
107DOI: 10.37943/18LYCW2723
© Ardabek Khompysh, Kunbolat Algazy, Nursulu Kapalova,
 Kairat Sakan, Dilmukhanbet Dyusenbayev

Ardabek Khompysh
PhD, Information Security Laboratory
ardabek@mail.ru, orcid.org/0000-0002-0702-9346
Institute of Information and Computational Technologies, Kazakhstan
PhD, Associate Professor
Egyptian University of Islamic Culture Nur-Mubarak, Kazakhstan

Kunbolat Algazy*
PhD, Information Security Laboratory
kunbolat@mail.ru, orcid.org/0000-0003-3670-2170
Institute of Information and Computational Technologies, Kazakhstan

Nursulu Kapalova
leading researcher, Information Security Laboratory
nkapalova@mail.ru, orcid.org/0000-0001-9743-9981
Institute of Information and Computational Technologies, Kazakhstan

Kairat Sakan
PhD, Information Security Laboratory
kairat_sks@mail.ru, orcid.org/0000-0002-6812-6000
Institute of Information and Computational Technologies, Kazakhstan

Dilmukhanbet Dyusenbayev
Researcher, Information Security Laboratory
dimash_dds@mail.ru, orcid.org/0000-0002-4835-1075
Institute of Information and Computational Technologies, Kazakhstan

DOI: 10.37943/18LYCW2723

Copyright © 2024, Authors. This is an open access article under the Creative Commons CC BY-NC-ND license
Received: 22.05.2024 Accepted: 25.06.2024 Published: 30.06.2024

STATISTICAL PROPERTIES OF THE PSEUDORANDOM
SEQUENCE GENERATION ALGORITHM

Abstract: One of the most important issues in the design of cryptographic algorithms is
studying their cryptographic strength. Among the factors determining the reliability of cryp-
tographic algorithms, a good pseudorandom sequence generator, which is used for key gener-
ation, holds particular significance. The main goal of this work is to verify the normal distribu-
tion of pseudorandom sequences obtained using the generation algorithm and demonstrate
that there is no mutual statistical correlation between the values of the resulting sequence. If
these requirements are met, we will consider such a generator reliable. This article describes
the pseudorandom sequence generation algorithm and outlines the steps for each operation
involved in this algorithm. To verify the properties of the pseudorandom sequence generated
by the proposed algorithm, it was programmatically implemented in the Microsoft Visual C++
integrated development environment. To assess the statistical security of the pseudorandom
sequence generation algorithm, 1000 files with a block length of 10000 bits and an initial
data length of 256 bits were selected. Statistical analysis was conducted using tests by D.
Knuth and NIST. As shown in the works of researchers, the pseudorandom sequence genera-
tion algorithm, verified by these tests, can be considered among the reliable algorithms. The
results of each graphical test by D. Knuth are presented separately. The graphical tests were
evaluated using values obtained from each test, while the chi-squared criterion with degrees
of freedom 2k – 1 was used to analyze the evaluation tests. The success or failure of the test
was determined using a program developed by the Information Security Laboratory. Analysis

108 Scientific Journal of Astana IT University
ISSN (P): 2707-9031 ISSN (E): 2707-904X

VOLUME 18, JUNE 2024

of the data from the D. Knuth tests showed good results. In the NIST tests, the P-value for the
selected sequence was calculated, and corresponding evaluations were made. The output data
obtained from the NIST tests also showed very good results. The proposed pseudorandom se-
quence generation algorithm allows generating and selecting a high-quality pseudorandom
sequence of a specified length for use in the field of information security.

Keywords: cryptography; algorithms; random sequence; pseudorandom sequence; statisti-
cal testing.

Introduction (Literary review)
The information security system must address tasks such as protecting the confidentiality

of information or its critical components, verifying the authenticity of subjects and objects
involved in information transmission, safeguarding information from unauthorized access by
non-authorized users, protecting the rights of users who own the information, managing infor-
mation, and operationally controlling the processes of information transformation and trans-
mission. To solve these problems, cryptographic algorithms are used, including information
hashing methods. The binary sequence obtained as a result of the hashing process can also be
considered a pseudorandom sequence (PRS) [1,2].

