
160 Scientific Journal of Astana IT University
ISSN (P): 2707-9031 ISSN (E): 2707-904X

VOLUME 15, SEPTEMBER 2023

METHODS OF NAVIGATING ALGORITHMIC COMPLEXITY:
BIG-OH AND SMALL-OH NOTATIONS

Abstract: This article provides an in-depth exploration of Big-Oh and small-oh notations,
shedding light on their practical implications in the analysis of algorithm complexity. Big-Oh
notation offers a valuable tool for estimating an upper bound on the growth rate of an algo-
rithm’s running time, whereas small-oh notation delineates a lower limit on this growth rate.
The piece delves into a comprehensive examination of various complexity classes that emerge
through the application of Big-Oh notation, underscoring the significance of small-oh notation
as it complements and enriches complexity analysis.

In the realm of programming and computer science, the employment of these notations
holds paramount importance. They empower developers and researchers to make informed
decisions regarding algorithm selection and optimization. It is crucial to recognize that while
complexity analysis is a vital facet of effective programming, ongoing research endeavors may
yield more refined methodologies and approaches within this domain.

By understanding and harnessing the power of Big-Oh and small-oh notations, profession-
als can effectively evaluate algorithm efficiency and scalability. This knowledge equips them
with the ability to design and implement algorithms that meet specific performance criteria,
which is pivotal in the ever-evolving landscape of technology and computation. As pushing
the boundaries of what is possible in the field of algorithm design is being continued, these
notations remain invaluable tools for navigating the complex terrain of algorithmic analysis
and optimization.

By embracing Big-Oh and small-oh notations, professionals can finely assess algorithmic
efficiency, ensuring they meet performance criteria in the evolving technological landscape.
These notations remain indispensable for algorithmic analysis.

Zhanar Bimurat
Ph.D. in Information systems, Associate Professor, Department of
Cybersecurity
zh.bimurat@aues.kz orcid.org/0000-0001-8283-898X
Energo University, Kazakhstan

Yekaterina Kim
Ph.D. in Engineering Science, Associate Professor, Department of
Information Technology
e.kim@turan-edu.kz orcid.org/0000-0001-7441-524X
Turan University, Kazakhstan

Rauza Ismailova
Ph.D. in Engineering Science, Associate Professor, Department of
Information Technology
r.ismailova@turan-edu.kz orcid.org/0000-0002-8488-0855
Turan University, Kazakhstan

Bimurat Sagindykov
Ph.D. in Physics and Mathematics, Associate Professor, Department
of Higher Mathematics and Modeling
b.sagindykov@satbayev.university orcid.org/0000-0002-5349-1961
Satbayev University, Kazakhstan

DOI: 10.37943/15DNLB5877

Copyright © 2023, Authors. This is an open access article under the Creative Commons CC BY-NC-ND license
Received: 04.09.2023 Accepted: 23.09.2023 Published: 30.09.2023

161DOI: 10.37943/15DNLB5877
© Zhanar Bimurat, Yekaterina Kim,
 Rauza Ismailova, Bimurat Sagindykov

Keywords: Big-Oh notation, small-oh notation, algorithmic analysis, asymptotic analysis

Introduction
The effectiveness of a program is primarily determined by the resources it consumes, name-

ly time and memory. In particular, the time complexity of a program serves as a metric to eval-
uate the duration of its execution, typically quantified by the number of elementary operations
required for its solution. The efficiency of a program executed on a computer is inherently
contingent upon the algorithm it employs. Additionally, it can be mathematically established,
based on plausible assumptions regarding coding conventions, programming languages, and
realistic computer models, that the program’s efficiency is independent of the chosen lan-
guage, coding methodology, or computer performance. Instead, it is an intrinsic property of the
algorithm itself. Thus, assessing the efficiency of a program effectively reduces to evaluating
the efficiency of its underlying algorithm. One key parameter used to gauge an algorithm’s
efficiency is its running time.

Given the intricacy involved in determining the precise running time of an algorithm, it is
common practice to rely on an approximate estimation. To achieve this, the technique of as-
ymptotic analysis is frequently employed [1].

Asymptotic analysis is a systematic approach utilized in the assessment of algorithmic ef-
fectiveness, providing insights into their behavior as the input size grows. This method is
rooted in the principle that for sufficiently large input sizes, the prominent attributes of an
algorithm, including running time and memory consumption, exhibit discernible patterns in
relation to the input size. By estimating the growth rate of these attributes as the input size
approaches infinity, it becomes possible to compare different algorithms and draw conclusions
regarding their efficiency in worst-case or average-case scenarios [2].

Asymptotic analysis of algorithms employs asymptotic notations, namely “O” (Big-Oh), “Ω” 
(Big-Omega), and “Θ” (Big-Theta), as fundamental tools to establish upper, lower, and tight
bounds, respectively, on the time or space complexity of an algorithm [3, 4]. These notations
provide concise representations of how the algorithm’s resource requirements scale with in-
put size and facilitate a clear understanding of its efficiency characteristics. By utilizing these
asymptotic notations, analysts can compare algorithms, make informed decisions about al-
gorithm selection, and gain insights into the best- and worst-case scenarios for algorithm
performance [5, 6].

Asymptotic analysis of algorithms empowers engineers and software developers to make
judicious choices regarding algorithm selection by considering factors such as efficiency re-
quirements and resource utilization. This analytical approach further enables the prediction
of an algorithm’s scalability with respect to increasing data sizes, a crucial consideration when
dealing with substantial datasets. By leveraging asymptotic analysis, professionals in these
domains can optimize algorithmic solutions, ensuring optimal performance and resource allo-
cation in scenarios where speed and efficiency are paramount.

The concepts of Big-Oh and small-oh (or little-oh) constitute pivotal components within the
realm of asymptotic notation. These concepts hold substantial significance in the analysis of
algorithms and data structures, serving as fundamental instruments in assessing the temporal
intricacy of algorithms. This article focuses on comprehensively exploring these concepts and
their practical application in analyzing algorithmic complexity.

