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ANALYSIS OF TECHNICAL FEATURES OF DATA ENCRYPTION 
IMPLEMENTATION ON SD CARDS IN THE ANDROID SYSTEM

Abstract: This article provides a detailed analysis of data encryption mechanisms for re-
movable storage devices in the Android operating system. Two main information protection 
technologies are examined: file-based encryption when using an SD card as portable storage 
and full-disk encryption when using a memory card as an extension of the device’s internal 
storage (Adoptable Storage). The technical implementation features of each method are in-
vestigated, including the encryption algorithms used, the structure of encrypted data, and key 
storage mechanisms. The research was conducted using Sony Xperia XZ and Xiaomi Redmi 5 
Plus devices, employing tools for working with file systems and encryption based on Linux and 
Android. The analysis has established that full-disk encryption is utilized the dm-crypt kernel 
module in plain mode with AES-256-CBC-ESSIV:SHA256 cipher. The partition encryption key 
is stored in the device’s internal memory. File-based encryption employs the eCryptFS kernel 
module. The file structure includes information about the original file size, format marker, 
flags, number of extents, their size, and the encryption key. Comparative analysis has shown 
that Adoptable Storage mode provides more comprehensive data protection through full-disk 
encryption, while Portable Storage mode with file-based encryption offers greater flexibility 
in use but may be less secure due to the possibility of analyzing the file system structure and 
file metadata. Research has revealed the implementation of encryption mechanisms depends 
on the device manufacturer and Android operating system version. The research findings have 
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practical significance for understanding the level of data protection using different modes of 
removable storage operation in the Android system and are useful for both developers and 
information security specialists, as well as ordinary users.

Keywords: encryption mechanisms, data encryption, file-based encryption (FBE), full-disk 
encryption (FDE), information security, encryption algorithms, data protection, android operat-
ing system, SD cards

Introduction 
With the active development of information technologies and ubiquitous use of mobile 

devices, the volume of data stored and processed on smartphones, tablets, and other porta-
ble devices is growing exponentially. A significant portion of this information is confidential: 
personal photos, documents, passwords, financial data, and other sensitive information. This 
makes data protection on mobile devices one of the key aspects of information security in 
today’s digital world [1].

The Android operating system, which holds a leading position in the mobile platform mar-
ket, provides users with various mechanisms to protect their data. A special place among 
these mechanisms belongs to encryption technologies for information stored both in devices’ 
internal memory and on removable storage [2]. Given that many users use SD cards to expand 
their devices’ memory, the issue of data protection on removable media becomes particularly 
relevant.

The Android operating system implements two fundamentally different approaches to 
working with removable media: Portable Storage mode and Adoptable Storage mode. Each 
of these modes has its own implementation features for data encryption mechanisms, which 
directly affects the level of user data protection [3], [4]. It is important to understand not only 
the general principles of these mechanisms but also the technical details of their implemen-
tation, including the encryption algorithms used, key storage methods, and the organization 
of encrypted data.

The relevance of studying data encryption mechanisms for removable media in the Android 
system is also because understanding the technical aspects of their implementation is critical-
ly important for assessing the actual level of information security and potential vulnerabilities 
[5]. This is particularly important in the context of increasing cyber threats and continuous 
improvement of unauthorized data access methods. A deep understanding of encryption sys-
tems’ operating principles allows not only to evaluate their effectiveness but also to develop 
recommendations for their improvement and secure use.

It is worth noting that the study of encryption mechanisms in Android is important not 
only for developers and information security specialists but also for ordinary users who need 
to understand how securely their data is protected when using different modes of removable 
storage operation. This understanding allows you to make informed decisions about choosing 
methods for storing and protecting important information.

Problem Statement. In the context of rapid mobile technology development and growing re-
quirements for confidential data protection, the study of information encryption mechanisms 
on mobile devices becomes particularly significant. Although the Android operating system 
provides built-in data encryption tools for removable media, the technical aspects of their 
implementation remain insufficiently studied.

