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TIME SERIES FORECASTING BY THE ARIMA METHOD

Abstract: The variety of communication services and the growing number of different 
sensors with the appearance of IoT (Internet of Things) technology generate significantly 
different types of network traffic. This implies that the structure of network traffic will be 
heterogeneous, which requires deep analysis to find the internal features underlying the data. 
A common model for analyzing the processes of a multiservice network is a model based on 
time series.

Numerous empirical data studies indicate that the packet intensity time series do not 
belong to the general aggregates of a normal distribution.

The problem of predicting network traffic is still relevant due to managing information that 
flows into a heterogeneous network.

In this work, the authors studied the time series for stationarity in order to select an 
appropriate forecasting model. A visual assessment of the series assumed non-stationarity. 
The Augmented Dickey-Fuller Test is applied, and the measured network traffic is predicted 
using the ARIMA (Auto-Regressive Integrated Moving Average) statistical method. Results 
were obtained using the Econometric Modeler Matlab (R2021b) application. The results of 
the autocorrelation function (ACF) and partial ACF are analyzed, with the help of which the 
ARIMA model is optimized. As a result of the study, a software algorithm for the ARIMA (0,2,1) 
model was developed.
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Introduction
Management of network devices of a functioning multiservice network allows one to 

respond to an ever-increasing amount of transmitted information and quickly allocates the 
necessary resource.

Moreover, predicting network traffic remains an urgent task as users generate ever-
increasing data. Predictive data provide the necessary information to solve the problem of 
managing information flows in the network.

Time series modeling is one of the ways to predict them. When modeling a time series, it is 
usually considered a random process (stochastic) as a statistical phenomenon that develops in 
time according to the laws of probability theory [1].

The main purpose of time series analysis is to identify and understand patterns underlying 
data over time and make predictions.

A stationary series is a series whose behavior in the present and future coincides with the 
behavior in the past, i.e., properties are not affected by changing the origin of time. Non-
stationarity means variability in the time of the distribution function. Stationary and non-
stationary time series differ in the presence/absence of factors that form the levels of the 
series. 

Literature review and problem statement
In [1], the authors described that forecast data provide the necessary information to solve 

the problem of managing information flows in the network. Modeling time series is one way 
to predict them. 

Among the statistical approaches, the ARIMA (Auto-Regressive Integrated Moving Average) 
method allows one to describe non-stationary time series, which are reduced to stationary 
series by taking differences of some order from the original time series.

The authors of [2] propose several recurrent neural network (RNN) architectures to solve 
the problem of predicting network traffic.

In [3], the authors described that Autoregressive Integrated Moving Average (ARIMA) Box-
Jenkins models combine the autoregressive and moving average models to a stationary time 
series after the appropriate transformation, while the nonlinear autoregressive (NAR) or the 
autoregressive neural network (ARNN) models are of the kind of multi-layer perceptron (MLP), 
which compose an input layer, hidden layer, and an output layer. The study results indicate 
that the traditional Box-Jenkins model was more accurate than the NAR model in modeling 
the monthly streamflow of the studied case.

In [4-7], the authors described that, according to forecasters’ estimates, there are already 
more than a hundred forecasting methods, which raises the problem of choosing methods that 
would give adequate forecasts for the processes or systems under study.

Considering the above review of scientific research, in this paper, we have chosen the time 
series modeling method for predicting network traffic. As for the use of neural networks, their 
use is advisable with a large amount of data, but in this work, the number of points is only 
18,000. 

The aim and objectives of the study
In studying time series, it is important to know the stationary or non-stationary series since 

they have different statistical characteristics and are estimated differently.
This work aims to analyze, model, and predict the measured series. 
To achieve this, the following objectives were set:
– perform a visual evaluation of the series graph;
– perform a test check of the series for stationarity;
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– In the case of non-stationarity, choose one of the forecasting models for the non-stationary 
time series and determine the model parameters;

– building a forecast of future values of the time series. 

Materials and methods 
We analyzed the measured one-dimensional series (MPEG packet intensity) in this work. 

The measured series shows the total packets transmitted over the backbone network for each 
second, and the number of points is 18000. The graph of the measured data is shown in Fig.1. 
The number of packets received in 5 hours is displayed vertically, and the time (in seconds) is 
displayed horizontally.

Figure 1. A series of packet transmission intensity

Econometric Modeler (R2021b) performs analysis and modeling time series interactively, 
and it also performs data transformation, data visualization, hypothesis testing, stationarity 
test, ARIMA model building, and more.

Series stationarity was investigated by the form of the autocorrelation function (ACF) and 
partial autocorrelation function (PACF) and by performing the Dickey-Fuller test (Fig. 2).