Methods and Materials
Big-Oh. The symbol “O” commonly referred to as Big-Oh notation, assumes the role of de-

noting the upper bound on the growth rate of an algorithm’s running time with respect to
the size of the input data. In essence, Big-Oh elucidates the rate at which the algorithm’s

162 Scientific Journal of Astana IT University
ISSN (P): 2707-9031 ISSN (E): 2707-904X

VOLUME 15, SEPTEMBER 2023

performance escalates in the worst-case, where the input data size tends towards infinity. This
notation provides a concise and meaningful representation of the algorithm’s scalability char-
acteristics, facilitating a comprehensive understanding of its temporal efficiency [8, 9].

Definition 1. A function f (n) is said to belong to the class , denoted as ,
if f (n) is bounded above by a constant multiple of g (n) for sufficiently large values if n. In other
words, there exist a positive constant c and a non-negative integer n0 such that
holds for all .

For instance, if the running time of an algorithm f (n) is constrained by the function g (n),
we can express this as g (n), or (Fig. 1). This implies that in the worst-case, the
algorithm will not execute more quickly than the growth rate of g (n).

When we express , it signifies that g (n) serves as an upper bound on f (n),
specifically an asymptotic upper bound, without considering constant factors. In other words,
g (n) provides a mathematical representation that encapsulates the growth rate of f (n) while
disregarding the influence of multiplicative constants.

The primary criterion for assessing algorithmic performance lies in quantifying the number
of elementary operations involved in processing input data of a given size. The terms “basic
operations” and “size” entail some degree of ambiguity and are contingent upon the specific
algorithm under analysis. The determination of size frequently hinges upon the volume of in-
put being processed. For instance, when comparing sorting algorithms, the size of the problem
is commonly measured by the number of records necessitating sorting. It is crucial that the
basic operation exhibits the attribute of execution time independence from the specific oper-
and values. Typical examples of basic operations in most programming languages encompass
arithmetic operations or comparisons involving integer variables. However, operations such as
summing the contents of an array consisting of n integers do not qualify as basic operations,
as their cost is influenced by the value of n (i.e., the size of the input data).

Figure. 1. Big-Oh notation gives an upper bound for a function to within a constant factor.

We write if there are positive constants n0 0n and c such that at and to the
right of n0 , the f (n) value of always lies on or below cg (n) [7]

Let’s examine the insertion sort algorithm and its associated pseudocode and block-scheme
(see Fig. 2 and Fig. 3).

163

Figure 2. Insertion sort algorithm

The efficiency of the algorithm is contingent upon the characteristics of the input data, par-
ticularly when dealing with larger datasets, as it requires more time to complete the sorting
process. The runtime of the algorithm, for inputs of the same size, can be determined by the
enumeration of basic operations or steps that need to be executed. These basic operations
serve as fundamental units for measuring the algorithm’s computational complexity and pro-
vide insights into its performance characteristics.

Assuming that each line of pseudocode requires a constant amount of time to execute, de-
noted as ck , where ck represents a fixed constant time cost associated with the kth line, we can
observe that the actual execution time may vary for individual lines. Nevertheless, for practical
purposes and to align with the implementation on most real computers (as depicted in Table
1), it is reasonable to consider these constant time costs.

The running time of an algorithm can be computed by summing up the execution time of
each individual statement. If statement requires ck steps and is executed m times, it contrib-
utes ck × m to the overall running time. This relationship allows for the estimation and analysis
of the total running time of an algorithm based on the execution counts and the time com-
plexity of its constituent statements [7].

Table 1. Analysis of the insertion sort algorithm

Pseudocode Cost Times
for i = 1 to length(A) – 1 do c1 n – 1
current_element = A[i] c2 n – 1
position = i c3 n – 1

while position > 0 and A[position – 1] > current_
element do c4

A[position] = A[position – 1] c5

position = position - 1 c6

A[position] = current_element c7 n – 1

DOI: 10.37943/15DNLB5877
© Zhanar Bimurat, Yekaterina Kim,
 Rauza Ismailova, Bimurat Sagindykov

164 Scientific Journal of Astana IT University
ISSN (P): 2707-9031 ISSN (E): 2707-904X

VOLUME 15, SEPTEMBER 2023

In order to compute the running time, f (n), of the insertion sort algorithm when applied to
an input containing n values, we evaluate the sum of the products derived from the “Cost” and
“Times” columns of Table 1. Thus, the expression for f (n) can be expressed as:

(1)

Here, the variable ti represents a variable number of repetitions based on the iterations
executed within the inner loop. By substituting the appropriate values into this equation, we
can obtain a quantitative measure of the running time for the given insertion sort algorithm.

The number of iterations executed in the inner loop of the insertion sort algorithm varies
based on the initial order of the elements if the array. Generally, three cases are considered:
worst, average, and best. In our scenario, the best-case occurs when the array is already sorted.
In this case, each iteration (ti) within the inner loop is equal to 1 for all i. Consequently, the
running time of the algorithm can be expressed as:

(2)

Figure 3. Insertion sort flowchart

165

The worst-case arises when the array is sorted in reverse order. In this instance, the inser-
tion sort procedure necessitates comparing each element A[i] of the array with every element
in the fully sorted subarray A[1: i –1]. Consequently, for i = 2, 3, ..., n, the number of repetitions
ti can be expressed as ti= i. Based on this information, we can calculate the sums of repetitions
as follows:

These equations provide the summation formulas for the sum of integers from 1 to (n – 1)
and the sum of (i – 1) from 1 to (n – 1) respectively.

Substituting the obtained expressions into equation (1), we obtain:

(3)

To conduct an average case analysis, it is imperative to compute the average number of
comparisons needed to ascertain the correct position for each newly added element. Even if
the element is already in its proper place, at least one comparison is still necessary. When a
new element is added to the array, it can occupy any of the (i + 1) positions, where i denotes
the number of previously inserted elements. Assuming a random input, each new element
possesses an equal probability of being positioned in any of the available locations.