Random numerical sequences are used in various fields of scientific research, one of which
is cryptography. In cryptography, random sequences play an important role as they are used,
for example, to generate initial parameters for cryptographic algorithms and protocols, as
well as to create high-quality keys in stream cipher algorithms [3]. The random uniform dis-
tribution of ciphertexts obtained using algorithms that utilize high-quality keys ensures the
statistical security of the algorithm [4,5]. An algorithm that generates pseudorandom numbers
or independent sequences using certain mathematical methods is called a pseudorandom
number generator or sequence generator (PRNG).

In most encryption algorithms, especially in stream ciphers, key sequence generators are
used. A key sequence generator outputs a stream of bits that appears random but is actual-
ly deterministic and can be precisely reproduced on the recipient’s side [6,7]. The more the
generated stream resembles a random sequence, the longer it will take for a cryptanalyst to
break the cipher. However, if the generator produces the same sequence each time it is ini-
tialized, breaking the cryptosystem becomes a trivial task. For example, in the case of stream
ciphers, if an attacker intercepts two encrypted texts, they can XOR them to obtain the two
original texts XORed together. This makes the system very easy to break. If an attacker has
a plaintext-ciphertext pair, the task becomes even simpler. Therefore, it is assumed that all
random sequence generators must be key-dependent. This dependency ensures that simple
cryptanalysis is impossible. The structure of a key sequence generator can be represented as a
finite state machine with memory, consisting of three blocks: a memory block that stores the
state information of the generator, an output function that generates a bit of the key sequence
based on the state, and a transition function that determines the new state the generator will
transition to in the next step [8].

Currently, there are several thousand different variants of pseudorandom number genera-
tors. Let’s consider the main methods of generating pseudorandom sequences that are most
suitable for computer cryptography.

Linear Congruential Generator (LCG). The main advantages of linear congruential genera-
tors are their high speed due to the small number of operations per byte and their simplicity
of implementation. Unfortunately, these generators are rarely used in cryptography because
they are predictable. Specifically, LCGs cannot be used for constructing stream ciphers, as their
predictability makes them vulnerable. For example, stream ciphers based on LCGs were first
broken by Joan Boyar, who also successfully broke quadratic generators [9].

109DOI: 10.37943/18LYCW2723
© Ardabek Khompysh, Kunbolat Algazy, Nursulu Kapalova,
 Kairat Sakan, Dilmukhanbet Dyusenbayev

Among the most promising types of PRNGs are those based on shift registers with nonline-
ar feedback, specifically using so-called stochastic summators or R-blocks. This work general-
izes the results obtained from studying PRNGs based on linear feedback shift registers (LFSR)
to the generation of PRNGs using stochastic summators in the feedback loop (RFSR, Random
Feedback Shift Register). Specifically, it examines the principles of constructing nonlinear
PRNGs of length 2n – 1 and 2n, as well as universal generators that ensure any predefined peri-
od and pre-period values of the generated sequences, where n is the number of memory ele-
ments in the generator consisting of N registers, each with a word length of n (Q = nN). LFSRs
are decent random number generators but have undesirable properties. The bit sequences
they generate are linear, which makes them unsuitable for encryption. For an LFSR of length n,
the internal state can be determined from n output bits of the generator. Even if the feedback
scheme is unknown, it is sufficient to have 2n output bits to deduce it. Large random numbers
generated from consecutive bits of an LFSR are highly correlated and sometimes not truly
random. Nonetheless, LFSRs are quite often used as fundamental encryption algorithms [10].

There are several tests used to evaluate the statistical properties of sequences, with the
most commonly used ones being:

• DieHard Tests [11]: A suite of statistical tests proposed by George Marsaglia, a mathema-
tician from Florida State University, USA.

• NIST Tests [12]: A set of statistical tests developed by scientists from the National Insti-
tute of Standards and Technology (NIST), including Andrew Rukhin and others.

• TestU01 [13]: A suite of statistical tests developed by Pierre L’Ecuyer and other research-
ers from the University of Montreal.

• RaBiGeTe [14]: A suite of statistical tests complemented by a graphical interface for use
in Windows.

• Knuth’s Tests [15]: A suite of statistical tests proposed by Donald Knuth, a scientist from
Stanford University.

These tests evaluate the generated binary sequences against various statistical criteria to
check for randomness.

