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TRACKING OF NON-STANDARD TRAJECTORIES USING MPC 
METHODS WITH CONSTrAINTS HANDLING ALGOrITHM

Abstract: In recent decades, a Model-Based Predictive Control (MPC) has revealed its 
dominance over other control methods such as having an ability of constraints handling and 
input optimization in terms of the value function. However, the complexity of the realization 
of the MPC algorithm on real mechatronic systems remains one of the major challenges. 
Traditional predictive control approaches are based on zero regulation or a step change. 
Nevertheless, more complicated systems still exist that need to track setpoint trajectories.

Currently, there is an active development of robotics and the creation of transport networks 
of movement without human participation. Therefore, the issue of programming the given 
trajectories of vehicles is relevant. In this article, authors reveal the alternative solution for 
tracking non-standard trajectories in spheres such as robotics, IT in mechatronics, etc., that 
could be used in self-driving cars, drones, rockets, robot arms and any other automized systems 
in factories.

The ability of Model-Based Predictive Control (MPC) such as the constraints handling and 
optimization of input in terms of the value function makes it extremely attractive in the industry. 
Nevertheless, the complexity of implementation of MPC algorithm on real mechatronic systems 
remains one of the main challenges.
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Secondly, common predictive control algorithms are based on the regulation approach or 
a simple step shift. However, there exist systems that are more complicated where a setpoint 
to be tracked is given in the form of trajectories. In this project, there were made several 
modifications in order to improve an MPC algorithm to make better use of information about 
the trajectories.

Keywords: Model-Based Predictive Control, MPC, SSTO, trajectory tracking, finite horizon, 
PID, feedback loop, state-space models, Hessian matrix, cost function, LQR problem.

Introduction
The general concept of control systems is based on the feedback loop. Usually, controllers 

perform conventional steps, such as gathering actual outputs of the system, comparing them 
with the requested result, and designing control to stabilize the system.

The technique that allows to control system is called a control law. Thus, designing a suitable 
control law is the most important in system engineering since many objectives are needed to be 
considered. PID is one of the most popular and widely used controllers in industries. However, 
there are different types of controllers such as Model-based Predictive Control (MPC), which is 
the advanced method in control process and that has been investigated until now. MPC is not 
an algorithm with a set of equations; it is an art of control with various approaches, such as 
DMC, GPC, PFC, RHC, etc. The key idea of predictive control is:

• Accurate use of a model to predict the process output of the system;
• Computation of an approach sequence that will minimize an objective function;
• Receding horizon idea, at each iteration the horizon is moved to forward, which enables 

the use of the first control signal of the sequence computed at each iteration.
There are illustrated advantages of MPC over other methods such as:
• It is possible to design control with limited knowledge of control, since the steps are very 

intuitive, and the tuning is relatively easy;
• Control could be applied to simply dynamics as well as to complex ones;
• Can be applied to the multivariable case;
• It represents feed forward control in a natural way to compensate for measurable 

disturbances;
• Constraints could be applied to the approach during the design process;
• It is very beneficial when future references are established.

Part 1. Problem Definition
Along with the benefits of the MPC approach appear to have drawbacks. Even though it is 

assumed that this type of control law is easy to implement, the system’s derivation becomes 
more complicated when constraints are applied to the system. Also, in extended cases, MPC 
could require a lot of computational effort. Nevertheless, the main difficulty is the need of 
precise model of the system. Because the model of the system is prior knowledge based on 
which decisions will be made.

In addition, the usual rule of predictive control is that a traceable set point must be zero or 
a step change. Many systems have more complicated set point trajectories, so the traditional 
MPC approach cannot be applied in these cases and need to be modified. This project intends 
to deal with the problems that occur when advance knowledge of future set point changes 
is available and the algorithm used to track the reference signal is a Model-based Predictive 
Controller, specifically Dual Mode MPC is implemented to carry out the experiments needed to 
reason the proposed solutions.
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Part 2. Model-Based Predictive Control
MPC is a control approach when the operating control input is computed at every iteration 

by minimizing the value function. This turns out to be a finite horizon LQR problem, when 
the state at each step is taken as an initial point, and using this information, it is needed 
to generate the most optimum input in order to implement one step ahead algorithm. 
Consequently, the optimization leads to the optimal control vector where the first element is 
used in the system. Hence, the basic distinction of MPC from other control laws is that it does 
not use pre-calculated values for the off-line control law [1].

