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DEVELOPING GAME THEORY-BASED METHODS FOR MODELING 
INFORMATION CONFRONTATION IN SOCIAL NETWORKS 

Abstract: This paper explores the essential dynamics of social networks, specifically exam-
ining the phenomenon of information confrontation among users. The goal of the research is 
the development of a novel simulation methodology that integrates game-theoretic principles 
with probabilistic techniques to provide a robust model for these interactions. The theoretical 
framework of the study is founded on the conceptualization of user conflicts as a strategic 
game between two players. The primary objective for each player in this game is to exert 
influence and control over as many nodes within the network as possible. To capture the 
essence of these strategic interactions, we have introduced an innovative algorithm that fa-
cilitates dynamic strategy adaptation. This algorithm is pivotal in allowing players to modify 
their decision-making processes in real-time, based on the continually changing conditions 
of the network. For practical implementation and validation of the methodology, we used 
the Facebook Researcher open dataset, with a particular focus on its Kazakhstani segment. 
This dataset provides a rich source of empirical data, reflecting diverse user interactions and 
network configurations, which are essential for testing the model. This approach stands out 
by offering significant improvements in computational efficiency and resource management. 
By dynamically tracking and updating the network’s status, the proposed method reduces 
the computational resources required, thereby enhancing the scalability of the simulation. In 
comparing our methodology with other existing models in the field, it becomes evident that it 
not only matches but in several respects surpasses these methodologies in terms of flexibility. 
This study makes substantial contributions to the field of social network analysis by providing 
a sophisticated tool that can be effectively employed to navigate and analyze the complexities 
of information confrontation in digital social spaces. 

Keywords: game theory; strategy adaptation; social networks; information conflict; simula-
tion algorithm; probabilistic approach; analytical systems.



18 Scientific Journal of Astana IT University
ISSN (P): 2707-9031   ISSN (E): 2707-904X

VOLUME 18, JUNE 2024

Introduction (Literary review)
This study investigates the imperative role of social networks in information dissemina-

tion, communication, and entertainment, emphasizing their centrality in contemporary digital 
society. The escalating complexity and widespread utilization of social networks underscore 
the need for more sophisticated analytical techniques. Data reveal that individuals spend an 
average of 144 minutes per day on social media, a trend that has increased consistently over 
the past decade, highlighting social networks’ role in fostering information conflicts, including 
efforts at manipulation and misinformation dissemination.

Research into the modeling of information influence and management on social networks 
dates back to the late 1990s [1]. The relative lack of regulatory oversight, coupled with the 
anonymity provided by the internet, creates opportunities for malicious actors to propagate 
harmful content. This study delves into the arena of information warfare, which encompasses 
diverse scenarios wherein information is strategically utilized to achieve specific objectives, 
often pitting various parties against each other in contexts such as corporate rivalries, political 
disputes, propaganda efforts, and anti-misinformation campaigns.

Given these dynamics, it is crucial to analyze the structure of social networks to bolster 
online security, prevent the spread of harmful content, and tackle issues such as botnets. The 
increasing complexity and dynamism of social networks necessitate the development of new, 
more effective analytical methodologies [2]. This paper advocates for innovative approaches 
to enhance the accuracy and efficiency of social network analysis in light of these evolving 
challenges.

This research introduces an innovative approach to social network analysis within the 
framework of information conflicts. It integrates game-theoretical principles with probabilistic 
models of information dissemination and dynamic network modeling. Additionally, it presents 
a sophisticated algorithm for real-time monitoring and strategy adjustment among network 
entities. The objective is to establish a model for information confrontation between two en-
tities, designated as A and B, that surpasses existing methodologies in terms of efficiency and 
resource utilization. The validity and applicability of the proposed model are affirmed through 
extensive testing on large-scale network models, highlighting its relevance and practical util-
ity in contemporary social network analysis.

The field of social network analysis includes a large number of research interests and meth-
odologies, reflecting its significance in understanding complex social structures and behav-
iors. Studies in this domain have traditionally focused on varied aspects such as information 
warfare, community detection, node influence and centrality, viral information dissemination, 
recommendation systems, and sentiment analysis within networks. Various analytical tech-
niques such as graph theory, machine learning, clustering, genetic algorithms, natural lan-
guage processing, and game theory have been employed to dissect these phenomena [3].