Methods and Materials
Knuth’s Tests. Knuth’s tests for studying the statistical properties of sequences include both

graphical and evaluative tests [15].
In graphical tests, the statistical properties of the generated sequences, which are used for

qualitative assessment of the results, are represented visually.
Graphical Tests by Donald Knuth:
• Histogram of Sequence Elements Distribution;
• Distribution on the Plane;
• Runs Test;
• Monotonicity Check;
• Autocorrelation Function;
• Linear Complexity Profile;
• Graphical Spectral Test.
Let’s take a closer look at the characteristics of the graphical tests proposed by Donald

Knuth [16,17]:
Histogram Distribution Test of Sequence Elements. This test allows us to assess the uniformity

of the distribution of symbols in the examined sequence, as well as to determine the frequen-
cy of occurrence of a specific symbol. The histogram is constructed as follows: the number of
occurrences of each element in the examined sequence is counted, and then a graph is plotted

110 Scientific Journal of Astana IT University
ISSN (P): 2707-9031 ISSN (E): 2707-904X

VOLUME 18, JUNE 2024

showing the dependence of the number of occurrences of the elements on their numerical
representation.

Plane Distribution Test. This test is designed to identify relationships between the elements
of the sequence we are studying. Distribution on the plane is performed as follows: points
with coordinates (ei; ei+1) are plotted on a field of size m × m, where
are the elements of the studied sequence, n is the length of the sequence, and m the size of
the alphabet.

Runs Test. This test assesses the uniform distribution of symbols in the studied sequence by
determining the frequency of occurrence of 0s and 1s in a series consisting of k bits. It iden-
tifies how many times zeros, ones, and series consisting of two, three, etc., bits appear in the
examined sequence.

Monotonicity Test. This test counts the lengths of increasing and decreasing segments of the
examined sequence elements. The studied sequence is graphically represented as consecutive,
non-overlapping segments of non-increasing and non-decreasing elements.

Autocorrelation Function (ACF) Test. This test is designed to evaluate the correlation between
shifted copies of the obtained sequence.

Bitwise ACF. The bitwise ACF is defined as follows: the examined sequence is considered
as a bit sequence, after which the obtained bit sequence is normalized (1 → 1,0 → – 1), and
correlation spikes are calculated using formula (1):

(1)

where bi are the elements of the normalized sequence, n is the length of the normalized bit
sequence, .

Bytewise ACF. First, the examined sequence E is normalized. Let ar–1 ar–2…a0, (where r is the
bit width of the number) be the binary representation of the sequence. The normalized value
of the elements is then computed using formula (2), and the correlation spikes are computed
using formula (3):

(2)

Next, the autocorrelation spikes are calculated similarly to the bitwise ACF using the for-
mula:

(3)

Linear Complexity Profile Test. The following approach is used to create a linear complexity
profile: suppose we have a binary sequence t = t1 t2 t3…tn of length n. We sequentially consider
subsequences t (k), which contain the first k elements of the sequence, and plot a graph show-
ing the dependence of the linear complexity on the length of the subsequence N.

Graphical Spectral Test. This test allows for the assessment of the uniformity of the distribu-
tion of 0s and 1s in the examined sequence based on the analysis of the height of the peaks
in the Fourier transform. Suppose t = t1 t2 t3…tn is a binary sequence of length n. We transform
it into a sequence x1 x2 x3…xn, where xi=2ti–1 (т. е. 1 → 1,0→ – 1).

Now, we apply the discrete Fourier transform to x and obtain the sequence of harmonics Sj
as shown in formula (4):

(4)

111

Knuth’s Evaluation Tests. The following statistical tests by D. Knuth were used to determine
the randomness properties of the sequence:

• Runs Test;
• Monotonicity Test;
• Intervals Test;
• Combinations Test;
• Coupon Collector’s Test;
• Permutation Test;
• Correlation Test.
Let the test results be such that they can be divided into k категорий. categories. We con-

duct n независимых испытаний, где n is a sufficiently large number. Let ps be the probability
that the result of a trial falls into the sth category, and Ys be the number of trials that actually
fall into the sth category. The value of the test statistic is calculated using formula (5):

(5)

Chi-square distribution tables are used to assess the obtained result. In these tables, the
rows correspond to the degrees of freedom v, and the columns correspond to probabilities p.
If the table contains the number x in row v and column p, it means that the value of χ2 (obs)
will be greater than x with the probability of p.