MPC relates to optimal control. The main MPC approach is a dynamic model usage to predict 
the plant`s future values and minimize cost function to make the most optimum solution. Then 
the controller does a step ahead and start all over again. MPC tries to read all past data and 
predict the future behavior of the system applying the best optimum input to the system. 
The same processes are done in each step dynamically. This differentiates the model-based 
predictive control approach from other control laws.

For instance, the PID control law is not calculated at each step and there are no future 
predictions made in each step. The basic approach of PID is to obtain some gains from the 
start and to keep applying the same gains throughout the whole process. Conversely, MPC 
estimates the future over a specific horizon at each step.

In the other word Model Predictive Control uses the same principles as a human being 
where the optimum action is applied in order to obtain the best output. For example, when 
a human drives a car, the objective is to get home as soon as possible while not breaking the 
speed limit. As human eyes cannot see the home from their workplace, they cannot predict 
the whole way, but the best thing to do is to predict as much as they can see the so-called 
prediction horizon and apply the best decisions each time they go ahead.

Receding Horizon
Optimization-based control links to the usage of online and optimum future path calculation 

as a part of the feedback stabilization of a (which is usually nonlinear) system. The main idea 
is to utilize a receding horizon control method: the optimum predicted path is calculated 
from the current state to the desired state over a finite horizon N, used for only this specific 
iteration, and recalculated further based on the new data. The basic principle of receding 
horizon is illustrated in Figure 1.

Figure 1. Receding horizon concept [2]
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The horizon must contain all important dynamics as settling time; otherwise, performance 
can be poor and some significant points can be lost or unobserved.

Constraints are very common in real life but it is very difficult to handle. Traditional methods 
are aiming to handle the constraints off-line [2].

Controllability and observability
There is a frequent usage of terms like stabilizability and detectability. The basic concept 

of system controllability, observability, stabilizability, and detectability could be described as 
follows:

Controllability: A control system is said to be reachable if, for any given finite time interval 
[t0 , tf ], it is possible to find some input signal u(t) for all  that will steer any given 
initial state x(t0 ) to any final state x(tf ).

Observability: A control system is said to be observable if, for any t > t0 , it is possible to de-
termine the state of the system x(t) through measurements y(t) and u(t) for  .

Stabilizability: A linear system is said to be stabilizable if all its unstable modes, if any, are 
controllable.

Detectability: A linear system is said to be detectable if all its unstable modes, if any, are 
observable [3].

Theorem: A control system is said to be controllable if and only if the rank of  con-
trollability matrix C shown in equation 2.1 is equal to n.

(2.1)

The significance of stabilizability is that even if some modes is not controllable, in the case 
of having them stable or asymptotically stable, these specific modes will stay bounded or de-
cay to zero [3].

Theorem: A control system is said to be observable if and only if the rank of  observ-
ability matrix  shown in equation 2.2 is equal to n.

(2.2)

The significance of detectability is that even if some modes is unstable, at least this behavior 
can be observed.

Existing model overview
Numerous studies on the computational efficiency of trajectory tracking are currently 

available. Jiao and Wang [8] looked into an event-triggered trajectory tracking control method 
based on the guidance-control framework for fully actuated surface vessels. The suggested 
method results in fewer controller executions and less calculation and signal transfer. An 
event-triggered reset controller with a nonlinear disturbance observer was created by Wang 
and Zhang [9]. It has been demonstrated that the suggested plan is significantly simpler to 
adopt and can save resources more effectively. In order to track unicycle robots, Sun et al. [10] 
suggested two event-based adaptive prediction horizon MPC algorithms that took into account 
the computational complexity at each triggering instant. The outcomes demonstrated that the 
methods are successful in reducing the computational load [11].

Additionally, a number of research addressed employing meta-heuristic algorithms to 
solve MPC optimization problems. Three different meta heuristic optimization strategies were 
covered by Merabti et al. [12] in order to finish the optimization of the nonlinear MPC for 
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control of tracking the course of the mobile robot. MPC and path planning were developed by 
Falcone et al. [13] using a bicycle vehicle model. Alternative MPC was created by Yakub and 
Mori [14] based on the Borelli principle paired with a feed forward controller. However, these 
investigations relied on trial-and-error techniques to calculate the MPC controller gain value. 
Additionally, the linearization of the vehicle’s dynamic model, which the MPC controller uses, 
is done at a chosen speed [15].