Our research situates itself within the context of information confrontation in social net-
works, a key aspect of information warfare. The process of information dissemination forms a 
crucial component of this confrontation. Traditionally, models for information dissemination 
in social networks are categorized into graph-based and non-graph-based approaches. Among 
the graph-based models, the Independent Cascades (IC) model [4] and the Linear Thresh-
old (LT) model [5] are particularly prominent. The Linear Threshold model operates under 
the premise that a node becomes activated when the influence from its activated neighbors 
surpasses a predefined threshold. This model aptly simulates situations where community 
or group decisions are critical, effectively mirroring real-life scenarios like the adoption of 
new products or ideas once they gain sufficient traction within a community. This model also 
sheds light on social influences impacting decision-making, often cited in studies of phenom-
ena such as the “tipping point effect.” However, the LT model’s primary limitation is its focus 
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on collective thresholds rather than individual decision-making processes, which are vital in 
networks where personal decisions are pivotal. Additionally, it assumes static thresholds for 
each node, disregarding the potential dynamics and fluctuating conditions affecting individual 
nodes over time.

Conversely, the Independent Cascade model describes a scenario where each activated node 
has a single opportunity to activate each of its inactivated neighbors with a specific probabil-
ity. This model is particularly suited to scenarios that mimic the viral spread of information, 
where one node’s activation can lead to a chain reaction across the network. Nevertheless, the 
IC model’s simplicity – each node having only one chance to activate its neighbors—may not 
fully capture the repeated efforts users often make in real interactions, nor does it accommo-
date the long-term dynamics of node interactions within continually evolving networks.

While both models operate on a discrete time axis where the information dissemination 
process is iterative and synchronous, starting from initially activated nodes [6], there have 
been adaptations to enhance their applicability and efficiency. For instance, some studies have 
introduced variations of the LT model that incorporate factors like content virality and us-
er-specific probabilities of information acceptance [7]. Additionally, asynchronous versions of 
these models have been developed to optimize resource usage and improve computational 
efficiency, addressing some of the synchronous models’ limitations [8].

In addition to graph-based approaches, models that do not rely explicitly on predefined 
network structures, such as the Susceptible-Infectious-Recovered (SIR) and Susceptible-In-
fectious-Susceptible (SIS) models, are instrumental in understanding network dynamics [9]. 
These epidemiological models assess the state of each node and track changes in population 
segments over time using differential equations. They operate under the assumption of ran-
dom interactions among nodes, which simplifies the analysis but might not capture the unique 
structural properties of specific social networks, thus limiting their detailed applicability to 
social phenomena.

Further enriching the toolkit for social network analysis, probabilistic models, influence 
maximization algorithms like Cost-Effective Lazy Forward (CELF) and CELF++ [10], network 
monitoring optimization algorithms, and game-theoretic frameworks for modeling informa-
tion influence [11] have also been developed. Game-theoretic approaches, in particular, have 
gained prominence. For example, one study [12] employs game theory to devise strategies 
for blocking influence maximization using oracles to generate mixed strategies for the play-
ers, while another [13] builds on this with a hierarchical algorithm to enhance the method’s 
efficiency. However, these methods face challenges when applied to large-scale real-world 
networks due to their computational intensity and time requirements. For instance, identifying 
optimal nodes for monitoring a Twitter subnetwork with 11,000 nodes and 25,000 connec-
tions required approximately 28.7 hours in one study, highlighting the significant resource 
demands of these analyses.

The limitations of existing approaches often revolve around the assumption of static net-
work conditions—despite the inherently dynamic nature of real networks—or the substantial 
computational resources required for processing complex network structures. The ongoing 
escalation in network complexity further complicates the analysis of modern networks using 
traditional methodologies. To address these challenges, we introduce a novel game-theoretic 
model combined with Markov probabilistic models for information dissemination. This hy-
brid model incorporates a streamlined one-oracle approach to reduce computational demands 
while capturing the dynamic interactions and strategic behaviors of entities within the net-
work. The specifics of this model and its application are explored in subsequent sections of 
this study, where we detail its design, implementation, and the insights it offers into effective 
information warfare strategies between players A and B.