In order to compute the average number of comparisons required for inserting the i-th
element into an array of length n, assuming a random distribution of elements and equiprob-
ability of their positions, the expectation method can be applied.

Mathematically, let ai represent the number of comparisons needed to insert the i-th el-
ement. The average number of comparisons, denoted as E(ai), can be computed using the
expectation formula:

where a represents the number of comparisons and p (ai = a) denotes the probability that
ai takes the value a.

In this case, assuming a random element distribution and equiprobability of their positions,
each new element has an equal chance of being inserted at any of the (i + 1) available posi-

tions. Hence, the probability of ai taking the value a is given by .

By substituting this probability distribution into the expectation formula, we can calculate
the average number of comparisons required to insert the i-th element into an array of length n.

Then the probability of the i-th element being inserted as position j, where , is
determined to be since there are (i – 1) possible positions for the i-th element. Conse-
quently, the average number of comparisons required for inserting the i-th element can be
computed by summing the products of the number of comparisons at each position (j) and

DOI: 10.37943/15DNLB5877
© Zhanar Bimurat, Yekaterina Kim,
 Rauza Ismailova, Bimurat Sagindykov

166 Scientific Journal of Astana IT University
ISSN (P): 2707-9031 ISSN (E): 2707-904X

VOLUME 15, SEPTEMBER 2023

their corresponding probabilities . Specifically, for the i-th element, this average number
of comparisons is expressed as:

Hence

By substituting the obtained expression into equation (1), we obtain:

(4)

Prior to defining the function g (n) as an upper bound for the function f (n), it is necessary
to employ simplification rules outlined by Shaffer in “Data structures and algorithm analysis”:

1. If f (n) belongs to O (g (n)), and g (n) belongs to O (h (n)), then f (n) belongs to O (h (n)).

2. If f (n) belongs to O (kg (n)) for any constant k > 0, then f (n) belongs to O (g (n))
3. If f1 (n) belongs to O (g1(n)) and f2 (n) belongs O (g2(n)), then f1(n) + f2(n) belongs to

O (max (g1(n), g2(n))).

4. If f1 (n) belongs to O (g1(n)) and f2 (n) belongs to O (g2(n)), then f1(n) · f2(n) belongs to

O (f1(n) · f2(n)) .
The first rule asserts that if function g (n) serves as an upper bound for the cost function,

which calculates the algorithm’s running time, any upper bound on g (n) will also be an upper
bound on the cost function. This rule establishes the transitive nature of upper bounds.

The second rule holds significant value as it allows for the omission of multiplicative con-
stants when utilizing Big-Oh notation in equations. This simplification permits a focus on the
essential growth rate behavior of the algorithm, disregarding constant factors.

Rule (3) emphasizes that when executing sequential parts of a program, be it statements
or code blocks, only the more computationally expensive part necessitates consideration in
determining the overall complexity. This rule allows for an efficient analysis by focusing on the
dominant factors impacting the program’s efficiency.

The fourth rule finds application in the analysis of repetitive cycles within programs. When
an action is iteratively performed a fixed number of times, with each iteration incurring the
same cost, the total cost of the action is determined by multiplying the cost of a single iter-
ation by the number of repetitions. This rule enables a straightforward analysis of repetitive
operations within a program.

By combining the first three rules, it becomes possible to disregard all constants and low-
er-order terms when determining the asymptotic growth rate of any cost function. This ap-
proach is justifiable in asymptotic analysis, as the higher-order terms eventually surpass the

167

lower-order terms in their contribution to the total cost as n increases. Hence, for the best-case
(2) of the insertion sort algorithm, the asymptotic upper bound for the cost function can be
expressed as:

Indicating that g (n) = n, and consequently, the function f (n) belongs to O (n).
The asymptotic upper bound for the cost function of the insertion sort algorithm in the

worst-case (3) is given by:

Similarly, the asymptotic upper bound for the cost function of the insertion sort algorithm
in the average-case (4) is given by:

Typically, the primary focus in algorithm analysis is to determine the worst-case execution
time, which refers to the longest possible time an algorithm takes to complete for input data
of any size. This emphasis on worst-case analysis is driven by several compelling reasons:

1. Upper bound guarantee: the worst-case execution time provides an upper bound on the
execution time for input data of any size. By knowing this worst-case time complexity, one can
ensure that the algorithm will never exceed this upper limit. It eliminates the need to rely on
assumptions or hope for the best-case scenario. This feature is particularly critical in real-time
computing applications, where operations must be completed within specific time constraints.

2. Frequent occurrence: for certain algorithms, the worst-case scenario arises quite fre-
quently in practice. For instance, in information retrieval from a database, the worst case of
the search algorithm often occurs when the desired information is not present. In various ap-
plications, the need to search for missing information can occur frequently, making worst-case
analysis relevant.

3. Similarity to average case: in many cases, the average-case time complexity of an algo-
rithm is comparable to the worst-case scenario. This implies that the algorithm’s performance
is unlikely to significantly improve on average compared to the worst case. Hence, by analyzing
the worst-case behavior, one gains insights into the algorithm’s average-case efficiency.

Overall, the focus on worst-case analysis provides a solid foundation for understanding an
algorithm’s performance and ensures robustness, particularly in real-time and critical appli-
cations.

Efficiency analysis encompasses a broad range of functions that exhibit different growth
orders (Fig. 4) but are considered equivalent within a constant factor. Despite this vast array of
functions, it is noteworthy that the time complexities of numerous algorithms can be classified
into a limited number of efficiency classes. Table 2 provides a comprehensive enumeration of
these classes, arranged in ascending order according to their growth orders. The existence of
a small set of efficiency classes to describe the time characteristics of diverse algorithms is
indeed remarkable, considering the infinite possibilities within the realm of efficiency analysis.