Part 3. Designing MPC
The basic aim of model-based predictive control is to provide controls u so that the system 

meets all control goals such as having output y and tracking a set point r, and zero regulation 
of x state. Furthermore, it is assumed that the controller should be tuned so that the cost is 
minimized, and the performance is maximized. Finally, the system must meet all constraints. 
(Trodden, 2015)

Therefore, the process of controlling via MPC is as follows:
- Calculate the state or output of the system at the current iteration;
- Solve an optimization problem in order to obtain the best input which is further used in 

real device. The optimization:
- uses a dynamic model of the system to predict/forecast behavior for a limited time ahead 

from the current state;
- chooses the forecast that optimizes the performance measure while satisfying all 

constraints.
- Apply the optimum control;
- Repeat at the next iteration [4].
The graphical design of the controlling process of the system through MPC is illustrated in 

Figure 2 below.

Figure 2. The structure of MPC [1]

Discrete-time linear state-space models are often convenient if the system of interest is 
sampled at discrete times. If the sampling rate is selected in a right way, the behavior between 
the samples can be safely ignored and the model describes exclusively the behavior at the 
sample times. The infinite dimensional, linear, time-invariant, discrete time model is shown in 
equation 3.1:
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(3.1)

where state x(k) is measurable at every step k and u(k) is a vector of manipulated variables 
to be determined by the controller to regulate x to 0 while minimizing a stage cost function 

 . From an initial state x0 the cost function shown in equation 3.2:

(3.2)

is subject to (2.1) and has a unique optimal solution  if R is positive definite 
(p.d.), Q is positive semidefinite (p.s.d.), the pair (A, B) is stabilizable and the pair (Q1/2, A) is 
detectable. (Rawlings and Mayne, 2012)

In this case it is assumed that  which is an infinite-horizon LQR 
problem where Q, R are weighting matrices which are commonly p.d.

Positive definite (p.d. or Q > 0) means that all its eigenvalues are positive whereas positive 
semidefinite (p.s.d. or Q ≥ 0) means that its eigenvalues are non-negative and at least one of 
them is zero.

Infinite horizon control law assumes an infinite sequence and decision variables in the op-
timization problem, which is not the case in reality because of its intractability [5].

Thereby, the prediction horizon length is reduced to N so that its cost function transforms 
as it is demonstrated in equation 3.3:

(3.3)

where P is a terminal cost matrix. In this case only N control inputs are optimized from x0 . 
Hence, the obtained control sequence is  and recursive application 
of this method leads to 3.4:

(3.4)

and combining everything in the form of   for every k = 1,2, … , N where 
state vector , input vector  and prediction matrices F and G are characterized as in the 
following equation 3.5:

(3.5)

The cost function of finite-horizon LQR is rewritten as in the equation 3.6:
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(3.6)

Therefore, the problem is reformulated into the form of min   
which is subject to  where:

Finally, at initial x0  the finite-horizon LQR task can be written as following 3.7:

(3.7)

where  is Hessian matrix,  and  , where 
 and R > 0 which leads to H > 0.

In order to solve this optimization task, it is necessary to take a gradient of the cost function 
and set it to 0. This helps to determine the basic  that could be applied as an input, which 
is described in (3.8):

(3.8)

In the case of having H > 0 the input  is unique global minimum. The Hessian matrix 
H is not directly inverted, because it can even be non-invertible. Instead, the pseudo-inverse 
technique is used in order to handle this problem as in equation 3.9:

(3.9)

The same principle made at initial x0 is continuously repeated at every step. Therefore, the 
overall procedure can be described as:

1. At every step k measure x(k);
2. Solve finite-horizon LQR task;
3. Apply the first control input from ;
4. Go to first step.
Note that at each step k:
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Figure 3. Finite-horizon

So, the receding horizon control law  where . By this 
method only the first control input from  is applied to system. The horizon N is chosen to be 
as small as it can afford itself to be. Because the more horizon the more computational cost 
and the more Q and P matrices are out of condition [6].

