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OVERVIEW OF TRANSFORMER-BASED MODELS 
FOR MEDICAL IMAGE SEGMENTATION

Abstract: Premedical diagnostics is the process of examining survey results. Correct 
premedical diagnostics can improve the process of patient management and reduce the 
burden on the medical sector. Diagnostics of medical images such as computed tomography 
and X-ray are an obligatory step for further treatment. However, the shortage of clinicians 
causes delays in this step. We observed two state-of-the-art algorithms proposed for medical 
image segmentation: TransUnet and Swin-Unet. We conducted a theoretical comparison of 
algorithms in terms of the applicability of pre-hospital diagnostics according to quality and 
speed of training. The comparison is based on the original source of code provided by the 
authors of the original articles. We chose these two algorithms because they have similar 
U-form architecture, a high level of citation, and show competitive DICE scores on pictures 
of various human organs. Some architectural features were also important. Both models 
inherit key elements of U-net. TransUnet is a hybrid Transformer and CNN model. It consists 
of Transformer encoder and a convolutional decoder. Some additional computations are 
required in the bottleneck. Swin-Unet is a fully Transformer-based model. These architectural 
differences give rise to a difference in the number of trainable parameters. Generally, deeper 
architectures with bigger number of parameters usually show better performance, however, 
according to our review, Swin-Unet has smaller number of parameters and shows better DICE 
and Hausdorff Distance. It should be noted that the distribution between false positive and 
false negative predictions is important in medical image processing. It is crucial to avoid 
overloading the medical sector while also not missing any sick patients. Precision and recall 
can be used to evaluate the ratio of incorrect predictions. Therefore, we also observed the 
results of caries segmentation where precision and DICE were provided. In this specific case, 
TransUnet shows better DICE and recall values but worse precision.

Keywords: Computer Vision, Transformers, Image processing, premedical diagnostics, 
Segmentation 

Introduction
In the modern world, there is a big problem with a lack of clinicians. It causes a problem 

with patient management. Patients with a deeper stage of the disease cannot receive timely 
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help. This is especially acute in agrarian countries because the examination time is delayed 
due to communication difficulties between the regions. For example, the ratio between the 
rural and urban populations of Kazakhstan is 54.1 to 45.9%. The shortage of doctors in the 
country has doubled in the last five years. In this particular case, the application of computer 
technologies can reduce the burden on the medical sector. It could be applied for premedical 
diagnostics task.

In the current review, we observed and compared two algorithms proposed for the medical 
image segmentation task. Image segmentation is the process of derivation of each pixel of the 
image into categories. It is the derivation between healthy and diseased cells for medicine.

Convolutional neural networks [1] are the most commonly used algorithms for medical 
image processing. Common highly accurate neural networks, such as AlexNet [2] and ResNet 
[4], demonstrate high accuracy in solving tasks related to medicine as well as for general use 
cases. However, it has an important architectural disadvantage. The vision of the network is 
limited by the size of the sliding window. It makes it impossible to view the whole picture at 
one point in time. Initially, the usage of “sliding window” was justified by the lack of computing 
power. The further rapid growth of computing systems allowed the use of more advanced 
models for computer vision [8] [9] [10].

We stopped on two Transformer-based models proposed for the medical image segmentation 
task: TransUnet [9] and Swin-Unet [8]. Both architectures are based on the U-net model [7], 
which was proposed in 2019 for medical image segmentation. U-net is a convolutional-based 
model with three key features: high-quality processing of medical images. Firstly, it could be 
trained end-to-end on the small dataset. It is essential because of the lack of medical data for 
rare diseases and the confidentiality of medical data. Secondly, it takes into account pixels near 
the border of the image. Last but not least, it allows you to segment thin borders on the image, 
such as borders between cells on a biopsy. These benefits are achieved by the mirror ”U” form 
architecture and inherits by TransUnet and Swin-Unet models. The convolutional encoder was 
replaced by Vision Transformer (ViT) [6] in TransUnet which allows to increase DICE in medical 
image segmentation. A combination of Swin Transformer [12] and U-Net formed Swin-Unet. 
The authors of Swin-Unet architecture provided a model comparison among DICE, Hausdorff 
Distance on Synapse multiorgan computer tomography dataset and among DICE on ACDC 
dataset. We completed the comparison by computing the number of training parameters for 
both models based on code listing provided by the authors of the original models.