DOI: 10.37943/15DNLB5877
© Zhanar Bimurat, Yekaterina Kim,
 Rauza Ismailova, Bimurat Sagindykov

168 Scientific Journal of Astana IT University
ISSN (P): 2707-9031 ISSN (E): 2707-904X

VOLUME 15, SEPTEMBER 2023

Figure 4. The growth rate for six equations. This figure was taken from
Shaffer’s “Data structures and algorithm analysis”

Table 2. Basic asymptotic efficiency classes

Class Name Comment

1 Constant

Outside of optimal conditions, there exist minimal practical instances
where efficiency maintains a steady state. Generally, an algorithm's
processing time edges toward infinity with the continual growth of input
data size.

log n Logarithmic

Algorithms within this category exhibit growth velocities that are less
rapid than any given power function related to n. This is frequently due
to the consistent reduction in problem dimensions with each cycle of
the algorithm. It's important to recognize that a logarithmic algorithm
doesn't process every piece of input data, nor a stable fraction thereof
– accomplishing such a comprehensive review would necessitate a
minimum of a linear runtime.

n Linear Algorithms that go through a list of n elements, such as linear search,
fall into this category.

n log n Linearithmic Numerous divide-and-conquer strategies, such as merge sort and, in the
average case, quicksort, are classified within this group.

n2 Quadratic
This classification is commonly associated with algorithms that employ
two nested loops. Basic sorting methods and specific matrix operations
serve as standard illustrations of this category.

n3  Cubic
This description typically applies to algorithms that utilize three
nested loops. Various complex linear algebra algorithms are prominent
examples of this category.

na Polynomial An algorithm is polynomial if g (n) grows no faster than some polynomial
(generally a power function) of n.

n! Factorial This is characteristic of algorithms tasked with generating all possible
permutations of a set consisting of n elements.

The complexity class O (1) denotes constant complexity of an algorithm, signifying that the
execution time remains unaffected by the input data size.

169

Consider the algorithm designed to retrieve an element from an array based on its index
(see Fig. 5 and Fig. 6). Presented below is the pseudocode outlining the procedure for obtain-
ing an element from an array by index:

Figure 5. Algorithm of the procedure for retrieving an element from an array by index

Figure 6. Flowchart of the procedure for retrieving an element from an array by index

Table 3. Analysis of the algorithm for retrieving an element from an array by index

Pseudocode Cost Times
if index >= 0 and index < length(array) then c1 1
return array[index] c2 1
Else 0 1
print "Error: Invalid index access" c3 1
end if 0 1

To analyze the complexity of the algorithm for retrieving an element from an array by index,
we consider the execution time by summing the products of the values from the “Cost” and
“Times” columns in Table 3. The resulting expression is

f (n) = c1 + c2 + c3
As c1, c2 and c3 are constants, it follows that f (n) = O (1), indicating a constant-time com-

plexity.
The bubble sort algorithm typically exhibits quadratic complexity. However, a specific mod-

ification of the algorithm, such as optimization using a flag, can be employed to achieve linear
complexity. Here, we present an optimized bubble sort algorithm in pseudocode (see Fig. 7
and Fig. 8):

DOI: 10.37943/15DNLB5877
© Zhanar Bimurat, Yekaterina Kim,
 Rauza Ismailova, Bimurat Sagindykov

170 Scientific Journal of Astana IT University
ISSN (P): 2707-9031 ISSN (E): 2707-904X

VOLUME 15, SEPTEMBER 2023

Figure 7. Algorithm of the Bubble Sort procedure

Figure 8. Flowchart of the Bubble Sort procedure

171

The bubble sort is a sorting algorithm that operates by repeatedly stepping through the
list to be sorted, comparing each pair of adjacent items, and swapping them if they are in the
wrong order. This process is repeated until no more swaps are needed, indicating that the list
is sorted. Let’s break down the algorithm (Fig. 7 and Fig. 8) in more detail:

1. Initialization:
- the algorithm starts by getting the length of the input array, which is the number of ele-
ments that need to be sorted;

- it also initializes a Boolean variable called swapped to True. This variable will be used to
check if any swaps are made during a pass through the array.

2. Main Loop:
- the algorithm enters a while-loop that continues as long as swapped is True. This loop will
continue until no more swaps are needed, which means the array is sorted.

3. Pass through the array:
- inside the while-loop, the algorithm sets swapped to False at the beginning of each pass
through the array. This is done to initially assume that no swaps will be needed;

- the algorithm also initializes lastSwapIndex to the last index of the array.
4. Comparing and swapping:
- the algorithm enters a for-loop that iterates through the array from the first element to
lastSwapIndex.

- for each pair of adjacent elements (indexed as i and i + 1), it compares them. If the ele-
ment at index i is greater than the element at index i + 1, it swaps them. This is the key
step of the Bubble Sort algorithm, as it pushes the larger elements toward the end of the
array.

- after each successful swap, the swapped flag is set to True, indicating that a swap has oc-
curred, and lastSwapIndex is updated to the index of the last swap.

5. Updating length:
- after completing a pass through the array, the algorithm updates the length variable to
lastSwapIndex + 1. This is because the largest element has moved to its correct position
at the end of the array after each pass, so there is no need to consider it in the next pass.

6. Repeating the loop:
- the while-loop continues as long as swapped remains True, meaning that swaps are still
occurring in the array. If swapped becomes False after a pass, it means that the array is
sorted, and the loop exits.