The main problem lies in the lack of systematized knowledge about the implementation 
features of different data encryption methods when using SD cards in the Android system. 
Encryption mechanisms in Portable Storage and Adoptable Storage modes require detailed 
study, including analysis of the algorithms used, encrypted data structure, and encryption key 
storage methods.
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Additional complexity arises from the fact that different mobile device manufacturers may 
use their own modifications of standard encryption mechanisms, which complicates under-
standing the overall picture of data security on removable media. Furthermore, the lack of 
documentation regarding some aspects of encryption implementation complicates the pro-
cess of researching and evaluating the effectiveness of these mechanisms [6].

Solving this problem requires conducting a comprehensive technical analysis of data en-
cryption mechanisms for removable media in the Android operating system, which will allow 
better understanding of information security levels and identifying potential vulnerabilities in 
existing data protection methods.

The aim of this paper is to analyze the technical features of the data encryption mechanisms 
implementation on the removable media in the Android operating system, determine the en-
cryption algorithms use, and evaluate their effectiveness.

To achieve this aim, the following tasks must be accomplished:
1. Investigate the implementation features of file-based encryption when using an SD card 

in Portable Storage mode.
2. Analyze full-disk encryption mechanisms when using an SD card in Adoptable Storage 

mode.
3. Identify encryption algorithms and key storage methods used in both modes.
4. Evaluate the effectiveness and reliability of the studied encryption mechanisms.

Materials and Methods
This research focused on the analysis of data encryption mechanisms for removable media 

within the Android operating system. The study examines two primary approaches to data 
protection: file-based encryption when using an SD card as portable storage and full-disk 
encryption when using the memory card as an extension of the device’s internal memory (Ad-
optable Storage).

Research Methods:
1. Technical Specification Analysis: Examination of documentation and technical specifica-

tions related to the encryption algorithms used and their implementation in Android.
2. Experimental Verification: Testing encryption methods in practice using various Android 

devices to analyze data encryption behavior on SD cards.
3. System Analysis: Detailed review of file systems used in different modes of SD card con-

nection and data encryption methods.
4. Instrumental Analysis: Utilization of tools such as ecryptfs-utils for analyzing the struc-

ture of encrypted files and crypt setup for investigating the application of dm-crypt.
Research Materials:
• Mobile Devices: Various models of Android smartphones, including Sony Xperia XZ and 

Xiaomi Redmi 5 Plus.
• Software: Toolsets for working with file systems and encryption based on Linux and An-

droid.
• Technical Databases and Specifications: Documentation and specifications related to the 

encryption algorithms used and their implementation in Android.
This approach to research allows for an in-depth analysis of various aspects of data encryp-

tion on removable media and assessment of the level of data protection when using different 
modes of removable media operation in the Android system.

Analysis of Recent Research and Publications. The Android operating system offers three op-
tions for connecting an SD card as a data storage device: Portable Storage [7], Adoptable Stor-
age [8], and Mixed Storage (or Semi-Adoptable Storage) [9].
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When connecting a card as Portable Storage, a FAT32 or exFAT file system is created on the 
card (if not already present), after which the file system is mounted at /storage/XXXX-XXXX, 
where XXXX-XXXX is serial number of the file system. With this connection type, only user files 
can be stored on the memory card; application storage is not possible due to the limitations 
of FAT32 and exFAT file systems compared to f2fs [10] and ext4 [11] file systems used for 
device internal storage. This connection method remains the only option for many devices that 
still feature SD card slots. This method is optimal for most users since such SD cards can be 
removed from the device and connected to a computer for data transfer.

When connecting a card as Adoptable Storage, a partition is created with the same file sys-
tem used for the device’s /data partition. The created file system is unified with file system of 
the device in a manner similar to creating a composite volume in Windows OS. This connection 
method allows not only user data storage but also the transfer of applications, system infor-
mation, etc. Using FAT and NTFS family file systems for storing application data is impossible 
since these file systems do not support file attributes used by Linux kernel-based operating 
systems, including Android. This connection method has not gained popularity due to its in-
convenience and because not all device manufacturers allowed its use. Currently, using Adopt-
able Storage is impractical due to the increase in device internal storage to acceptable levels 
and the removal of SD card slots from new devices. Among the main advantages of Adoptable 
Storage mode were seamless internal memory expansion and reliable data encryption.