Runs Test. Let t = t1 t2 t3…tn be a binary sequence of length n and m be the length of a run.
The number of occurrences of all possible non-overlapping runs of length m (extra bits
are discarded) is counted, and the statistic is computed as per formula (6):

(6)

Monotonicity Test. This test checks the uniformity of symbol distribution in a sequence by
analyzing segments of non-increasing and non-decreasing elements. Let be the
number of segments of non-increasing (non-decreasing) length i. The statistic is calculated
using formula (7):

(7)

where .

Intervals Test. This test aims to check the uniformity of symbol distribution in the examined
sequence by analyzing the lengths of subsequences where all elements fall within a specific
numerical interval.

Let t = t1 t2 t3…tn be a sequence of k- bit numbers of length n. Let α and β be two integers
satisfying the inequality 0 ≤ α < β ≤ 2k – 1. The length of intervals between numbers lying in
the range [α; β] is computed. Then, the number of intervals , is determined, and the
statistic is calculated using formula (8):

(8)

where is the total number of intervals, and the degrees of freedom equal m.

DOI: 10.37943/18LYCW2723
© Ardabek Khompysh, Kunbolat Algazy, Nursulu Kapalova,
 Kairat Sakan, Dilmukhanbet Dyusenbayev

112 Scientific Journal of Astana IT University
ISSN (P): 2707-9031 ISSN (E): 2707-904X

VOLUME 18, JUNE 2024

Combinations Test. This test checks the distribution of symbols in the examined sequence by
analyzing various combinations of numbers in the considered subsequences. Let t = t1 t2 t3…tn
be a sequence of k-bit numbers of length n. We divide it into subsequences, each of which has
a length m (additional bits are excluded). We count the number of subsequences ,
containing i distinct numbers, and then compute the chi-squared statistic using formula (9):

(9)

where are the Stirling numbers of the second kind.

Coupon Collector’s Test. In this test, the uniform distribution of symbols in the examined
sequence is checked by analyzing various combinations of numbers in subsequences. Let t = t1
t2 t3…tn be a sequence of k-bit numbers of length n. The number of subsequences vi of length

, containing a complete set of numbers from 0 to 2k – 1 is calculated. Then the χ2 sta-
tistic is calculated using formula (10):

(10)

where , and the number of de-
grees of freedom is r – 2k + 1.

Permutations Test. In this test, the relative arrangement of numbers in subsequences is ana-
lyzed to check the uniform distribution of symbols in the examined sequence.

The sequence is divided into subsequences, each of length k (additional bits are excluded).
In each subsequence, there are k! possible permutations of relative arrangements of numbers.
The number of occurrences of each permutation, , is counted, and the chi-squared
statistic is calculated using formula (11):

(11)

Correlation Test. This test checks for the mutual independence of sequence elements. The
statistic is calculated using formula (12):

(12)

For any j, the value Сj should lie within the interval:

where

Results and discussion

Development of a pseudorandom sequence generation algorithm
The algorithm for generating pseudorandom sequences (PRS) utilized in this work was

previously developed in the Information Security Laboratory. The PRS generation algorithm
consists of three stages.

113

Stage 1. The initial parameters of the algorithm are as follows:
An initial numerical sequence X ={x1, x2,…, xn }, where xi ∈ Z256 ;
An irreducible polynomial p(x) of degree 8, used as a polynomial modulus;
The length of the generated sequence m ≥ 1.
The output is the sequence Z = {z1, z2,…, zm}, where zj ∈ Z256 .
The transformation of the initial numerical sequence is carried out according to the follow-

ing rules:

where .
All generated , are saved as elements of the generated sequence, since the first

n elements are not counted as results. Thus, the sequence generation starts from the (n+1)
th step. Here, the symbol ⊕ denotes the bitwise XOR operation and mod p(x) represents the
remainder of the division of the resulting polynomial by the given irreducible polynomial p(x).

Stage 2. The input data (initial parameters) for this algorithm are as follows:
An initial numerical sequence X ={x1, x2,…, xn }, where xi ∈ Z256 ;
Irreducible polynomials p(x) and q(x) of degree 8, used as polynomial moduli, with p(x) ≠ q(x);
The length of the generated sequence m ≥ 1.
The output is the pseudorandom sequence Z = {z1, z2,…, zm}, where zi ∈ Z256 .
The transformation of the initial numerical sequence is carried out according to the follow-

ing rules:

where .
Stage 3. The input data (initial parameters) for this algorithm are as follows:
An initial numerical sequence X ={x1, x2,…, xn }, where xi ∈ Z256 ;
Irreducible polynomials p(x) and q(x) of degree 8, used as polynomial moduli, with p(x) ≠ q(x);
The length of the generated sequence m ≥ 1.
The output is the pseudorandom sequence Z = {z1, z2,…, zm}, where zi ∈ Z256 .
As mentioned above, this algorithm is a combination of the two previous stages, meaning

the generated sequences are combined using bitwise XOR (modulo 2). The resulting sequence
is then stored as the final PRS (Figure 1).

