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SIMPLIFIED ADAPTIVE TRIANGULATION OF THE CONTACT 
BOUNDARIES OF THE DAM MODEL

Abstract: To numerically solve the system of integral equations, it is customary to estab-
lish a discrete grid within each integration area. In the context of 3D modeling, these areas 
correspond to surfaces situated in space. The standard discretization technique employed for 
the computational domain is triangulation. This study addresses the integral equation system 
pertinent to the electrical tomography of dams. The structural model encompasses an em-
bankment dam, the upstream and downstream water bodies, the dam’s base, and a potential 
leakage region on the upstream side. An alternative configuration may be encountered in 
specific scenarios with no water downstream. Consequently, the model may incorporate up to 
nine distinct contact boundaries. Accordingly, the system of integral equations comprises an 
equivalent number of equations. Effectively resolving this system through numerical methods 
necessitates applying triangulation techniques to these diverse surfaces. While mathematical 
packages like Matlab offer triangulation functions, they may not fully address the specific 
demands of the problem. Additionally, the grid resolution should be heightened in proximity 
to key elements such as the sounding line, the supply electrode, and the various contact lines 
within the medium. These considerations transform the triangulation task into a distinct sub-
task within the numerical simulation of the resistivity tomography problem. In this paper, we 
provide our specific approach to this problem. The simplification of the triangulation algorithm 
is rooted in the predominant utilization of the two-dimensional geometric properties inherent 
to the object under study. For most contact boundaries, the triangulation is constructed layer 
by layer with a gradual modulation in triangle dimensions as one progresses from one layer 
to the next, orthogonal to the axis of the dam. Concerning the surface corresponding to the 
leakage area, cylindrical coordinates are used for surface parameterization. This approach en-
ables partitioning the surface into discrete strata, facilitating a systematic, layer-by-layer grid 
construction. Additionally, points at the intersections of contact boundaries are integrated into 
the pre-existing triangulation by applying a standard function within the Matlab package. In 
the future, the mathematical modeling based on the Integral Equation Method with adaptive 
discretization will help incorporate real-time computations into information systems related 
to monitoring hydraulic structures. 
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Introduction
Modern IT development creates opportunities to develop Geographic Information Systems 

(GIS) for monitoring hydraulic structures by integrating field measurement data into a data-
base. One of the primary methods employed for surveying dams and similar structures today is 
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Electrical Resistivity Tomography (ERT). This method has been extensively researched by Bark-
er (1981, 1992, [1],[2]), Dahlin (1993, 1996, 2001, 2007, [3-6]), Gunter and Rucker (2003, [7]), 
and others. The data obtained through ERT are processed using interpretation software. These 
programs are built upon equations describing a static electric field in a non-uniform medium 
and utilize methods for solving inverse problems (Loke and Barker, 1996, [8]; Loke, 2000, [9]). 
However, interpreting this data presents a complicated task that demands powerful computers 
and specialized software, posing challenges for real-time integration with GIS.

Conversely, addressing the direct mathematical modeling problems is more cost-effective, 
enabling us to consider complementing information systems with a mathematical modeling 
component. In this scenario, achieving real-time simulation results becomes a desirable goal. 
From this perspective, efficient and high-precision calculation methods, such as the method of 
integral equations, are of great importance. However, implementing this method necessitates 
the development of fast algorithms for discretizing the computational domain which consti-
tutes the focal point of this study.