7. End of algorithm:
- once the while-loop terminates, the algorithm has completed sorting the array, and it ends.

DOI: 10.37943/15DNLB5877
© Zhanar Bimurat, Yekaterina Kim,
 Rauza Ismailova, Bimurat Sagindykov

172 Scientific Journal of Astana IT University
ISSN (P): 2707-9031 ISSN (E): 2707-904X

VOLUME 15, SEPTEMBER 2023

Table 4. Analysis of the Bubble Sort algorithm for the worst-case scenario

Pseudocode Cost Times
length = length(array) c1 1
swapped = true c2 1
while swapped: c3 min (n, n – 1)
swapped = false c4 min (n, n – 1)
lastSwapIndex = length – 1 c5 min (n, n – 1)
for i from 0 to lastSwapIndex: c6 min (n, n – 1, n – 2, ...)
if array[i] > array[i+1] then c7 min (n, n – 1, n – 2, ...)
swap(array[i], array[i+1]) c8 min (n, n – 1, n – 2, ...)
swapped = true c9 min (n, n – 1, n – 2, ...)
lastSwapIndex = i c10 min (n, n – 1, n – 2, ...)
end if 0 min (n, n – 1, n – 2, ...)
end for 0 min (n, n – 1)
length = lastSwapIndex + 1 c11 min (n, n – 1)
end while 0 1

To calculate the complexity of the algorithm, the running time of the Bubble Sort algorithm,
we sum the products of the values from the “Cost” and “Times” columns of Table 4, resulting in

In this pseudocode, the algorithm iterates through the array, comparing adjacent elements
and swapping them if necessary. By updating the length variable to lastSwapIndex + 1, the
algorithm ensures that it only considers the unsorted portion of the array in subsequent iter-
ations. With this modification, the worst-case time complexity of the Bubble Sort algorithm
becomes O (n). In the worst-case scenario, where the input array is sorted in reverse order, the
algorithm will make a single pass through the array, performing the necessary swaps to sort it.

Note that the pseudocode assumes the existence of a swap function that swaps the values
of two elements in the array. Although this modified version improves the worst-case time
complexity, it still has an average case complexity of O (n

2).
The complexity class O (log n) signifies logarithmic complexity of an algorithm, where the

execution time of the algorithm grows logarithmically with the size of the input data.
Let’s consider the binary search algorithm (Fig. 9 and Fig. 10). Pseudocode for the binary

search procedure shown in Fig 9.

173

Figure 9. Algorithm of the binary search procedure

Let’s break down how the algorithm of binary search (Fig. 9 and Fig. 10) works step by step:
Input:
- array: a sorted array in which you want to find the target_element;
- target_element: the element you want to find within the array.
Output:
- if the target_element is found in the array, the algorithm returns the index at which it is

located;
- if the target_element is not found in the array, the algorithm returns -1.
Algorithm Steps:
1. Initialize two variables, leftBoundary and rightBoundary, which represent the search

boundaries within the array. leftBoundary is initially set to 0 (the first element of the array),
and rightBoundary is initially set to the index of the last element of the array (i.e., length(ar-
ray) - 1).

2. Enter a while-loop that continues as long as leftBoundary is less than or equal to right-
Boundary. This loop is the core of the Binary Search algorithm.

3. Calculate the midIndex by taking the average of leftBoundary and rightBoundary. This
index represents the middle element of the current search range.

4. Compare the element at array[midIndex] with the target_element:
- if they are equal, the algorithm has found the target_element and returns midIndex;
- if array[midIndex] is greater than target_element, it means that the target_element should
be located to the left of midIndex, so rightBoundary is updated to midIndex - 1 to search
in the left half of the current range;

- if array[midIndex] is less than target_element, it means that the target_element should
be located to the right of midIndex, so leftBoundary is updated to midIndex + 1 to search
in the right half of the current range.

5. Repeat steps 3 and 4 until either the target_element is found (returning its index) or the
leftBoundary surpasses the rightBoundary, indicating that the element is not in the array.

6. If the while-loop exits without finding the target_element, return -1 to signify that the
element was not found in the array.

DOI: 10.37943/15DNLB5877
© Zhanar Bimurat, Yekaterina Kim,
 Rauza Ismailova, Bimurat Sagindykov

174 Scientific Journal of Astana IT University
ISSN (P): 2707-9031 ISSN (E): 2707-904X

VOLUME 15, SEPTEMBER 2023

Figure 10. Flowchart of the binary search procedure

To analyze the complexity of the binary search algorithm, we consider the execution time
by summing the products of the values from the “Cost” and “Times” columns in Table 4. The
resulting expression is given by:

By applying mathematical simplifications, we can deduce that the complexity of the binary
search algorithm is O (log2 n), indicating a logarithmic growth rate with respect to the size of
the input data. Binary search works efficiently on sorted arrays because it halves the search
space in each iteration. This makes it significantly faster than linear search for large datasets.

The analysis of the best case for binary search is quite straightforward. In the best case,
binary search completes in one step. The analysis of the worst-case is also simple. To complete
binary search, it requires no more than steps. The proof of this statement can be
found in [9].

175

Table 4. Analysis of the Binary Search Algorithm

Pseudocode Cost Times
leftBoundary = 0 c1 1
rightBoundary = length(array) - 1 c2 1
while leftBoundary <= rightBoundary c2 log2 n
midIndex = (leftBoundary + rightBoundary) / 2 c4 log2 n – 1
if array[midIndex] is equal to target_element then c5 log2 n – 1
return midIndex c6 log2 n – 1
else if array[midIndex] is greater than target_element c7 log2 n – 1
rightBoundary = midIndex - 1 c8 log2 n – 1
else c9 log2 n – 1
leftBoundary = midIndex + 1 c10 log2 n – 1
end if 0 log2 n – 1
end while 0 log2 n
return -1 c11 1

Linearithmic algorithms, also known as O (n log n) algorithms, represent a combination of
linear and logarithmic complexity. They are commonly observed in sorting algorithms, such as
merge sort and heap sort, as well as in certain matrix operations. These algorithms demon-
strate a growth rate that falls between linear and logarithmic, resulting in efficient processing
for large data sets.

On the other hand, certain problems, like the traveling salesman problem, demand an ex-
haustive exploration of all possible routes, resulting in exponential complexity. Such problems
often pose significant computational challenges due to the rapidly increasing number of com-
putations required as the input size grows.

To address these exponential complexity problems, researchers and practitioners strive to
optimize algorithms and find polynomial-time solutions. By reducing the problem to poly-
nomial complexity, the computational burden becomes more manageable, enabling efficient
solutions within reasonable time frames.