Additionally, in Android 6.0, some manufacturers (such as Motorola) offered a Mixed Stor-
age option. This hybrid mode was an attempt to find a compromise between fully portable and 
fully adoptable modes of SD card usage in Android. Its implementation and the reasons for 
limited adoption will be examined in detail.

Semi-Adoptable Storage involves dividing the SD card into two logical partitions. The first 
partition functions as adoptable storage, integrating with the device’s internal memory and 
allowing application installation. The second partition functions as regular portable storage, 
available for file storage and transfer between devices.

When setting up hybrid mode, the system performs the following actions:
1. Creates two partitions on the card with different file systems: ext4 for the adoptable 

portion and FAT32/exFAT for the portable portion.
2. Encrypts the adoptable partition, integrating it with Android’s system file structure.
3. Establish separate access rules and data management for each partition.
4. Configure system services to work simultaneously with both storage types.
This mode did not become popular and was quickly abandoned by manufacturers and de-

velopers for several reasons:
Technical Complexity: Supporting two different operation modes on a single memory card 

creates an additional system overhead and complicates memory management. This can lead 
to decreased performance and increased power consumption.

User Complexity: The concept of split storage proved too complicated for average users 
to understand. Many found it difficult to determine which data was stored in which partition, 
leading to confusion.

Reliability Issues: Using hybrid mode increases the risk of data corruption due to the more 
complex file system structure and increased number of data operations.

Limited Manufacturer Support: Most smartphone manufacturers have preferred implement-
ing simpler and more straightforward SD card operation modes, resulting in limited support 
for hybrid mode at the device level.

Alternative Solutions: With the emergence of devices with large internal storage capacity 
and the development of cloud storage, the need has decreased for complex SD card operation 
modes.
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Although hybrid mode has offered an interesting technical solution, the complexity of its 
implementation and use, along with changes in user needs, has resulted in its failure to gain 
widespread adoption in the Android ecosystem.

Results and Discussion 
Data Encryption With Connecting a Card as Portable Storage
Data encryption verification in Portable Storage connection mode was conducted using a 

Sony Xperia XZ device (Android 8.1.0, official firmware, version 41.3.A.2.192).
The test SD card was formatted using the Android system tools and connected as external 

storage. Within copying data, it was saved in its original form without encryption. In the frame-
work of enabling the encryption option (Figure 1), files were unencrypted that already re-
mained on the SD card. After conducting the data encryption, nine (9) photos with a total size 
of 55.6 megabytes were copied to the memory card. The copying process took approximately 
25 seconds. This result indicates a significant input-output speed limitation for operations 
involving data encryption. This could be caused by either insufficient hardware capabilities 
of the device or specific features of the software version, which operates with considerable 
delays and device heating. After copying, the photos have remained accessibility for viewing 
through the device’s tools, as well as within connecting the device to a PC in MTP mode. By 
connecting the memory card directly to a PC, the files retain their names and extensions but 
do not preserve metadata and become inaccessible for viewing and editing.

Figure 1. Enabling of the file encryption option
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Analysis of the encrypted file structure using a hex editor has revealed a header that corre-
sponds to the eCryptFS utility [12] file-based encryption format (Figure 2).

Figure 2. File header encrypted by the device

The file header consists of information about the original file size, format marker, flags, 
number of extents (continuous data segments, segmentation is necessary to ensure random 
access to data), their size (corresponds to the file system block size), encrypted file encryption 
key, and the extents themselves (starting from offset 0x2000) (Figure 3) [13]. For encrypting 
extents, the AES algorithm is presumably used in Cipher Block Chaining (CBC) mode with a 
128-bit key length.

Figure 3. eCryptFS file header structure
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Several main stages and components are involved in the process of encrypting and decrypt-
ing files using eCryptFS (Figure 4).