As mentioned above, mathematical modeling plays an important role in result interpre-
tation. It proves especially valuable when dealing with complex sounding conditions caused 
by surface topography or material inclusions. Through modeling, we can visualize and quan-
titatively assess the impact of these conditions on measurement outcomes. For instance, in 
the article (Turarova et al., 2022, [10]), explicit computations elucidate the influence of the 
three-dimensional medium structure on 2D inversion results. The papers (Rakisheva, Mukano-
va, 2021, [11]) and (Rakisheva et al., 2021, [12]) show numerically how relief features affect 
sounding curves. In the monograph (Mukanova, Modin, 2018, [13]), various examples of ERT 
method simulations are presented via the formulation of integral equations. The article (Tura-
rova et al., 2022, [14]) is dedicated to explicitly calculating sounding curves in the presence 
of surface relief and developing a method to filter out nonphysical anomalies from interpre-
tation results. Generally speaking, articles [10] and [11] emphasize the advantages of the 
integral equation method compared to techniques that necessitate the discretization of the 
entire three-dimensional domain, a common approach in the mathematical modeling of 3D 
problems. Applications of the finite element method and integral equations to problems in 
electrodynamics are also discussed in the monographs [14] (Shi-zhe Xu, 2001) and [15] (Zh-
danov, 2015). The first of these monographs focuses on two-dimensional formulations, while 
the second formulates integral equations for three-dimensional problems in which unknown 
functions are defined on 2D surfaces.

When comparing our approach to the methods outlined by [14] and [15], we reduce the 
problem to the Fredholm equation of the second kind. Another difference is that we formulate 
the problem involving infinite areas and consider the medium’s boundary with air. Additionally, 
a practical case of the ERT method of dam probing is considered.

It is important to note that applying the integral equation method has limitations. Spe-
cifically, this method is most effective when dealing with geological or geoelectric environ-
ments characterized by well-defined boundaries. Such characteristics are commonly found in 
artificially constructed settings, such as dams and embankments. An additional requirement 
for the method’s applicability involves discretizing all emerging contact surfaces. In scenarios 
characterized by predominantly two-dimensional geometry, it becomes possible to reduce the 
problem by applying Fourier transformations. This transformation reduces the problem into 
a series of one-dimensional equations, thereby simplifying the discretization process to grid 
points distributed along curve segments (Rakisheva, Mukanova, 2021, [11]).

In contrast, in the 3D case, the discretization is performed on the contact surfaces, deline-
ating different media regions for three-dimensional structures. To reduce computational costs, 
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one needs to reduce the dimensionality of the grid. For 3D problems, discretizing even rela-
tively simple environment models can yield grids comprising tens of thousands of elements 
(Turarova et al., [16]).

The numerical solution of integral equations entails computationally intensive processes 
involving dense matrices whose dimensions are proportional to the square of the number of 
grid nodes. Consequently, solving such tasks in real-time on most personal computers proves 
challenging due to the memory limitations of the computing devices.

Nevertheless, the computational benefits that arise from employing grids tailored to the 
specific problem at hand are well recognized Frey and George, 2008, [17]). 

The earliest applications of triangulation-based computational grids are associated with 
implementing the finite element method in solid mechanics, fluid dynamics, and other prob-
lems formulated in terms of partial differential equations. In the case of geometrically complex 
objects, the triangulation problem is recognized as a distinct area of research. For instance, in 
(Cuillière, 1998, [18]), an algorithm is introduced for the automatic adaptive triangulation of 
parametrically defined surfaces with intricate shapes, along with a priori mesh density estima-
tion. The article [19] (Lo, 2002) provides an overview of the application of the finite element 
method and triangulation in continuum mechanics and engineering problems, discussing 
prospects for further applications. 

Currently, the focus of triangulation problems is shifting towards constructing surfaces for 
three-dimensional objects in computer graphics and industry (Feng et al., 2018, [20]; Schmidt 
et al., 2023, [21]).

Geodesy and cartography problems also employ triangulation to depict terrain, and they 
possess distinctive characteristics related to the requirement for conformity with the object’s 
boundaries and the environmental surface. For instance, in [21] (Schmidt et al., 2023), authors 
address the challenge of presenting two triangulations while enabling the assessment of 
distortions and the acceleration of the triangulation conversion algorithm when altering map 
resolutions.