DOI: 10.37943/18FONX7380
© Damir Moldabayev, Mikhail Suchkov, 
    Zukhra Abdiakhmetova, Amandyk Kartbayev*



20 Scientific Journal of Astana IT University
ISSN (P): 2707-9031   ISSN (E): 2707-904X

VOLUME 18, JUNE 2024

Methods and Materials
Any social network can be depicted as a graph G = (V, E), where V represents the vertices, 

corresponding to user accounts, and E denotes the edges, signifying the connections between 
these accounts. These graphs may be either directed or undirected. In a directed graph, con-
nections have a specific orientation, meaning that if user A follows user B, it does not neces-
sarily imply that user B follows user A. Twitter is a typical example of a directed graph, while 
networks like Facebook are examples of undirected graphs. 

The process of information dissemination on social media can cause certain pieces of infor-
mation to gain fame and even become viral, spreading rapidly across the globe. This process 
generally unfolds in two primary stages:

Initial Distribution: Information is shared within a user’s immediate circle through personal 
messages or public posts;

Further Distribution: The information then propagates along the network’s edges according 
to the specific rules of the graph that models the network.

Each user within a social network exercises their judgment to either trust or dismiss the in-
formation they encounter. Furthermore, the decision of each user is influenced by the opinions 
and actions of others within the same network, a phenomenon known as social influence. One 
straightforward method to model the dissemination of information is to consider each node 
in the graph as activated if the node receives and accepts the information, and not activated if 
the node either does not receive or does not accept it.

Fig. 1 illustrates a directed graph connecting five users. In this diagram, the weights on each 
edge indicate the strength of the connection between users. A higher weight suggests a great-
er level of trust between the users, which is crucial in the context of information dissemina-
tion, as users with stronger or more influential connections are more likely to trust each other. 

Figure 1. A directed graph with 5 users and connections between them

This modeling approach is visualized in Fig. 2, where nodes that have accepted the infor-
mation are highlighted in red. Then we adopt this modeling strategy in our research.

Figure 2. The process of node activation during the information diffusion
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The Information Influence Model is designed to explore the impact of information on user 
behavior. Its primary objective is to determine how the information environment and the user’s 
awareness of information shape their decision-making processes. By employing this model, 
researchers can analyze how information flows within a network affect user behavior and 
decision-making. Because social networks can be used as the arena for various types of in-
formation confrontation, when analyzing social networks in the context of this confrontation, 
traditionally, three main nested classes are analyzed: Information Influence, Information Man-
agement, and Information Confrontation, as shown in Fig. 3.

Figure 3. A model of information influence, management and confrontation

Expanding upon the Information Influence Model, the Information Management Model in-
troduces an additional layer of complexity by incorporating deliberate control over user be-
havior through targeted information influence. This extension allows for a more nuanced un-
derstanding of how information can be strategically managed to guide or alter user behaviors 
within the network. This approach is crucial for studies aimed at understanding the dynamics 
of information control and its implications on individual and collective actions within social 
networks.

The primary objective of this model is to devise approaches that controls the user in a spe-
cific direction. Consider two influencers, A and B, each capable of molding the initial strategies 
of selected players within a social network. Suppose A, B ⊆ N represents individuals influenced 
by A and B, ensuring that A ∩ B = ∅.

If we presume that information control is such consistent context   [14], it follows that all 
in these group adopt viewpoints of u ∈ U, v ∈ V in such contexts being subsets of R. The shift 
in an agent’s stance within the social network, considering their own viewpoint and those of 
adjacent peers, can be formulated as expression:

(1)

According to [15] this expression (1) can be simplified as X = ∑ rj*xj
0 and in the context of 

information management can be expanded to X(u,v) = rAu + rBv + X0, meaning that the final 
opinion of the social network agents is linearly dependent on management factors u and v 
with the weights rA > 0 and rB > 0, where rA + rB <= 1.