Small-oh. The symbol “o” or small-oh (little-oh) also denotes the upper bound of the algo-
rithm’s runtime growth, but it is stricter than “O”. “o” indicates that the algorithm’s runtime
growth is bounded less tightly than a certain function of the input size. For example, o (n)
means that the algorithm’s runtime is slower than linear time, but the specific bounds depend
on the context and analysis of the algorithm [7, 10].

Small-oh is a concept used to describe the lower bound of the algorithm’s runtime growth.
Small-oh notation is used to describe the time complexity of an algorithm that grows slower
than another algorithm. Unlike Big-Oh, small-oh considers only strictly faster-growing func-
tions [10-11]. It is defined as a bounding function that tends to zero as n approaches infinity.
For example, if the runtime of an algorithm f (n) is described by the function g (n), we can write
it as f (n) = o (g (n)).

Definition 2 [7]. Let g (n) be a function. We define o (g (n)) as set of functions f (n) that sat-
isfy the following condition: for any positive constant c > 0, there exists a constant n0 > 0 such
that 0 ≤ f (n) ≤ cg (n) for all n0 ≥ 0.

In other words, o (g (n)) is the collection of functions that have a runtime growth rate slow-
er than that of g (n), allowing for a looser upper bound. To illustrate this definition, consider
the example: 2n = o (n

2), but 2n2 ≠ o (n
2).

DOI: 10.37943/15DNLB5877
© Zhanar Bimurat, Yekaterina Kim,
 Rauza Ismailova, Bimurat Sagindykov

176 Scientific Journal of Astana IT University
ISSN (P): 2707-9031 ISSN (E): 2707-904X

VOLUME 15, SEPTEMBER 2023

The definitions of Big-Oh and small-oh notations are quite similar, with one key differ-

ence. In f (n) = O (g (n)), the bound 0 ≤ f (n) ≤ cg (n) holds for some constant c > 0. However, in

f (n) = o (g (n)), the bound 0 ≤ f (n) ≤ cg (n) holds for all constants c > 0. Essentially, in small-
oh notation, the function f (n) becomes negligible compared to g (n) as n grows larger (see Fig.
11). We can express this intuitively as:

Small-oh notation is often used in theoretical computer science and mathematics to de-
scribe the asymptotic behavior of functions and algorithms. However, it is less commonly used
in real-world applications compared to Big-Oh notation.

The complexity of a small-oh algorithm means that the algorithm’s execution time is strictly
smaller than the specified growth function. In other words, the algorithm performs better than
the specified function, at least for sufficiently large input sizes. Small-oh complexity is used in
the analysis of algorithm complexity to provide a more precise estimate of their performance.
It indicates that the algorithm’s execution time is strictly smaller than the specified growth
function for sufficiently large input sizes. This allows for a more accurate comparison of the
performance of different algorithms and identifies more efficient solutions for specific tasks.

Figure 11. Illustration of Big-Oh and small-oh notations

The relationship between Big-Oh and small-oh notations lies in their common use for es-
timating algorithm complexity and execution time based on the size of input data. However,
they have a small but important distinction.

Big-Oh notation describes the asymptotic upper bound on the growth of an algorithm’s ex-
ecution time. It provides an upper-bound estimate of how much time the algorithm will take
as the input size increases. For example, an algorithm with a time complexity of O (n

2) means
that the execution time of the algorithm will not grow faster than the square of the input size.
On the other hand, small-oh notation also describes the growth estimate of an algorithm’s
execution time but in a more precise manner. It indicates a strictly faster growth than the spec-
ified function for sufficiently large input sizes. An algorithm with a time complexity of o (n

2)
will have an execution time that grows faster than the square of the input size.

177

Using a combination of Big-Oh and small-oh notations helps to classify algorithms more
precisely and determine how effectively they perform for different input sizes. For example,
if an algorithm has a complexity of O (n

2) and its execution time is strictly smaller than (n2),
we can use the notation o (n

2) to indicate that the algorithm performs better than quadratic
complexity. This allows for a more accurate comparison and assessment of algorithm perfor-
mance, especially in cases where the algorithm’s complexity does not match the exact bound-
ary specified by the Big-Oh notation. The combination of Big-Oh and small-oh provides a more
flexible and precise way of estimating the complexity and performance of algorithms based
on the input size.

Application of Big-Oh and Small-oh in algorithm complexity analysis. The Big-Oh and small-
oh notations are widely used in practice for analyzing the complexity of algorithms to evaluate
and compare their performance. Here are a few ways these notations are used in practice:

1. Algorithm comparison: Big-Oh and small-oh notations allow for comparing different al-
gorithms and evaluating their performance relative to the size of the input data. For example,
if we have two algorithms with time complexities of O (n) and o (n

2), we can conclude that the
first algorithm will be more efficient for larger input sizes.

2. Determining upper and lower complexity bounds: Big-Oh notation is used to indicate
the asymptotic upper bound on the growth of an algorithm’s execution time. This sets a limit
on how quickly the execution time can increase as the input size grows. On the other hand,
small-oh notation is used to indicate a strictly faster growth rate of execution time. This helps
in identifying when an algorithm significantly outperforms other algorithms with the same or
slower complexity [13].

3. Scalability estimation: Big-Oh and small-oh notations allow for predicting how the per-
formance of an algorithm will change with the growth of the input size. Big-Oh provides an
upper bound on the growth rate, while small-oh provides more precise estimates when the
algorithm exhibits significantly better performance. This helps in determining how effectively
an algorithm scales and performs with larger volumes of data.

4. Algorithm optimization: analyzing the complexity of an algorithm using Big-Oh and
small-oh notations can help identify bottlenecks and determine parts of the algorithm that re-
quire optimization. If the algorithm’s execution time has a complexity of O (n

2), but in practice,
it grows slower than n2, it may signal the need for optimization and improving the algorithm’s
performance.