Figure 2. The results of the Dickey-Fuller test
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Results
Visual analysis of the graphical representation of the time series (Fig. 1) and the evidence 

for a unit root in the Dickey-Fuller test results suggest that the data is not stationary. 
Differentiation is an alternative transformation for removing the average trend from a non-

stationary series.
This approach is supported in the Box-Jenkins approach to model specification [8]. According 

to this methodology, the first step in building models is to differentiate the data until it looks 
stationary.

To conduct statistical analysis, it is necessary to have a stationary time series.
The main methods for forecasting a non-stationary time series include:
- statistical methods;
- new methods based on artificial intelligence (AI).
Among the statistical approaches, the ARIMA (Auto-Regressive Integrated Moving Average) 

method allows one to describe non-stationary time series, which are reduced to stationary 
series by taking differences of some order from the original time series. Like taking derivatives, 
taking the first difference makes the linear trend constant, taking the second difference makes 
the quadratic trend constant, and so on for higher degree polynomials.

(1)

here Δ is the difference operator

(2)

If the data has features of a unit root, then the usage of a non-stationary ARIMA model can 
be considered.

The Box-Jenkins (BJ) or ARIMA(p,d,q) prediction method, which relies on actual data, has 
three model parts [8]:

• AR – part of the time series model that describes autoregression, in which the values 
of the series at the moment can be expressed as a linear combination of the previous 
values of the same series and a random error that has the “white noise” property (the p 
parameter is used);

• I – part of the time series model, describing the order of differentiation of the series (the 
parameter d is used);

• MA is a part of the time series model that describes the current value of the series and is 
represented as a linear combination of the current and past error values, corresponding 
to “white noise” in its properties (the q parameter is used).

The analysis of the ACF and PACF data of the bias series is being used to identify the 
parameters of the ARIMA model.

Below are graphs of the ACF and PACF functions (see Figures 3 and 4). The blue lines on 
the graphs mark the critical interval within which the ACF and PACF values are considered 
non-zero. The ACF plot is a histogram of the correlation coefficients between the time series 
and the lags. In PACF, unlike ACF, the influence of intermediate lags is not considered when 
calculating partial correlation coefficients. With the help of the ACF and PACF plots of the 
displacement series, it is possible to select the parameters of the ARIMA model to eliminate 
the autocorrelation that remains in the difference series [9].
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Figure 3. Sample autocorrelation function of X2DiffDiff

Figure 4. Sample partial autocorrelation function of X2DiffDiff

Analyzing the graphs of ACF and PACF of the second-order difference, it can be stated 
that the parameter d has already been described. It is equal to two (second difference), and 
according to the autoregression (AR) process, the levels of the ACF series decay quickly, and 
the levels of PACF decay gradually. In the case of an autoregressive process, the ACF function 
would have decayed slowly. Therefore, the parameter p is equal to zero.

For the moving average (MA) process, the ACFs decay sharply after one lag (the last 
significant lag shows the q parameter), while the PACF function decays gradually. Therefore, 
the parameter q is equal to one.

The model fitting procedure is based on finding parameters that minimize the Akaike 
Information Criterion (AIC) and the Bayesian Information Criterion (BIC), which can help to 
reduce fitting in complex models [10].



19

As a result, the integrated model ARIMA (0,2,1) Model (Gaussian Distribution) (ARIMA_
X2DiffDiff) is obtained.

Auto regression integrated moving average time series model with the following equation:

(3)

The Model Estimation values   are given in Table 1 and Table 2. The Information Criteria (the 
best model with the lowest value of the Akaike AIC criterion, which is closely related to the 
Bayesian BIC criterion).

Table1. Estimation Results

Parameter Value Standard Error t Statistic P-Value

Constant 0.00033089 0.0004796 0.68992 0.49024

MA{1} -0.98716 0.00074134 -1331.577 0

Variance 24.3391 0.18873 128.9617 0

The component of the moving average MA{1} has a PValue less than the significance level 
of 0.05 (0<0.05), so conclusion can be made. The coefficient MA{1} of the moving average is 
a statistically significant parameter.

Table 2. Goodness of Fit

AIC 108533.1921

BIC 108556.5858

The AIC and BIC criteria consider the degree to which the model conforms to some trade-off 
between model accuracy and complexity [11].

Figure 5 shows that the red part of the graph (the predicted time series) almost completely 
overlaps the blue part (the original series). This combined plot of the original series and the 
predicted data shows that the model is well-fitted. Otherwise, coverage must be partial.