Research on algorithms for constructing triangulations, which necessitates considering 
the geometric features of the discretization area and the specifics of the problem formula-
tion, is also ongoing. For instance, the works [22] (Shewchuk, 2000) and [23] (Meng and Mei, 
2013) are dedicated to the construction of triangulations for complex regions characterized by 
boundaries containing acute angles, while the work [24] by Schier and Klein (2023) explores 
the conditions for constructing a triangulation that guarantees the precise satisfaction of the 
integral dependencies arising from the formulation of the partial differential problem.

The lecture notes [25] by Shewchuk (2012) examine the most applied algorithms for con-
structing Delaunay triangulation and propose a classification. The complexity of each algo-
rithm was assessed under both favorable and unfavorable conditions. It is shown that the 
complexity of triangulation ranges from O(N) to O(N2), where N represents the number of 
grid nodes.

Some authors share their progress in adaptive grid construction through open-source con-
tributions. For instance, Engwirda (2005, [26]; 2014, [27]) published a package that constructs 
an unstructured mesh for two-dimensional areas of intricate shape. This package offers high 
functionality for adaptive triangulating non-simply connected regions with complex bounda-
ries.

In the context of the problem under consideration, our scope is confined to constructing 
a triangulation for numerically solving a system of integral equations. An initial attempt was 
made to employ the package mentioned above; however, it turns out that, while on the one 
hand, the capabilities of this package surpass the demands of our specific task, on the other 
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hand, the package does not contain functions for refining the mesh in the proximity of multi-
ple lines, with a specified level of refinement, and for generating a triangulation on multiple 
intersecting surfaces. For the triangulation of contact surfaces within the examined media 
structure, we propose the development of a grid that has increased density at the vicinity of 
the measurement line and contact boundaries and adapts the positions of nodes to intersect-
ing lines between two contact boundaries. 

Mathematical model and adaptive triangulation of surfaces

1. The mathematical model formulated in terms of integral equations. Figure 1 illustrates a typ-
ical cross-section of the dam. It is important to note that this representation includes several 
types of contact boundaries: dam-air, dam-water, dam body-dam base, dam-leak, leak-water, 
leak-base, water-base, water-air, and potentially air-base. To simplify the notation, we will use 
the indices 0, 1, 2, 3, and 4 to represent air, dam material, water, base material, and the leaking 
area, respectively.

Figure 1. Schematic representation of the dam cross-section; 
0 – air, 1 – dam body, 2 – water, 3 – base, 4 – possible leakage area.

Let us show briefly the main steps of deriving the mathematical model, following the mon-
ograph (Mukanova and Modin, 2018, [13]) and the article (Mirgalikyzy et al., 2015, [28]). Here, 
we generalize the approach for an arbitrary number of contact boundaries. The mathematical 
model of the ERT method is based on equations for the electric field potential U, expressed as 
Laplace’s equation

(1)

for homogeneous media and conditions of continuity of current at contact surfaces between 
two media. According to Ohm’s law, the current density is equal to the product of the specific 
conductivity and the normal derivative of the potential U:

(2)

Next, we express the equality of currents passing through the surface from one side to an-
other at any point P as follows:
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(3)

here  are specific conductivities of the media from two sides of the boundary Г; n denotes 
a normal vector with respect to the boundary, and the “±” signs indicate that the derivatives 
are taken as one approaches the boundary point P from different sides.

Let us use the double index (kl) to denote the contact boundaries between media identi-
fied by indices k and l. To satisfy equation (1) for the homogeneous part of the material, we 
express the function U(P) at point P in terms of two components: the ‘simple layer potential’ 
of charges qkl (P) distributed on the contact surfaces and the standard potential arising from 
the pointwise source at the supply electrode A: 

(4)

We can now substitute the expression (4) into the continuity condition (3) for each bounda-
ry. Note that when point P belongs to the boundary Гkl , the normal derivatives from both sides 
of the boundary satisfy the following equalities (refer to, for instance, Vladimirov’s textbook, 
1971, [29]):

(5)

Here, the vector nP denotes the normal direction to the surface Гkl at point P. Suppose that 
the normal vector nP is directed from side k to side l for the boundary Гkl . By substituting the 
expression (4) into condition (3) and considering the equalities (5), we obtain the following 
condition at Гkl :