DOI: 10.37943/18LYCW2723
© Ardabek Khompysh, Kunbolat Algazy, Nursulu Kapalova,
 Kairat Sakan, Dilmukhanbet Dyusenbayev

114 Scientific Journal of Astana IT University
ISSN (P): 2707-9031 ISSN (E): 2707-904X

VOLUME 18, JUNE 2024

Figure 1. Schematic of the PRG_ISL Algorithm

Results of statistical evaluation of the PRG_ISL generator
One of the primary criteria for evaluating the security of a randomly generated sequence

is the investigation of its statistical security. Statistical tests are empirical tests designed to
assess the quality of PRNGs (Pseudorandom Number Generators), identify their weaknesses,
calculate the statistical characteristics of the generated sequences, and compare these char-
acteristics with those of truly random sequences. When testing the randomness properties
of a generated sequence, the sequence is considered statistically secure if it is proven to be
generated in a random manner. In this work, we examine the statistical characteristics of the
output sequence of the PRG_ISL generator using NIST and D. Knuth’s tests.

For the study of the statistical security of the PRNG using D. Knuth’s graphical tests, a bit
sequence of 98 KB, generated by the PRG_ISL, was selected. The results of the study are shown
in Figures 2 and 3.

Figure 2. Results of D. Knuth’s Graphical Tests:
a) – Histogram of sequence elements distribution;

b) – distribution on the plane; c) – runs test; d) – monotonicity check.

115

Figure 3. Results of D. Knuth’s Graphical Tests:
a) – Bitwise autocorrelation function; b) – Bytewise autocorrelation function;

c) – Linear complexity profile; d) – Graphical spectral test.

For a thorough analysis of sequences generated by the PRG_ISL generator, we applied
graphical tests developed by D. Knuth to 1000 files, each of which has a length of 10,000
bytes, with initial parameters of 256 bits. The results of this study are presented in Table 1.

Table 1. Results of Knuth’s graphical tests

№ Graphical Tests Number of files successfully passed
testing

1 Histogram of sequence elements distribution 1000
2 Distribution on the plane 992
3 Runs Test 996
4 Monotonicity check 996
5 Bitwise autocorrelation function 997
6 Byte-wise autocorrelation function 996
7 Graphical spectral test 998
8 Linear complexity profile 1000

Unlike graphical tests, the interpretation of results in the case of estimation tests is deter-
mined as either ‘passed’ or ‘failed’ using specific numerical characteristics. To study the statis-
tical properties of the generated sequences using estimation tests, we analyzed 1000 files
obtained from the PRG_ISL generator. The results are shown in Figure 4.

DOI: 10.37943/18LYCW2723
© Ardabek Khompysh, Kunbolat Algazy, Nursulu Kapalova,
 Kairat Sakan, Dilmukhanbet Dyusenbayev

116 Scientific Journal of Astana IT University
ISSN (P): 2707-9031 ISSN (E): 2707-904X

VOLUME 18, JUNE 2024

Figure 4. Results of Knuth’s Evaluation Tests

According to the analysis of the number of files that did not pass the testing, significant
deviations in the chi-square values were not detected.

Results of NIST Tests
Currently, the most widely used statistical tests are the NIST tests. The NIST tests consist of

15 statistical tests: frequency (monobit) test, frequency test within a block, runs test, longest
run of ones in a block test, binary matrix rank test, spectral test, non-overlapping template
matching test, overlapping template matching test, Maurer’s universal statistical test, linear
complexity test, approximate entropy test, serial test, cumulative sums test, and two different
random excursions tests[18,19].

 The result of each NIST test is determined by detecting various deviations during the
hypothesis testing of the randomness of the examined sequence. For example, let’s calcu-
late the P-value, which determines the probability of obtaining a random sequence from the
examined sequence. If the research, depending on the obtained P-value, is conducted in the
area α=0,01, then the following conclusion is drawn. If P ≥ 0,01, then the sequence generated
from the PRG_ISL generator is 99% random, and if P < 0,01, then the sequence is 99% not
random[20,21].