Figure 4. eCryptFS file operation process

File encryption
1. VFS-level interception
The Virtual File System (VFS) in Linux serves as an abstraction layer between user applica-

tions and specific filesystem implementations. This architecture allows Linux to support mul-
tiple filesystems while presenting a unified interface to applications. VFS-level interception 
works through a technique called «stacking,» where one filesystem mounts on top of another. 
When a filesystem such as eCryptFS is implemented as a stacking filesystem, it intercepts file 
operations before they reach the lower filesystem.

The following processes are conducted when an application reads from a file on an eCrypt-
FS file system:

1. The application calls a standard read() system call.
2. The VFS layer routes this call to the eCryptFS read implementation.
3. eCryptFS retrieves the encrypted data from the lower filesystem.
4. eCryptFS decrypts the data using the appropriate key.
5. The decrypted data is returned to the application.
This architecture allows eCryptFS to provide transparent encryption and decryption with-

out requiring modifications to applications or the underlying storage filesystem.
2. FEK Generation
File encryption key (FEK) is generated with the Linux system call (Linux/drivers/char/ran-

dom.c) get_random_bytes(void *buf, size_t len). The Linux kernel has gathers entropy from 
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many system events, such as user input events, CPU clock jitter, I/O timings and such. Entropy 
data is gathered into pools, which are used to seed and reseed the deterministic RNG, based 
on ChaCha20 stream cipher, that is repeatedly running its block function, generates a stream 
of pseudo-random bytes. A “fast key erasure” mechanism is used to update the DRNG state and 
maintain forward security. The get_random_bytes() function in the drivers/char/random.c file 
is responsible for generating a specified number of random bytes and storing them in a buffer.

ChaCha20 is a symmetric stream cipher designed by Daniel J. Bernstein in 2008 as an evo-
lution of his earlier Salsa20 algorithm. It provides high-performance encryption with strong 
security properties, making it suitable for various data encryption applications and random 
number generation. ChaCha20 operates by transforming a fixed-length input into a pseudor-
andom keystream, which is then combined with plaintext through XOR operations to produce 
ciphertext. The encryption process follows a defined sequence:

A. Initialize a 4×4 state matrix using constants, the encryption key, a counter, and the nonce.
B. Apply 20 rounds of mixing operations (10 column rounds alternating with 10 diagonal 

rounds).
C. Add the resulting matrix to the initial state matrix.
F. Generate the keystream by serializing the final state.
E. XOR the keystream with the plaintext to produce the ciphertext.
Typical FEK length is 128 bytes, but it may differ based on the encryption algorithm in use 

(AES-128 is the default). ECryptFS may use any encryption algorithm provided by the Linux 
kernel crypto API.

3. File contents encryption.
ECryptFS has utilizes Linux kernel Crypto API calls to perform data page encryption. The 

first step of the page encryption is its initialization vector generation. Page IV is calculated as 
md5(ascii(page_offset) | root_iv). Root IV is stored in the file header. If HMAC verification was 
enabled at the mounting stage, then the HMAC checksum will be generated for every page 
write operation and it will be stored in the lower file.

4. EFEK generation
The file encryption key should be converted to the EFEK using the user’s passphrase or 

public key. Android systems typically use pubkey-based EFEK derivation. EFEK pubkey gen-
eration is performed by the userspace, which communicates with the kernel using an Open-
PGP-like kernel-userspace communication protocol. Four message formats are determined: 
Tag 64 (Public Key Decryption Request), Tag 65 (Public Key Decryption Reply), Tag 66 (Public 
Key Encryption Request) and Tag 67 (Public Key Encryption Reply). Passphrase-based EFEK 
generation is implemented in kernelspace without transferring the key data into userspace.

4.1. Passphrase-based key derivation
Passphrase-based key derivation mechanism is based on the Iterated and Salted S2K as be-

ing described in RFC 2440 “OpenPGP Message Format” (deprecated by RFC 4880), Section 3.6. 
S2K (string to key) procedure has converts human-readable secrets to machine-readable 

keys, which can be used for cryptographic purposes. RFC 2440 (and RFC 4880) define 3 types 
of S2K procedures: “Simple S2K”, “Salted S2K” and “Iterated and Salted S2K”; the latter one 
is used by the eCryptFS key derivation. Iterated and Salted S2K uses an 8-octet (64 bits) salt 
value, which is concatenated with the input and a 1-octet count value, which is calculated as 
count = ((Int32)16 + (c & 15)) << ((c >> 4) + EXPBIAS), where EXPBIAS is 6. Overall, the data 
block is iteratively MD5-hashed 65536 times and then used to encrypt the file encryption key.