Transformer models for computer vision tasks 
The TransUNet model inherits key advantages of the U-net algorithm with the addition of 

the transformer’s features [9]. ViT transformers [6] proposed for classification task encoder 
were completed by MLP for solving a classification task. TransUnet consists of transformer 
encoder, convolutional based decoder and skip connections between their corresponding 
layers. While U-net [7] was designed for end-to-end training on a small number of samples, 
transformers are pretrained on a large dataset, such as ImageNet [3]. The TransUnet algorithm 
is presented for solving medical image segmentation tasks.

The architecture of the model is shown of Fig. 1. In the U-net model, the encoder was 
shown as a usual convolutional neural network with two double convolutional layers and 
a max pooling operation after that. In TransUnet, it is replaced by a transformer block. The 
components of Transformers layers are provided in Fig. 1 (left).
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Figure 1. TransUnet model architecture and Transformer block[9]

Self-attention mechanisms based on transformers are used for feature extraction instead of 
usual CNN based approaches. Firstly input x is split into 2D patches  
where P is a patch size. Trainable linear projection is used for mapping x into D-dimensional. 
Specific position embeddings are trained for the patch spatial information (1).

(1)

where  is patch embedding projection
L layers of Multihead Self-Attention and Multi-Layer Perceptron (MLP) formed the encoder.
TransUnet was compared with Unet and ViT models on the Automated Cardiac Diagnosis 

Challenge (ACDC) [11] and showed better DICE (87.55, 87.57, 89.71 for -U-Net, ViT-CUP and 
TransUNet respectively).

While the decoder of the TransUnet model is a convolutional neural network with an 
upsampling operation inside, the decoder and encoder of the next observed model [8] are 
both transformer-based.

Swin-Unet The second observed model is Swin U-net [8] proposed in 2021. It also solves 
medical image segmentation task. Swin U-net inherits similar structure with U-net [7] and 
Swin Transformers block [12]. It has an encoder, decoder, skip connections and bottleneck. The 
CNN-based encoder was replaced by a Transformer block in Trans U-net architecture [9]. Swin 
U-net contains Transformer blocks inside encoder and decoder both. The architecture of the 
model is provided in Fig 2.



67

Figure 2. Swin-Unet model architecture [8]

The encoder block is provided as a transformer with a sequence embedding input. So the 
input image should be split into non-overlapping patches with the size 4 * 4. Because of this 
operation, the feature dimension of each patch is 4 * 4 * 3 = 48 (where 3 is the number of 
channels). C on Fig. 2 is a linear embedding layer. It was applied to the dimension of a projected 
feature in an arbitrary dimension. The hierarchical feature representations are generated by 
Swin Transformer blocks and patch merging layers. Down-sampling and increasing dimension 
obtained through patch merging layer and feature representation learning achieved through 
the usage of Swin Transformer block. Swin Transformer block was described as a multipurpose 
backbone for Transformer-based model and tested for both classification and object detection 
[12]. It is a key element of Swin U-net architecture.

While in computer vision tasks convolutional neural networks are the predominant type of 
architecture, neural network-based algorithms seriously lose to Transformer-based algorithms 
in natural language tasks [5]. The creation of transformers for sequence data allows them to 
process data with long-range dependencies. According to the authors of Swin transformer 
[12], there are two main challenges in adapting transformers for computer vision. The first one 
is identifying a basic element. While the word tokens are the basic element for the language 
processing transformer, it is impossible to identify the fixed size of the minimum element of 
the image for computer vision Transformer. The second problem is the computation complexity, 
which is caused by the higher number of pixels per image than a word in a paragraph [12]. 
According to the authors of the Swin U-net architecture, their model could solve both of them 
by Hierarchical feature maps and shifted window approaches. Swin Transformer architecture 
is shown in Fig. 2.