To investigate the statistical security of the output sequences of the PRG_ISL generator us-
ing the NIST tests, the same 1000 files were used as for the Knuth statistical tests. The results
of the study are shown in Figure 5.

117

Figure 5. Results of NIST Tests

The results of the conducted tests show that all files passed the NIST testing successfully,
as it was determined that the condition P ≥ 0,01 is satisfied for all test types. Thus, it can be
concluded that according to the NIST tests, the PRG_ISL generator is 100% secure, as it fully
satisfies the criteria of statistical security.

Conclusion
Pseudorandom sequence generators can be utilized for various purposes, including ad-

dressing critical data security tasks. Ensuring data protection requires a reliable verification of
the proximity properties of output sequences from generators to truly random ones in terms of
their statistical properties and unpredictability of output values. The pseudorandom sequence
generator proposed in the article is used for creating secure keys in a post-quantum digital
signature algorithm based on hash functions developed under a grant project.

The PRG algorithm consists of three steps. At each step, the generated pseudorandom se-
quence performs its function in accordance with the normal distribution law. Tests by D. Knuth
and NIST were used to verify the statistical security of the proposed PRG. NIST tests are con-
sidered the most suitable in terms of efficiently assessing the properties of pseudorandom se-
quences and their usability across different platforms. The results of the conducted NIST tests
showed positive outcomes, and the findings obtained from the graphical and evaluative tests
by D. Knuth demonstrated that the requirements for pseudorandom sequences are fully met.

According to the research results, it was established that the proposed PRG algorithm can
be safely used in the field of information security for generating reliable secret keys, pass-
words, and pseudorandom sequences of various lengths.

DOI: 10.37943/18LYCW2723
© Ardabek Khompysh, Kunbolat Algazy, Nursulu Kapalova,
 Kairat Sakan, Dilmukhanbet Dyusenbayev

118 Scientific Journal of Astana IT University
ISSN (P): 2707-9031 ISSN (E): 2707-904X

VOLUME 18, JUNE 2024

Acknowledgment. The work was carried out within the framework of the grant funding pro-
gram AP14870719 «Development and study of post-quantum cryptography algorithms based
on hash functions» of the Science Committee of the Ministry of Science and Higher Education
of the Republic of Kazakhstan.

References
[1] Popereshnyak, S. (2020). Technique of the testing of pseudorandom sequences, Svitlana Popereshnyak. Inter-

national Journal of Computing, 19(3), 387-398.
[2] Park, S., Kim, K., Kim, K., Nam, C. (2022). Dynamical Pseudo-Random Number Generator Using Reinforcement

Learning. Appl. Sci., 12(3377). https://doi.org/10.3390/app12073377
[3] Pasqualini, L., Parton, M. (2020). Pseudo Random Number Generation: a Reinforcement Learning approach.

International Workshop on Statistical Methods and Artificial Intelligence (IWSMAI), Procedia Computer Sci-
ence, 170, 1122–1127.

[4] Kietzmann, P., Schmidt, T.C., Wählisch, M.A. (2022). Guideline on Pseudorandom Number Generation (PRNG)
in the IoT. ACM Comput. Surv., 54, 1–38. https://doi.org/10.1145/3453159

[5] Dichtl, M., Golić, J.D. (2007). High-Speed True Random Number Generation with Logic Gates Only. In Cryp-
tographic Hardware and Embedded Systems—CHES 2007: Lecture Notes in Computer Science Book Series,
2007, 45–62. https://doi.org/10.1007/978-3-540-74735-2_4

[6] Khalique, Aqeel & Lone, Auqib & Ashraf, Syed. (2015). A Novel Unpredictable Temporal based Pseu-
do Random Number Generator. International Journal of Computer Applications. 117. 23-28. http://doi.
org/10.5120/20615-3301

[7] Haider, T., Blanco, S.A., Hayat, U. (2024). A novel pseudo-random number generator based on multivariable
optimization for image-cryptographic applications, Expert Systems with Applications, 240(122446). https://
doi.org/10.1016/j.eswa.2023.122446

[8] Maksymovych, V., Shabatura, M., Harasymchuk, O., Shevchuk, R., Sawicki, P., Zajac, T. (2022). Combined
Pseudo-Random Sequence Generator for Cybersecurity. Sensors, 22(24),9700. https://doi.org/10.3390/
s22249700

[9] Ofelius Laia et.al., (2019). Application of Linear Congruent Generator in Affine Cipher Algorithm to Produce
Dynamic Encryption. International Conference of SNIKOM 2018. Journal of Physics: Conference Series, Vol.
1361.