MD5 (Message Digest Algorithm 5) is a widely recognized cryptographic hash function that 
produces a 128-bit (16-byte) hash value. Developed by Ronald Rivest in 1991 to replace the 
earlier MD4 algorithm. At its foundation, MD5 operates in the realm of modular arithmetic, 
specifically using operations in the 232 integer space.



165

MD5 begins with four 32-bit initialization vectors (A, B, C, D):
• A = 0x67452301.
• B = 0xEFCDAB89.
• C = 0x98BADCFE.
• D = 0x10325476.
Four primary nonlinear functions are employed during the four rounds of processing:
• F(B, C, D) = (B ∧ C) ∨ (¬B ∧ D).
• G(B, C, D) = (B ∧ D) ∨ (C ∧ ¬D).
• H(B, C, D) = B ⊕ C ⊕ D.
• I(B, C, D) = C ⊕ (B ∨ ¬D).
For each 512-bit block of the padded message, the algorithm performs:
A. Buffer Copy: The current state (A, B, C, D) is copied to temporary variables (a, b, c, d).
B. Round Processing: For each of the 64 steps (16 steps in each of the 4 rounds), the algo-

rithm performs: 
a[i+1] = b[i] + ((a[i] + g(b[i], c[i], d[i]) + X[k[i]] + T[i]) <<< s[i]).

Where:
• g is one of the nonlinear functions (F, G, H, or I).
• X[k[i]] represents the k[i]-th 32-bit word from the current block.
• T[i] is the i-th element of a precomputed table.
• s[i] specifies the amount of circular left shift.
After each step, the variables are rotated: (a, b, c, d) → (d, a, b, c)
State Update: After 64 steps, the algorithm updates the state variables: A = A + a B = B + b 

C = C + c D = D + d.
Researchers have identified mathematical techniques to find two different inputs that pro-

duce the same hash, which undermines its security. These collision attacks leverage differen-
tial cryptanalysis techniques to find specific patterns that, when modified in particular ways, 
do not affect the final hash value.

4.2. Pubkey-based key derivation
RSA encryption has used to perform FEK encryption with public keys. Pubkey authentication 

tokens store the public key and its hash as the token signature; the private key is used to de-
crypt the EFEK. Any number of Public Key Infrastructures may be used with plugins, the most 
common PKI plugins are OpenSSL and GnuPG. The most suitable PKI for hardware-backed en-
cryption is TSPI (TPM Serial Peripheral Interface). Android devices may use hardware-tailored 
PKI plugins for TEE keybox access.

4.3. EFEK generation process
File Encryption Key (FEK) is then encrypted with generated FEFEK (FEK Encryption Key) 

using the AES algorithm in CBC mode. Key length is defined at the filesystem mount stage.
5. EFEK storage
Newly created EFEK (Encrypted FEK) is stored in the file header, along with the necessary 

cryptographic context to perform its decryption. Cryptographic context data are also known as 
“Authentication token” in eCryptFS terminology.

File decryption
1. EFEK retrieval
Header of the file is read and parsed. The authentication token identifier is compared to 

the set of tokens in keyring, then the type of the token is determined and, in case of a match 
between two instances of tokens, corresponding EFEK decryption process is initiated.

2. EFEK decryption
If the EFEK is encrypted with the passphrase, an FEFEK is being generated using the “Iterat-

ed and Salted S2K” procedure. If the EFEK is encrypted with a public key, it will be forwarded to 
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the userspace and decrypted using the determined PKI plugin. Decrypted FEK is then returned 
to the kernel module and is used for the data decryption and encryption.