As shown in Fig. 2, the input image with 3 channels is split into non-overlapping patches. In 
the implementation provided in the original article, the size of each patch is 4 * 4 * 3. So the 
total number of patches is (H * W).
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While in previous observed articles [6], [9], the image is split into patches with a fixed scale, 
Swin Transformer constructed hierarchical feature maps as provided in Fig 3. This approach 
imitates the feature map resolutions of the usual convolutional neural network [13] [14]. The 
number of patches decreases in the deep layers, by concatenation with the neighbor with 
2 * 2. Down-sampling resolution is 2 times, and the output dimension is 2.

The representation in hierarchical feature maps in Swin transformers starts from small size 
patches colored by grey in Fig 3 (a) which gradually merge with neighbor patches in deep 
layers. The usage of hierarchical feature maps may easily use sophisticated dense prediction 
algorithms like feature pyramid networks (FPN) [15] and U-net [7]. As it is shown in Fig 3 (b) 
the image is split into fixed 16 * 16 size patches in Vision transformer. It makes ViT unsuitable 
for cases when target object is much smaller than the image size, especially for semantic 
segmentation task, when the model should observe the belonging of each pixel.

Another problem with ViT transformers is their quadratic computational complexity. It is 
caused by the global self-attention mechanism which processes all patch vectors. But the 
number of tokens increases with the image size. Thereby, the authors of Swin Transformers 
proposed to calculate self-attention within a non-overlapping window (shifted window). So 
standard multi-head self-attention (MSA) is replaced by shifted windows (Fig 4) in the Swin 
Transformer block. It allows getting linear-complexity instead of quadratic in Swin Transformer. 
Global self-attention could be formalized via (2).

(2)

where MSA is standard multi-head attention [h, w] is image dimension, computation 
complexity of MSA is quadratic to the image size, C is the length of patch vector

While window-self attention has linear complexity, which could be formalized via (3)

(3)

where W – MSA is shifted window-based MSA, M is the fixed window size, default M = 7, 
the computation complexity is linear to the image size. The local window is colored red in 
Figure 4. A regular window partitioning strategy is used in the left part of Fig 4. It starts 
from the top-left pixel. The feature size 8 * 8 is separated into windows with size 4 * 4. Then 

the window slides from the previous layer by shifting the window by  pixels from 
the regularly partitioned. The total number of patches should be saved. So the blocks are 
transposed with each other.



69

Figure 3. Hierarchical feature maps in Swin Transformer 
(a) and fixed size in Vision Transformers ViT (b) [12]

Figure 4. Shifted windows [12]

Swin Transformer block is calculated consecutively with the usage of shifted window-based 
multi-head self-attention (4-7).

(4)

(5)

(6)
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(7)

where W – MSA is multi-head self-attention. SW – MSA is Shifted Multi-head self attention, 
MLP is multi-layer perception,  is an output the (S)W – MSA and  is an output of MLP, 
LN is the natural logarithm.

Relative position bias is used for calculation the distance between the patches. It is based 
relative position representations described in the article [20]. Self-attention mechanism is 
performed by (8). 

(8)

where  is Bias  is query,  is key,  is value, d is the dimension of query 
and key, M2 is the number of patches in a window.

All of the above formulated Swin transformer blocks shown in Fig. 2.
The Swin transformer has been tested for classification, segmentation, and object detection 

tasks. And shows high performance for all of them [8]. It is used as a backbone for the encoder 
and decoder, both in the Swin U-net architecture (Fig. 2).

The decoder part of the model is presented as symmetric to the encoder transformer. It 
consists of a Swin Transformer block and a patch expanding layer. Skip connections are used 
for supplementing features that were lost during up-sampling by adding multiscale features 
from the encoder with the extracted context features. Expanding layer performed up-sampling 
in Swin-Unet model. The patch of encoder reshapes adjacent-dimension feature maps into 
big feature maps with 2 times up-sampling of resolution. The last patch is used for 4 times 
up-sampling for the reconstruction of the original size of the image. The output is fed to the 
linear projection layer to get the resulting image. The activation function is Gaussian error 
linear units (GELU).