However, very small horizon can cause significant difference between  , hence, 
bad prediction and performance as it is illustrated in Figure 4. In this figure it is revealed that 
when  .

Figure 4. Example of Linear Quadratic MPC vs IH-LQR [2]

Sometimes  could not even be stabilizing the closed loop of the system . 
And one of the method that could handle that problem is to set terminal state constraint 

 This means that the last state is forced to be zero and this continues to be zero 
for every . However, this approach is very rude and can lead to bad robustness in regard 
to uncertainties of modelling error and disturbances. Moreover, it can also cause to have some 
problems while constraints handling.

Instead of doing this another approach so called Dual-Mode MPC can be used in order to 
improve the performance having two modes .

Part 4. Constraints handling
One of the essential advantages of MPC is that it can easily handle constraints, as it is known 

that in real life, constraints are just everywhere. For instance, the physical limits of actuators, 
capacity limits, or even safety limits like having boundaries in temperature, in pressure, etc. 
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However, control in the presence of constraints is difficult, even for linear systems. The trouble 
is that optimal operation usually means operating at limits, as seen in Figure 5. 

Figure 5. Operating near limits. [4]

The linear inequality method is used to handle the constraints:

Consider the input and state constraints, which can be rewritten as follows:

The method above could give the constraints in the form of . The  is linear 
system when there are no constraints, but it is non-linear in the presence of limits. In this case, 
the feasible region may not cover the unconstrained minimum and the best choice is to take 
the point from feasible region, which is the nearest to the unconstrained minimum. Therefore, 
it is required to recalculate the  at every step through solving constrained Quadratic Pro-
gram. Constrained system can be locally stable only for some x0 , and in order to ensure the 
local stability it is necessary to have value function as a Lyapunov function and asymptotical to 
0. Lyapunov function means that the value function is positive definite and is reducing mono-
tonically. In the case of having the ability to meet all those criteria, we would also guarantee 
the extremely attractive property of recursive feasibility [7].

Recursive feasibility can be reached through the invariant set. The set  is said to be invari-
ant if  for all k > 0. So the basic objective is to have  , which 
leads to have  as it is represented in Figure 6.
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Figure 6. Example of invariant terminal set [2]

Part 5. Trajectory tracking
A conventional Model-based predictive control algorithm, which is used to track a set point, 

expects either regulation or a standard step shift. In this approach, it is assumed that the 
set point 𝑟 equals to a static variable. Nevertheless, instead of this traditional method, the
setpoint 𝑟 can be chosen to be not a variable but a vector. This vector can consist of the basic
points of the trajectory, which is supposed to be tracked as in 5.1:

(5.1)

where n is the number of basic points of the trajectory. The figure 7 illustrates the key idea 
of this approach.

Figure 7. Example of tracking speed trajectory

In this graph it is seen that some basic points are taken from the required trajectory for 
the speed. These points can form a vector of setpoints which can be further used in the MPC 
algorithm.

Thereby, now a setpoint r to be tracked becomes a vector of points. This means that the 
output  having  . Thus, the steady-state target optimization (SSTO) 
turned to calculate  for the provided set point vector as it is shown in Figure 8.
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Figure 8. Application of SSTO while tracking the trajectory

As in this case the  and  it is necessary to regulate the state error 
 and output error  to zero as it is described in 5.2:

(5.2)

The setpoint equilibriums  is at the equilibrium when 
and the output steers to the setpoint r(i) without any errors only when .

This leads to the following:

(5.3)

As it could be seen the matrix T is not changing which makes it very easy to implement and 
make only a few modifications to the algorithm.

Conclusion
This scientific paper performs a realization of Model-based Predictive Control with constraints 

handling algorithm. Furthermore, regular MPC logic is refined so that the controller can allow 
the system to track a set point trajectory. The realization of this approach was executed without 
violating the constraints, and all goals were achieved successfully. In addition, a traditional MPC 
algorithm is improved in order to deal with trajectory tracking problems, and the realization is 
performed successfully without any constraint violation. All the mathematical computations, 
explanations, and reasoning were provided throughout the whole process. The approach and 
methodology provided in this article could be applied to different areas where control systems 
are needed, i.e., Mechatronics, Robotics, IoT, etc.
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