Figure 5. Plot the fit of model ARIMA_X2DiffDiff time series X2
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Figures 6,7,8 show the residuals of the time series. Residuals should be uncorrelated, 
homoscedastic, and normally distributed with constant mean and variance. If the residuals 
are not normally distributed, innovation distribution must be changed to a Student’s t. Figure 
6 shows that the time series are distributed symmetrically about 0, and the residual is white 
noise.

Figure 6. Plot of the residuals of model ARIMA_X2DiffDiff

Figure 7. Histogram of residuals of the ARIMA_X2DiffDiff model

Fig.7 shows that the residuals are reasonably normally distributed and uncorrelated.
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Figure 8. Quantile-quantile plot of the residuals of the ARIMA_X2DiffDiff model

The quantile-quantile plot (QQ-plot, Figure 8) of the residuals of the ARIMA model shows 
no obvious violations of the normality assumption.

Residual diagnostics include evaluating the model assumptions and investigating whether 
one must respecify the model to address other data properties. Model assumptions to 
assess include checking whether the residuals are centered on zero, normally distributed, 
homoscedastic, and serially uncorrelated. If the residuals do not demonstrate all these 
properties, then you must determine the severity of the departure, whether to transform the 
data, and whether to specify a different model.

Analyzing the graphs (Figures 6,7,8) it can be noted that the residuals of the series have a 
normal distribution with an average value close to zero.

Figure 9. Forecasting by the ARIMA (0,2,1) model

DOI: 10.37943/HFCH4395
© Gulnara Bektemyssova, Abdul Rahim Bin Ahmad, 
    Sharafat Mirzakulova, Zhanar Ibraeva



22 Scientific Journal of Astana IT University
ISSN (P): 2707-9031   ISSN (E): 2707-904X

VolUmE 11, SEPTEmBER 2022

Considering all the above, we can say that the resulting ARIMA predictive model is 
adequate. Another important goodness-of-fit check of the model is predictive-performance 
assessment. Figure 9 shows forecasted observations with taking into account the upper and 
lower confidential intervals with 95%. 

Discussion of results
Visual analysis of the graphical representation of the time series (Fig. 1) shows that the 

series has uneven intensity. Therefore, it can be supposed that the series is non-stationary.
Figure 2 shows that the series X2 contains a unit root, therefore, the series is not stationary.
The ACF plot (Fig. 3) builds a histogram of the correlation coefficients between the time 

series and the lag itself. PACF (Fig. 4) does not consider the influence of lags when calculating 
partial correlation coefficients.

Plot the fit of model ARIMA (Fig. 5) shows that we have chosen the right model with the right 
parameters and adequate predictions. The blue part of the graph is barely visible, indicating a 
perfect forecast.

The plots of residuals (Fig. 6,7,8) show that the series’ plots have a normal distribution. 
According to the ARIMA method, one of the steps in building models is to difference the 
data from the original time series until it looks stationary. As is required, these graphs look 
stationary with an average value close to zero.

ARIMA model (Fig. 9) shows the adequate forecast with 95% forecast intervals.
The program code of the ARIMA (0,2,1) model is shown in Figure 10.

Figure 10. Program code for prediction

Figure 10 shows a program code for forecasting traffic values for 1000 steps ahead for the 
selected time series section, which consists of 18000 points.

Conclusion
Since 2007, a new generation NGN network (Next Generation Network) based on IP (Internet 

Protocol) has been operating in the Republic of Kazakhstan. The present work is based on 
the classic ARIMA method for predicting the future values   of empirical data in the field of 
telecommunications. This work aims to predict the subsequent levels of a series to control 
information flows in the network to avoid overloads and losses.

As a result of the study, a visual analysis of the studied time series showed that the series 
has an uneven packet intensity, which allows for the non-stationarity of the data series.

For the reliability of the assumptions about the non-stationarity of the data series, test 
experiments were carried out from among the Unit Root. The Augmented Dickey-Fuller test 
confirmed the presence of a unit root, and hence the series is not stationary.

Further, for forecasting the time series, the ARIMA method (autoregressive integrated 
moving average) was used to describe non-stationary time series and make reliable short-
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term forecasts with a minimum number of parameters. A forecast model is defined for 
predicted data based on previous values. The results of ACF and PACF were analyzed, based 
on which differentiation was performed to obtain the correct parameters of the ARIMA model: 
autoregression parameter - 0, integration order - 2, and moving average parameter - 1. As a 
result of the study, a software algorithm for the ARIMA (0,2,1) model was developed.

A predictive ARIMA model was obtained with an accuracy of 95% (Fig.9), proving the chosen 
model’s adequacy.
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