[10] AL-khatib, Mohammed & Lone, Auqib. (2018). Acoustic Lightweight Pseudo Random Number Generator based
on Cryptographically Secure LFSR. International Journal of Computer Network and Information Security, 10.
38-45. http://doi.org/10.5815/ijcnis.2018.02.05

[11] Feng, Yulong & Hao, Lingyi. (2020). Testing Randomness Using Artificial Neural Network. IEEE Access. 8.
163685-163693. http://doi.org/10.1109/ACCESS.2020.3022098

[12] Savelov, M. (2023). The limit joint distributions of statistics of three tests of the NIST package. Discrete Math-
ematics and Applications, 33(4), 247-257. https://doi.org/10.1515/dma-2023-0022

[13] Bassham, L., Rukhin, A., Soto, J., Nechvatal, J., Smid, M., Leigh, S., Levenson, M., Vangel, M., Heckert, N., Banks,
D. (2022). A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Ap-
plications. Special Publication (NIST SP); National Institute of Standards and Technology: Available online:
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=906762

[14] Popereshnyak, S. (2019). Analysis of pseudorandom small sequences using multidimensional statistics, Pro-
ceedings of the 2019 3rd IEEE International Conference on Advanced Information and Communication Tech-
nologies (AICT’2019), 541-544.

[15] Pierre, L’Ecuyer., Richard, Simard. (2007). TestU01: A C library for empirical testing of random number gener-
ators. ACM Transactions on Mathematical Software, 33(4):22-39. http://doi.org/10.1145/1268776.1268777

[16] Sun., Y., Lo, B. (2018). Random number generation using inertial measurement unit signals for on-body
IoT devices, Living in the Internet of Things: Cybersecurity of the IoT - 2018, 1-9, http://doi.org/10.1049/
cp.2018.0028

[17] Koçak, Onur. (2018). Modifications of knuth randomness tests for integer and binary sequences. Communi-
cations Faculty Of Science University of Ankara Series A1, Mathematics and Statistics. 67. 64-81. https://doi.
org/10.1501/Commua1_0000000862

[18] Kapalova, N., Khompysh, A., Arici, M., Algazy, K., & Pham, D. (2020). A block encryption algorithm based on
exponentiation transform. Cogent Engineering, 7(1). https://doi.org/10.1080/23311916.2020.1788292

119

[19] Khompysh, A., Kapalova, N., Lizunov, O., Dilmukhanbet, D., Kairat, S. (2023). Development of a new light-
weight encryption algorithm. International Journal of Advanced Computer Science and Applications, 14(5),
452-459. https://doi.org/10.14569/IJACSA.2023.0140548

[20] Burciu, P., Simion, E. (2019). A systematic approach of NIST statistical tests dependencies. Journal of Electri-
cal Engineering, Electronics, Control and Computer Science, 5(1), 1-6. https://jeeeccs.net/index.php/journal/
article/view/113/93

[21] Sulak F., Uğuz M., Koçak O., Doğanaksoy A. (2017). On the independence of statistical randomness tests
included in the NIST test suite. Turkish Journal of Electrical Engineering & Computer Sciences, 5(25), 3673-
3683. http://doi.org/10.3906/elk-1605-212

[22] Kapalova, N., Algazy, K., Haumen, A., Sakan, K. (2023). Statistical analysis of the key scheduling of the new
lightweight block cipher. International Journal of Electrical and Computer Engineering (IJECE), 13(6), 817-
6826. http://doi.org/10.11591/ijece.v13i6.pp6817-6826

[23] Pikuzа, M.O., & Mikhnеvich, S. Yu. (2012). Testing of hardware random number generator using a set of NIST
statistical tests. Reports of BSUIR, 19(4), 37-42. https://doi.org/10.35596/1729-7648-2021-19-4-37-42

DOI: 10.37943/18LYCW2723
© Ardabek Khompysh, Kunbolat Algazy, Nursulu Kapalova,
 Kairat Sakan, Dilmukhanbet Dyusenbayev