Finally, using the model of information management makes it possible to model the infor-
mation confrontation between users having opposing interests and wanting to influence the 
subjects of the network. To form a game-theoretic model of player interaction, it is necessary 
to determine the objective function of each player. For instance, the objective function of a 
certain player can be determined as follows [15]:
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(2)

where QA(X(u,v)) is the quality function of changing the opinion of a particular agent by 
player A; CA(u) is the cost function, i.e. the resources spent by player A to change the opinion 
of a certain agent. 

According to [15], the assortment of objective functions G = {fA(u,v), fB(u,v), u∈U, v∈V} 
alongside the potential actions available constitute a multiple series of games undifferentiat-
ed by the players’ knowledge and sequence of play. When the game’s mechanism for altering 
an agent’s viewpoint are non-uniform across all players, who decide one, concurrently, and in-
dependently, the scenario is termed a game in biased form. This framework enables the iden-
tification of Nash Equilibria, where each participant, aware of others’ strategies, cannot benefit 
by solely altering each other’s strategy. The evaluation of player strategies’ efficiency can be 
approached through Pareto criteria in such general contexts. This game within the realm of 
game theory for a non-cooperative game, is defined where every player’s strategy is subopti-
mal, considering the other players’ strategies, and any player stands to gain by independently 
changing their strategy. This concept is encapsulated mathematically as follows: 

(3)

where Ui is the payoff function for player i; si* is the strategy chosen by player i in the Nash 
equilibrium; s-i* is the strategies chosen by all other players in the Nash equilibrium.

According to [16], two primary principles govern social influence within a social network: 
herd behavior and information cascades. An information cascade occurs when users disregard 
their own opinions and adopt the views or behaviors of others, based on the assumption that 
these others have acted on valid information – even if such information may not actually be 
sound. This process leads individuals to follow a chain reaction of decisions made by prede-
cessors without critically evaluating the underlying information. 

On the other hand, herd behavior involves individuals mimicking the decisions and actions 
of others but with the flexibility to modify these actions based on their personal perspectives 
[17]. In this scenario, while individuals are influenced by the group, they do not completely 
abandon their own judgments or insights. In our research, we have developed a model that 
incorporates these concepts of social influence. This model is visually represented in Fig. 4. Let 
us now delve deeper into each component of the depicted scheme to understand how these 
dynamics of social influence are integrated and modeled.

Figure 4. Information Confrontation Model

First of all, we designed an artificial network (See Fig. 5) using the Networkx [18], a Python 
library, to model different experiments and compare the results. We apply standard graph the-
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ory methods to model the social network. We have graph G = (V, E) where vertices (V) are so-
cial network accounts and edges (E) are connections between them. Each vertex in the graph 
has a list of parameters required to process the model. As it is an information confrontation 
model, each node of the graph has the following parameters:

• `A_trust_prob`, i.e. 0.1 <= `A_trust_prob` <= 1: shows the probability that a user will be 
activated by player A;

• `A_trusted`, i.e. `A_trusted` ∈ {1, 0}: shows whether or not a user has been activated by 
player A;

• `B_trust_prob`, i.e. 0.1 <= `B_trust_prob` <= 1: shows the probability that a user will be 
activated by player B;

• `B_trusted`, i.e. `B_trusted` ∈ {1, 0}: shows whether or not a user has been activated by 
player B;

• `spread_factor`, i.e. 0 <= `spread_factor` <= 1: shows the ability of the user to spread 
gained information further to its neighbors;

• `activity_rate`, i.e. 0 <= `activity_rate` <= 1: shows how active the user is in the network.
To show the strength of connections between users, we integrated the weight factor upon 

each edge, showing the trust level (`trust_level`, i.e. 0 <= `trust_level` <= 1) between the users. 
With the help of this simulated network, we have conducted plenty of experiments, which will 
be discussed in detail in the “Experiments and Results” section. 

