In tests, with robots it was shown that symbolic regression can create control functions that 

mimic paths quite well. This technique streamlines the control synthesis process significantly. 
Proves beneficial for intricate dynamic systems like robotics. Saving time and reducing errors 
that often occur with manual programming. The capability to create control functions auto-
matically from system data without needing models offers a notable edge, over conventional 
methods.

The findings indicate that symbolic regression has the capability to autonomously create 
control functions - a feature, for dynamic systems like robotics. The capacity to adjust control 
functions according to data enables adaptability and effectiveness in designing control sys-
tems. This becomes particularly vital, in situations where the robots’ environment can unex-
pectedly shift. 

A major drawback of this approach is its computational requirements. Finding the solutions 
through algorithms is indeed efficient but demands significant computational capabilities. 
This restricts its use, in real time scenarios for embedded systems with constrained processing 
abilities. The need for resources poses a challenge to the swift integration of symbolic regres-
sion, in tasks that necessitate instant responsiveness and high performance. 

Despite the obstacles faced in this area of study the application of regression to automate 
control functions displays potential. This approach streamlines the design phase cuts down on 
development duration and lessens the need, for involvement in programming control systems. 
However additional efforts are required to refine the technique, for use cases. Enhancements 
could include hardware optimization, such as utilizing more powerful processors or imple-
menting parallel computing architectures, to accelerate the search and optimization processes. 
Additionally, hybrid approaches combining symbolic regression with other machine learning 
techniques or classical control methods could reduce computational costs while maintaining 
flexibility.

DOI: 10.37943/19OXFC5347
© Askhat Diveev, Nurbek Konyrbaev, Zharasbek Baishemirov, 
    Asem Galymzhankyzy, Oralbek Abdullayev



138 Scientific Journal of Astana IT University
ISSN (P): 2707-9031   ISSN (E): 2707-904X

VOLUME 19, SEPTEMBER 2024

In future research, improving the efficiency of symbolic regression will be essential to fully 
exploit its potential. Hybrid methods, which combine symbolic regression with traditional 
optimization techniques or other machine learning models, could reduce the computational 
burden and make real-time applications more feasible. Moreover, optimizing symbolic regres-
sion algorithms for specific hardware, or leveraging specialized processors like GPUs, could 
improve performance in dynamic, real-time environments.

In summary, symbolic regression represents a promising tool for automating control system 
synthesis, especially in scenarios where traditional methods are inadequate due to the com-
plexity of the control systems involved. However, improvements are required to fully leverage 
its potential in real-time, high-performance environments. Future research should focus on 
optimizing both the algorithm and hardware resources to ensure that symbolic regression can 
be deployed in real-world, time-sensitive applications.

Conclusion
The findings of this research underscore the effectiveness of symbolic regression in auto-

mating the synthesis of control systems, particularly for complex robotic applications. This 
study demonstrates that symbolic regression can successfully generate control functions based 
on data, eliminating the need for manual coding and significantly reducing development time. 
By framing control problems as optimization tasks, the method efficiently addresses both sim-
ple and complex control scenarios. The results validate the potential of symbolic regression to 
streamline control system development and reduce human error.

However, the study also highlights limitations, specifically the computational demands and 
the inability of symbolic regression to guarantee strict global optima. These challenges pres-
ent opportunities for future research focused on optimizing the algorithm for real-time appli-
cations and improving the accuracy of solutions through enhanced optimization techniques or 
hybrid approaches.

In conclusion, symbolic regression represents a significant advancement in the automation 
of control system synthesis, offering promising solutions for dynamic and complex environ-
ments. While further work is needed to address its limitations, the method has the potential to 
play a key role in the development of intelligent systems and robotics, offering both efficiency 
and flexibility. Future research should focus on refining this approach to expand its practical 
applicability, particularly in real-time embedded systems.
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