The encoder consists of two sequential Swin Transformer blocks that complete representation 
learning. The feature dimension and resolution are saved during this operation. The number 
of patches decreases by 2 times and the feature dimension increases by 2 times on the patch 
merging layer. It is performed three times in the encoder.

Bottleneck of Swin-Unet consists of double Swin Transformer blocks. The resolution and 
feature dimension also is not changed in bottleneck.

Skip connection is used for the same goal as in the original U-net article. It sent features for 
the corresponding layers of the decoder. Small features are concatenated with the deep feature 
to decrease the number of relevant features lost because of down-sampling. The concatenated 
features have the same dimension as up-sampled features.

The comparison of TransUnet and Swin-Unet models is provided in Fig. 5. It shows deep 
model architecture, applied mechanism and optimizers used in both models. Architectures 
were compared on Synapse multi-organ computer tomography dataset and ACDC dataset 
based on DICE (9) and Housdorff Distance (10). 
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Figure 5. Concept matrix

The authors provided a more in-depth comparison of segmentation SwinUnet and Trans-
Unet on Medical Image Segmentation on the Synapse multi-organ computer tomography 
dataset [16]. The dataset consists of 30 computed tomography, with 85 – 198 slices of 8 
abdominal organs: aorta, gallbladder, left kidney, liver, pancreas, right kidney, spleen, and 
stomach. The total number of slices is 3779. The data was split to 18 : 12 cases for training 
and validation, respectively. So the training set contains 2212 slices, and the validation set 
consists of 1567 slices. The original size of the image is 512 * 512. It was resized to 224 * 224 
for further experiments. 

The authors of the original articles evaluate the performance of the models by DICE (9) and 
Housdorff Distance (10).

(9)

(10)

Both metrics show the performance evaluation of image segmentation models by comparing 
ground true mask from the dataset and the output of the model. However, the cost of the 
model is formed not only on the quality of segmentation. The speed of model training and the 
required hardware should also be taken into account. The model parameters show how much 
data the model processes during training. The higher this number, the slower the model will 
run. It will also require more computing power. However, the motivation for the application 
of computer vision for medical image processing is to increase the quality of premedical 
diagnostics. This problem is more common in areas far from the city. For example, 80% of 
Kazakhstan is a rural place. In these regions, there is a severe shortage of qualified doctors and 
equipment. So, models with a smaller number of parameters are preferable.

The total number of parameters for the model is the sum of all trainable parameters in 
all network layers, including convolutional, transformer, normalization, and linear layers. All 
layers that form the deep model architecture are provided in Fig. 5. The authors of both models 
provide the code for their PyTorch implementation [17] and [18]. ResNet-50 was used as a 
convolutional backbone for TransUnet. CNN backbone was not required for the Swin-Unet 
model. The distribution of trainable parameters is 105276066 : 41376516 for TransUnet and 
Swin-Unet, respectively. So TransUnet requires 2.5 times more parameters than Swin-Unet 
to achieve competitive results. Also, Swin-Unet achieved a higher DICE and a smaller HU 
than TransUnet, which makes Swin-Unet more appropriate for usage because of economic and 
practical reasons.

DOI: 10.37943/13BKBF2003
© Nam Diana, Pak Alexandr



72 Scientific Journal of Astana IT University
ISSN (P): 2707-9031   ISSN (E): 2707-904X

VOLUME 13, MARCH 2023

Also, both models were compared with the original convolutional based Unet. DICE for Swin-
Unet is 79.13, while for U-Net and TransUnet are 76.85 and 77.48, respectively on the Synapse 
multi-organ computer tomography dataset. So both observed transformer-based architectures 
show better performance for medical image segmentation than modern convolutional based 
architectures. 