Limitations. The Big-Oh and small-oh notations are powerful tools for analyzing algorithm
complexity, but they also have some limitations and boundaries of use. Here are some of them:

1. Asymptotic estimation: Big-Oh and small-oh notations provide information about the
asymptotic behavior of an algorithm as the input size approaches infinity. They do not consider
constants and lower-order terms, which can have a significant impact on the actual execution
time of the algorithm for small input sizes. Therefore, they may not accurately reflect the real
performance of the algorithm for specific cases.

2. Variability of hardware and software: the performance of an algorithm can depend on
various factors, such as hardware, operating system, compiler, etc. Big-Oh and small-oh nota-
tions do not take these factors into account and provide only a general estimate of algorithm
complexity. Therefore, the actual performance may differ from the theoretical estimation.

3. Ignoring best and worst cases: Big-Oh and small-oh notations usually provide informa-
tion about the worst-case complexity of an algorithm. However, algorithms can have different
time characteristics for different cases (best, average, worst). Therefore, evaluating only the
worst-case may be insufficient for a complete understanding of algorithm performance.

DOI: 10.37943/15DNLB5877
© Zhanar Bimurat, Yekaterina Kim,
 Rauza Ismailova, Bimurat Sagindykov

178 Scientific Journal of Astana IT University
ISSN (P): 2707-9031 ISSN (E): 2707-904X

VOLUME 15, SEPTEMBER 2023

4. Limited complexity classes: Big-Oh and small-oh notations represent complexity esti-
mates of algorithms within certain classes (e.g., O (n

2), O (n log n), etc.). They do not consider
the possibility of more efficient algorithms outside these classes that can solve problems with
lower complexity.

To better understand algorithm complexity and its real-world performance under specific
conditions, it is essential to acknowledge its limitations and complement the use of Big-Oh
and small-oh notations with other analytical methods and performance assessments. This
comprehensive approach enables a more thorough evaluation of algorithm complexity and its
practical efficiency.

Authors of [14] mentions that the Big-Oh problem is undecidable. While the article does
not delve into a detailed discussion of the limitations of Big-Oh and small-oh notations, it
does highlight some key points and discusses various variants of the threshold problem and
approximation tasks, all of which are shown to be undecidable or recursively unsolvable.
These findings imply that there may be constraints on the applicability of Big-Oh notation in
specific scenarios. However, the article does not provide specific limitations or critiques of the
notation itself.

Results
Big-Oh notation, which provides an upper bound on the growth rate of the algorithm’s

running time as a function of the input size. However, this method can sometimes be too im-
precise or not capture the true behaviour of the algorithm. To create an algorithm that offers a
more fine-grained analysis compared to the Big-Oh notation, let’s consider a process that scru-
tinizes not just the upper bound (as Big-Oh does), but also integrates the specific computation-
al steps and respective resources used by an algorithm. This method will still incorporate time
complexity but will also yield insights into the operational nuances of the algorithm. Note that
Big-Oh focuses on worst-case scenarios, while this approach will delve into the micro-level
operations to provide a more comprehensive view of the algorithm’s behavior.

Algorithm:
Input:
- A: A target algorithm to analyze
- S: A set of sample inputs for testing the algorithm
Output:
- Detailed report of the algorithm’s complexity, capturing each operation, its frequency, and
cost.

Step 1. Operation identification:
- For each distinct operation in algorithm A, identify and label it (e.g., addition, subtraction,
loop initiation, etc.).

- Assign a symbolic cost to each operation, Ci , representing its fundamental computational
cost.

Step 2. Dynamic profiling. For a set of input samples S, run algorithm A, keeping track of:
- The frequency, Fi , with which each operation is executed.
- The actual resource usage (time, memory, etc.) for each operation.
Step 3. Formulate comprehensive cost:
- Compute the total cost, T, using the formula:

where:
n – total number of distinct operations;

179

Ci– cost of the ith operation;
Fi – frequency of the ith operation.
- Compute the total actual resource usage, R, by summing the recorded resource usage for

each operation from step 2.
Step 4. Empirical validation:
- Evaluate the algorithm A using different input sizes and compare the theoretical cost T

with actual resource usage R.
- Use statistical methods to validate the correlation between T and R.
Step 5. Analyze and classify complexity:
- Analyze the total cost expression T to determine the theoretical complexity.
- Classify the complexity based on the actual resource usage trends obtained in step 4.
Let’s create a hypothetical example using the algorithm for fine-grained analysis provided

above. We’ll consider a simple sorting algorithm for analysis (see Fig. 12).

Figure 12. Bubble sorting algorithm

Step 1: Operation identification
1. Compare operation: comparing A[j] and A[j+1]
2. Swap operation: swapping A[j] and A[j+1] if the condition is true
3. Loop operation: running the two loops
Assuming symbolic costs:
- C1 – cost of compare operation;
- C2 – cost of swap operation;
- C3 – cost of loop operation.
Step 2: Dynamic profiling
Let’s say we run the bubble sort algorithm for a sample set S of A = [5, 1, 4, 2, 8]:
- Compare operation frequency F1 = 10 (since every pair is compared once per pass, and

there are 4 +3+2+1=10 compares in total for our sample).
- Swap operation frequency F2 = 5 (for our sample input).

DOI: 10.37943/15DNLB5877
© Zhanar Bimurat, Yekaterina Kim,
 Rauza Ismailova, Bimurat Sagindykov

180 Scientific Journal of Astana IT University
ISSN (P): 2707-9031 ISSN (E): 2707-904X

VOLUME 15, SEPTEMBER 2023

- Loop operation frequency F3 = 10 (outer loop 4 times, inner loop 6 times for our sample
input).

Step 3: Formulate comprehensive cost.
Assuming:
- C1 = 1 unit time;
- C1 = 2 unit times (as swapping involves three assignments);
- C3 = 0.5 unit times.

Step 4: Empirical validation.
We run the algorithm on multiple input sizes and compare the theoretically computed total

time T to the actual time taken R to check if they are proportional. We would also examine
the conditions (or types of data: random, almost sorted, reverse) under which the algorithm
was tested.