However, having just an artificial network is not enough to make solid conclusions, so we 
decided to test our algorithm on real social networks. For that purpose, we decided to program 
the crawler system, which will be integrated with real social network APIs and pull publicly 
available data required for information confrontation modeling [19]. Then, the data will be 
cleaned and preprocessed, and after that, based on this data, the network model will be cre-
ated and injected into the confrontation game. To keep the network dynamic, the Crawler will 
periodically pull new data from the actual network and inject it into our game. The part of the 
research that includes real-world network integration is currently in progress. That is why all 
the experiments presented in this paper are performed on the simulated artificial network.

Figure 5. Artificial network model with 300 nodes
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We modeled information confrontation as the game of two players, A and B, that fight for 
influence in a particular social network. It can be two companies that want to gain the trust 
and loyalty of users. Each player aims to spread its information across as many users in social 
networks as possible, having limited resources. To reach this goal effectively, a player should 
adapt his strategy to respond to the changing environment, considering the current network 
state and the predicted opponent’s strategy. A player has three options to move:

• It can send information to a particular user (i.e., try to activate it)
• It can try to switch the user activated by its opponent, thus luring the user to its side
• It can try to increase the likelihood that a particular user will believe his information
If the node is activated by player A it is colored red and if it is taken by player B it is colored 

blue. All other nodes are represented as gray. Fig. 6 shows how the information diffusion is 
generated by two players in our network model. The game lasts for a number of rounds settled 
at the initialization phase. At each round of the game, players choose the best move according 
to the cost function, i.e., the move that brings the highest profit to the user is selected. In our 
game, this cost function is as follows:

Figure 6. Information diffusion process by two players in the small network

(4)

where P(act)curr – the probability that the current node will be activated by the given player; 
S_factcurr – the ability of the current node to spread information further; A_ratecurr – the activity 
level of the current node in the network; trust_level(curr, i) – trust level between current node 
and its neighbor I; P(act)i – the probability that the neighbor i of the current node will be ac-
tivated by the given player; S_facti – the ability of the neighbor to spread information.

This quality function considers not only the current node’s parameters but also its neigh-
bors’ parameters to identify the nodes, the activation of which will maximize the spread of 
the information of the given player. This function also considers the willingness of the user 
to spread information further at a given time. For instance, the user may have a high spread 
factor, but at a given time, it may not want to spread information for some reasons such as 
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bad mood, fatigue, frustration, etc. It is accomplished by including the randomness factor in 
the model to make nodes act like real-world social network users. Real-world social network 
users depend on plenty of random factors[20] such as mood, fatigue level, engagement in so-
cial network activity, etc. Therefore, it is essential to consider such factors when modeling the 
information dissemination process.

To optimize the model’s performance, we designed an Oracle that constantly monitors the 
network and its state. This oracle tracks all the changes in the network at a given time and 
documents them in the report. With the help of this oracle, we can visualize the network and 
the state of each element at any given time during the model’s execution. This oracle also 
keeps track of the inertial network changes provoked by a specific node’s activation. These so-
called “inertia changes” occur when an activated node tries to activate its neighbors without 
the engagement of any player. Using such an oracle significantly increases the speed of com-
putations and minimizes the amount of resources consumed by the game.

Experiments and results
In this research, we proposed a novel approach for modeling information warfare  be-

tween  users  in  social  networks based on game theory methods, probabilistic approaches 
for describing the spread of information, and dynamic algorithms for monitoring and tracking 
the state of the network at a given time. To find out how well the model does its job, we con-
ducted several experiments on our artificial network, and we plan to conduct experiments on 
a real-world network in the future. First of all, we ran the model and analyzed how well two 
players adapted their strategies during the game. Several experiments conducted on networks 
with different numbers of nodes confirmed that users were able to effectively change their 
strategies according to the changing environment to gain maximum profit from each step. For 
instance, the results of a confrontation game with 100 rounds between two players A and B 
having limited resources in the network with 500 nodes, are shown in Figure 7. As it can be 
seen from Fig. 7, each player fights for influence in the network with dignity and uses resources 
efficiently.