Table 1. TransUnet and Swin-Unet comparison

TransUnet Swin-Unet
Number of Transformer Layers 12 12
Input of img size 224*224 224*224
Convolutional backbone ResNet-50 n/a
Input patch size 16 4
Pretrained on ImageNet ImageNet
Optimizer SDG SDG
LR 0.001 0.05
Momentum 0.9 0.9
Weight decay 1,00E-04 1,00E-04
Hardware Nvidia RTX2080Ti GPU Nvidia V100 GPU, 32 GB
Batch size 24 24
Max epoch 150 150
Total number of parameters 105276066 41376516
Average DICE 77.48 79.13
Average HU 31.69 21.55

Discussion
For medical image processing, we also need to take into account the distribution between 

True Positive and False Negative predicted pixels. As it was mentioned before, the medical 
image segmentation models could be applied as an intermediate step between computed 
tomography and doctoral examination. It will increase the quality of patient management. 
Cases, in which the model is identified as potentially affected by the disease, could be checked 
with higher priority by the specialist. Because it is premedical diagnostics and computed 
tomography images will be checked by the doctor one more time, we need to decrease the 
number of False Negative samples. Precision and Recall are used to evaluate the quality of 
the predicted mask among the distribution between True Positive and False Negative (11–12)

(11)

(12)

Dice, Precision and Recall for TransUnet and Swin-Unet based on caries segmentation on 
tooth X-ray images are provided on Table 2. 

Precision is more important when False Negative costs more than False Positive. And vice 
versa, Recall is more important when False Positive costs more than False Negative. So, for 
the application of machine learning, we need to pay more attention to Recall. Because the 
authors of the original articles compared the models among DICE and HU only, we observed 
one more article [19] where DICE and Precision were provided. The authors proposed their 
model for caries segmentation on tooth X-ray images and compared it with U-net, TransUnet 
and Swin-Unet.
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The authors used 153 X-ray images, 40 of them were used for the validation set. The number 
of training images has been increased from 113 to 800 by standard augmentation methods, 
for example, rotation and translation. The input image size also was 224*224.

The authors provided DICE and Precision for U-net, TransUnet, Swin-Unet and their model. 
We calculated Recall from provided data and compared TransUnet and Swin-Unet according to 
Recall based on their results (Equation 13–14).

(13)

(14)

Table 2. Dice, Precision and Recall for TransUnet and Swin-Unet based 
on caries segmentation on tooth X-ray images

TransUnet Swin-Unet
DICE 0.7096 0.7076
Precision 0.6837 0.7239
Recall 0.7375 0.6920

According to Table 2 TransUnet shows better Recall and DICE for this particular case.
So, when we observed models not only according to DICE and the number of parameters, 

TransUnet is preferable in some cases. 

Conclusion
The shortage of specialized doctors is a pressing problem today. The healthcare system is 

forced to cope with an extremely high workload, which leads to irreversible consequences. 
Improving patient management can partially overcome this problem. Pre-diagnostic analysis 
can be used as a preliminary step before professional diagnosis. This way, patient queues 
can be managed before seeing a specialist. The use of artificial intelligence in pre-hospital 
diagnostics can greatly reduce the burden on the medical sector. One effective way to optimize 
pre-medical diagnostics is through the application of AI in the diagnosis of medical data, 
particularly in medical image processing. Convolutional Neural Networks have been widely 
used for this purpose. U-Net based CNN showed high performance and found its application 
for segmentation of different types of medical images. But their limitations have led to the use 
of more advanced models for computer vision, such as transformer-based models.

Transformer-based models allow for the viewing of the entire image at once, preserving 
spatial information that may be lost in the “sliding window” approach used by convolutional 
neural networks. This has led to an increase in the quality of segmentation, although 
transformers are more complex models and require consideration of the number of parameters.

In this review, we compared two widely cited Unet-based models: TransUnet and Swin-
Unet. They have a fundamental difference in architecture. TransUnet is a hybrid model with a 
transformer encoder and convolutional decoder. Swin-Unet is a fully transformer model. This 
difference leads to an increase in the number of parameters for TransUnet. We examined the 
results provided by the original articles’ authors and supplemented them by calculating the 
number of parameters according to the provided code. We demonstrate that the newer Swin-
Unet showed better performance in terms of DICE, HU, and a range of parameters compared 
to TransUnet.
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