Step 5: Analyze and classify complexity.
The obtained total cost expression T can be further analyzed for larger input sizes and dif-

ferent scenarios. We’ll observe how T behaves as we alter the input size and validate against
actual measurements. The generic time complexity of Bubble Sort is O (n

2). The fine-grained
analysis might reveal precise resource usage and variances in expected versus actual perfor-
mance.

Discussion
This method not only provides a theoretical complexity (akin to Big-Oh) but also maps it to

empirical data, offering a robust framework to analyze, validate, and optimize algorithms. It is
particularly beneficial for critical applications where understanding and minimizing every bit
of resource usage is paramount.

While it adds layers of complexity and may demand additional computational resources for
analysis, the derived insights can be pivotal for optimizing algorithms, especially in scenarios
where performance is crucial, such as real-time systems, high-frequency trading, or scientific
computations.

Conclusion
In this article, the profound world of Big-Oh and small-oh notations, elucidating their pivot-

al roles in the analysis of algorithm complexity have been studied. Big-Oh notation serves as
a valuable tool for estimating the upper bound on the growth rate of an algorithm’s running
time, while small-oh notation delineates a lower limit on this growth rate. A comprehensive
look at various complexity classes defined by Big-Oh notation and provided the algorithm for
more fine-grained analysis of algorithm complexity have been taken.

The analysis of algorithm complexity using these notations holds paramount importance
in the fields of programming and computer science. It equips developers and researchers with
the means to make informed decisions when it comes to selecting and optimizing algorithms
[12]. However, it’s crucial to acknowledge that while complexity analysis is a vital facet of
effective programming, ongoing research endeavours may yield more refined methodologies
and approaches within this domain.

Looking ahead, it’s evident that the world of algorithmic analysis and optimization is dy-
namic and ever evolving. Future research may focus on developing even more precise methods

181

for analyzing algorithm complexity, allowing us to assess algorithms with greater granularity.
This can lead to the optimization of algorithms for specific use cases and data sizes. With the
increasing use of machine learning (ML) and artificial intelligence (AI), there is an opportunity
to explore how these notations can be integrated into the analysis of complex ML algorithms.
This can lead to a deeper understanding of the efficiency and scalability of AI systems [15, 16].

Applying these notations to real-world, large-scale applications such as distributed sys-
tems, cloud computing, and big data analytics will be an exciting area of exploration. Under-
standing how these notations apply in practical, complex scenarios is essential.

In conclusion, the world of algorithm design and analysis will continue to push bounda-
ries and explore new horizons. Big-Oh and small-oh notations remain invaluable tools for
navigating the complex terrain of algorithmic analysis and optimization. As researchers and
practitioners, embracing these notations and staying attuned to emerging methodologies will
be crucial in shaping the future of efficient algorithm design.

References

[1] Sipser, M. (2013). Introduction to the theory of computation (3rd ed.). Cengage Learning.
[2] Shaffer, C.A. (2013). A practical introduction to data structures and algorithm analysis (3rd ed.).

Prentice Hall.
[3] Ericson, F. (2019). Algorithms. Pearson Education.
[4] Sedgewick, R., & Flajolet, P. (2013). An introduction to the analysis of algorithms (2nd ed.). Addison-

Wesley Professional.
[5] Kleinberg, J., & Tardos, É. (2022). Algorithm design (2nd ed.). Pearson Education.
[6] Chakraborty, P., Khatoon, R., & Dutta, S. (2019). A guide to design and analysis of algorithms. CRC

Press.
[7] Cormen, T.H., Leiserson, C.E., Rivest, R.L., & Stein, C. (2022). Introduction to algorithms (4th ed.). MIT

Press.
[8] Muller, S., & Massaron, L. (2017). Algorithms for dummies. John Wiley & Sons.
[9] Lee, C.-H., Tseng, H.-Y., Chang, Y.-H., & Tsai, W.-T. (2017). Introduction to the design and analysis of

algorithms: A strategic approach. CRC Press.
[10] Skiena, S.S. (2020). The algorithm design manual, 3rd edition. Springer.
[11] Lafore, R. (2014). Data structures and algorithms in Java, 6th edition. Pearson.
[12] Chistikov, D., Kiefer, S., Murawski, A. S., & Purser, D. (2020). The Big-O Problem for Labelled Markov

Chains and Weighted Automata. Leibniz International Proceedings in Informatics, 166, 1-19. https://
doi.org/10.4230/LIPIcs.CONCUR.2020.41.

[13] Bouyer, P., Markey, N., & Ouaknine, J. (2019). The Big-O problem. Logical Methods in Computer
Science, 15(3), 1-44. https://doi.org/10.23638/LMCS-15(3:1)2019.

[14] Agarwal, P. K., Har-Peled, S., & Varadarajan, K. R. (2014). Approximate nearest neighbor for polygo-
nal curves under Fréchet distance. Leibniz International Proceedings in Informatics (LIPIcs), 29-40.
https://doi.org/10.4230/LIPIcs.STACS.2014.29

[15] Pugliese, R., Regongdi, S., & Marini, R. (2021). Machine learning-based approach: global trends,
research directions, and regulatory standpoints. Data Science and Management, 4, 19-29. https://
doi.org/10.1016/j.dsm.2021.12.002.

[16] Xu, Y., Liu, X., Cao, X., Huang, C., Liu, E., Qian, S., Liu, X., Wu, Y., Dong, F., Qiu, C.-W., Qiu, J., Hua, K.,
Su, W., Wu, J., Xu, H., Han, Y., Fu, C., Yin, Z., Liu, M., Roepman, R., & Zhang, J. (2021). Artificial in-
telligence: A powerful paradigm for scientific research. The Innovation, 2(4), 100179. https://doi.
org/10.1016/j.xinn.2021.100179.

DOI: 10.37943/15DNLB5877
© Zhanar Bimurat, Yekaterina Kim,
 Rauza Ismailova, Bimurat Sagindykov