(6)

After transformation, the expression (6) is reduced to the following system of integral equa-
tions:
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(7)

Here, qkl (P) represents sought-for functions defined on the surfaces Гkl . The coeffi-
cients  кkl are equal to the reflection coefficient of the contacting media along the surface  

2. Definition of areas where the finer computational grid is desirable. 
To solve the system (7) numerically, we need to construct a triangulation of the contact 

surfaces Гkl . Most of these boundaries exhibit a 2D structure and represent the bands aligned 
along the direction of the dam. The cross-sections of these bands are defined by segments GB, 
BA, AE, BC, CD, DH, and EK in Fig.1. Computational analyses conducted by Migrgalikyzy et al. 
(2015, [28]) have revealed that in the vicinity of areas where the terrain transitions to a planar 
surface, such as points B and D, anomalous extrema in the apparent resistivity curves appear. 
Consequently, a dense grid near these points is deemed favorable. Moreover, the grid density 
must be increased along the measurement line passing through point A, as supported by sim-
ulations (Migrgalikyzy et al., 2015 [28] and Turarova et al., 2022, [10]). As shown in Figure 1, 
point E corresponds to the boundary between the dam, water, and air. Numerical simulations 
of the electrical field and apparent resistivities, as described in (Rakisheva and Mukanova, 
2021, [11]) and (Rakisheva et al., 2020, [12]), illustrate significant anomalies of the electric 
field in the proximity of this boundary. Consequently, refining the grid near this point is desir-
able. Points G, K, and H are located far from source A. The electric field significantly decreases 
in these areas, allowing for a coarser grid. To summarize, the triangulation of bands GB and EK 
requires a denser grid on one side, whereas segments BA and AE necessitate a finer grid on 
both sides of their respective bands.

3. Construction of the grid. We construct the grid by creating non-uniform triangulations for 
boundaries with longitudinal structures. The sizes of the triangles are primarily determined by 
the Ox direction, and they are built layer by layer, increasing in height.

The triangle’s most minor edge and the ratio between the largest and smallest edges influ-
ence the grid size. When constructing the dam’s surface triangulation, we employ a curvilinear 
coordinate, χ , transversal to the dam’s longitude, transforming the Cartesian coordinate, x, into 
curvilinear coordinates, χ . If the function  defines the shape of the contact boundary 
of the dam and air, then the transformation  and its inverse  are determined 
by the following ordinary differential equations:

The triangles are placed layer by layer, changing their positions along the χ coordinate. Let 
us define how the height  of each layer varies in the χ direction. Suppose

(8)
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Here, N is the number of points layers. Then for  we define χi as follows:

(9)

At each layer of triangles, the ordinates of vertices are spaced at intervals of 
 along the Oy axis. This choice ensures that the triangles at each layer 

are ‘almost’ equilateral. Next, we apply the standard delaunay(.,.) function from the Matlab 
package to two consecutive points layers to obtain their connectivity lists. These lists are then 
incorporated into the resulting connectivity list.

In formulas (8)-(9), the mesh condenses at the left end, x = a. Applying the linear transfor-
mation – x + (a + b) to the interval [a, b] helps achieve mesh condensation at the right end, 
x = b.

In equation (8), the parameter α controls the grid’s nonuniformity. A higher α results in more 
significant differences in triangle sizes across layers. This parameter depends on the ratio be-
tween the sizes of the smallest and largest triangles. 

Figure 2. Typical triangulation of the left band on the surface of the base, 
corresponding to the cross-section GB

We require a finer grid on both edges for the bands BA and AE. In this case, the analog of 
formulas (8)-(9) is applied to both the left and right halves of the interval [a, b]. 

Figure 2 shows typical examples of the triangulation for the left band GB, while Fig. 3 illus-
trates the densified triangulation along both edges of bands BA and AE. In this configuration, 
the grid is refined along the sounding line, which passes through point A, as depicted in Fig. 
1, and runs parallel to the strike direction. Furthermore, grid points are concentrated at the 
intersections of the contact surfaces.