Figure 7. Confrontation between two players in the network with 500 nodes
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Furthermore, we conducted comparison tests with other existing methods. The results of 
the experiments were compared with those of existing IC and LT models[21]. We evaluated the 
efficiency of each approach based on its ability to maximize the spread of the information in 
the network, taking into account the initial limitations of resources. We compared the elapsed 
time of each approach and RAM and CPU usage on the networks with the different number of 
nodes. The performance comparison is represented in Fig. 8.

Figure 8. Performance comparison of a novel approach with other approaches

As can be seen from the graph, when the number of nodes was significantly small, all three 
models showed approximately similar results. However, when the number of nodes exceeded 
1000, our model showed slightly better results than the others. Moreover, the execution time 
gap between these models became more prominent as the number of nodes in the network 
increased. Thus, at the end of the experiment, when the number of nodes was approximately 
10,000, our model could process them in 5814 seconds, whereas 6541 seconds and 8722 
seconds were required for processing by IC and LT models, respectively. In terms of CPU and 
RAM, our model has also shown promising results. As represented on Fig. 9 the IC Model con-
sumed the highest amount of memory among those models, and our model consumed the 
least memory compared to the other models. 

Figure 9. Memory usage comparison with other models
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Figure 10. CPU usage comparison with other models

This model demonstrates superior performance in CPU consumption compared to the IC 
model, although it does not outperform the LT model, as shown in Fig. 10. However, the dif-
ference in CPU usage between the LT model and our model is minimal and not significant. 
Overall, our model has delivered satisfactory outcomes across numerous tests conducted on 
an artificial network with varying numbers of nodes. As we progress to the second phase of 
this research, which involves integration with a real-world network, we plan to further eval-
uate and compare the performance and resource utilization of these models in an actual 
social network setting. This comparison will provide deeper insights into the efficiency and 
practicality of our model when applied to real-world data, potentially confirming its viability 
for broader use.

Table 1. Performance metric across five different test cases for each model

Model
Performance

Test 1 Test 2 Test 3 Test 4 Test 5
LT Model 85% 87% 89% 91% 92%
IC Model 80% 83% 85% 88% 90%

Our Model 86% 88% 90% 92% 94%

Conclusion 
The research began with the ambitious goal of modeling information confrontation in so-

cial networks using a new approach based on game theory. The pervasive nature of social 
networks and the multifaceted ways in which reliable and controversial information is dissem-
inated on them emphasize the relevance of this study. Comparative analysis of our approach 
with existing models, such as LT and IC models, revealed meaningful findings. 

While our model demonstrated competitive RAM and CPU utilization, especially on large 
networks, nuanced differences in computational efficiency highlight the potential of our ap-
proach. The LT model has shown a consistent and predictable level of CPU consumption, indi-
cating its linear thresholding mechanism. In contrast, the IC model’s CPU usage has exhibited 
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a more volatile pattern, reflecting the stochastic nature of the cascading process. The obtained 
results suggest that the game theory approach maps well to the computational requirements 
of existing models [22] and offers a robust framework for capturing the complex dynamics 
of information propagation. In particular, the zigzag pattern of CPU usage in the IC model 
highlights the complex and unpredictable nature of the information cascade, which our game 
theory model handles more consistently and efficiently.

Conducted experiments allowed us to identify gaps in existing models, such as limited ad-
aptability to dynamic changes in user behavior and network structure. This approach provides 
deep insight into the interaction mechanisms in the information space, considering many 
factors, including probabilistic estimates and game theoretical strategies. The most notable 
novelty of our work is integrating game theory with dynamic probabilistic and monitoring 
algorithms, which allows real-time adaptation of information dissemination strategies. It rep-
resents a significant advance in information warfare research, offering a more granular and 
adaptive approach to managing information flows [23].

Furthermore, in future research, we plan to integrate an automatic crawler mechanism into 
our model that will be used to extract data through social network APIs    [24], thereby ensur-
ing that the input data for the modeling is up to date. This modification involves a significant 
deepening of the methodological approach by providing access to actual information flows 
and structures of social interactions. The resulting graph of a real social network will serve 
as the foundation for analytical work, allowing the model to operate with data reflecting the 
current state of social media. This approach significantly increases the validity of the model 
since it becomes capable of verification based on current data, thereby ensuring a high level 
of reliability of research results.
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