Figure 3. Triangulation of the bands on the dam’s surface condensed at the bands’ edges.
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Now, we need to construct the grid for surfaces that represent the boundaries of the leaking 
area. The leakage is bounded along the longitude axis Oy, so the triangulation of the bound-
aries leakage-base, leakage-dam, leakage-water, and part of the dam placed on the band with 
the cross-section CD must be built separately. 

Figure 4 shows one example of the possible triangulation of the considered dam model. 

Figure 4. Triangulation of the computing area by adapting the mesh 
to the geometric and electrical features of the media.

First, the triangulation of the bands along the Oy axis, defined by their cross-sections BD 
and ED, is generated using the abovementioned method. Subsequently, we identify the bound-
ary points for the contacts leaking area – dam and base – leakage. These points are then in-
corporated into the band ED and BD triangulation using the Matlab function delaunay(.,.), as 
illustrated in Fig. 5. 

Figure 5. Fragment of the triangulation of the boundaries Leakage- water and dam-water

To model the form of the leaking area, we have chosen the conic surface defined by the 
following formula:

(10)

Here, the parameters (x0 , y0) define the position of point C, and the parameters c and r de-
fine the geometrical properties of the leaking area. This formula makes it possible to build the 
triangulation again layer by layer in the direction of the Ox axis. Figure 4 shows one example 
of the possible triangulation built for the described case of the media. An example of the tri-
angulation of the leaking area is shown in Fig. 6 separately.
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Figure 6. The triangulation of the boundary dam-leaking area

As it is previously mentioned, the triangulations were constructed layer by layer. We deter-
mined the layer’s thickness along the Ox axis and the positions of points along the Oy direc-
tion for each layer. Then, we have applied the Matlab function delaunay(.,.) for two subse-
quent rows of points. The corresponding number of vertexes is then added to the triangulation 
connectivity list and the list of nodes. 

Finally, we compared the number of nodes for homogeneous and adaptive grids, using 
equal values for the minimal grid step and considering a non-uniformity parameter α = 5 as 
defined in (8), with the dam’s geometry shown in Fig. 4. We found that the number of nodes is 
Nun = 11368 for the uniform grid and Nad = 4 153 for the non-uniform grid. This allows us to 
estimate that the size of the dense matrix in the discretization of the system of equations (7) 
is approximately  times smaller for the adaptive grid.

Conclusion
In this study, we have formulated an ERT mathematical model applicable to media char-

acterized by piecewise distributed conductivity functions and an arbitrary number of contact 
boundaries. The methodology described here focuses on constructing an adaptive grid by 
triangulating contact boundaries within 3D space to solve the associated system of integral 
equations. The grid is adapted to the specific characteristics of the media, particularly in the 
context of a dam with a leakage area. 

Curvilinear coordinates are employed, facilitating the construction of an appropriate grid 
on the dam’s surface. The selection of regions for grid refinement is determined by consider-
ing the outcomes of prior mathematical modeling of the ERT method for relief surfaces. The 
direction across the dam body has been selected to enhance grid refinement. Subsequently, 
the delaunay(.,.) function is applied layer-by-layer. 

In the case of a cross-section involving two contact surfaces, crossline points are explicitly 
defined and incorporated into the pre-existing nodes, resulting in the generation of a new 
triangulation. This approach effectively constructs an adaptive triangulation that explicitly 
encompasses the cross-lines of surfaces within the triangulation structure.

Comparing the node counts between homogeneous and non-homogeneous grids reveals 
a significant reduction in the matrix size for the discretized version of the integral equa-
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tions, signifying the computational advantages of our approach. Future research endeavors 
will center on solving the system of integral equations (7) under varying physical conditions 
and optimizing the grid’s computational parameters for increased simulation efficiency and 
accuracy. If the proposed method is effectively executed, it has the potential to complement 
the hydraulic structures databases with real-time mathematical modeling capabilities.
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