3. File contents decryption
On a read call, eCryptFS will recover the page index, calculate the IV for a particular page 

and transfer the data to the crypto API to perform the decryption. Decrypted data will be trans-
ferred to the userspace application via VFS syscalls. This makes file encryption transparent for 
userspace applications and efficient, as only the needed blocks are decrypted and transferred. 

When a user creates or saves a file in an encrypted directory, eCryptFS first intercepts the 
operation at the Virtual File System (VFS) level. At this stage, the system generates a unique 
File Encryption Key (FEK) [14], [15]. This key is randomly created for each individual file.

The system has uses the generated FEK to encrypt the file contents. Encryption has oc-
curred on a per-page basis, typically in 4 KB blocks. This enables efficient access to individual 
parts of the file without needing to decrypt the entire file. The FEK itself is encrypted using 
the user’s master key, which is derived from the user’s password.

The encrypted FEK is stored in the file metadata along with additional information, such as 
the encryption algorithm used and other parameters. On the next stage, the encrypted data and 
metadata have passed to the lower level of the file system for physical storage on the disk [16].

When a user attempts to access an encrypted file, the process has occurred in reverse order. 
First, the system has read the file metadata and extracts the encrypted FEK. Using the user’s 
master key (which is obtained from the password when mounting the file system), the system 
has decrypted the FEK.

After obtaining the decrypted FEK, the system uses it to decrypt the file contents. Decryp-
tion also occurs on a per-page basis, allowing efficient operation with large files. The decrypt-
ed data is passed to the program that requested file access.

eCryptFS has provided transparent encryption, meaning automatic encryption and decryp-
tion of files without requiring special actions from users or programs. The system also sup-
ports filename encryption, providing an additional level of confidentiality.

It’s important to note that eCryptFS keeps the directory structure unencrypted, encrypting 
only file contents and, when necessary, their names. This allows the file system to work effi-
ciently with the directory tree while maintaining data confidentiality.

To decrypt a file encrypted by eCryptFS, it is necessary to obtain the FEK. In full GNU/Linux 
family operating systems, the encrypted mount key file (master key) is in the user’s home di-
rectory and is decrypted either using a passphrase/key (legitimate method) or through brute 
force (illegitimate method). Since Android OS doesn’t have a user directory, the next step was 
to check the key storage directory /data/misc/keystore/user_0 (note that this directory is only 
accessible with root privileges). After scanning all key files in this directory using the ecrypt-
fs2john utility from the standard Kali Linux distribution toolkit, no key was recognized as an 
eCryptFS wrapped passphrase (Figure 5).
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Figure 5. Checking for eCryptFS encryption keys in the Android system keystore

The use of eCryptFS is specific to several Android device manufacturers, with Sony and 
Samsung being the most notable among them. The utilities for working with eCryptFS in these 
manufacturers’ firmware are not standard and are not accessible through the superuser con-
sole. Therefore, further steps involve file-by-file system inspection and analysis of firmware 
binary files to identify file decryption key storage locations.

Data Encryption Within Connecting a Card as Internal Storage Extension
To verify Adoptable Storage encryption, a Xiaomi Redmi 5 Plus device was used (Android 

8.1.0, custom firmware, crDroid 4.7 version). The card was formatted for Adoptable Storage 
using standard firmware tools and connected with the transfer of 104 megabytes of data from 
internal memory. After data transferring, the SD card was removed after properly shutting 
down the device for further analysis.

The operating system’s standard tools have created two partitions on the memory card 
(Figure 6) with an unknown file system.
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Figure 6. Memory card partition structure in Adoptable Storage mode

Verification using built-in cryptsetup [17] and dmsetup [18] has utilities (Figure 7) also 
revealed no use of LUKS, leading to the conclusion that the dm-crypt module’s plain mode is 
being used, which does not contain partition headers and is essentially indistinguishable from 
random data.

Figure 7. Results of LUKS technology usage verification

Dm-crypt supports encryption using both plain mode and LUKS (Linux Unified Key Setup) 
[19], [20]. Plain mode is the basic encryption mode that provides only core encryption func-
tionality without additional key management capabilities. When using plain mode, the pass-
word is directly converted into an encryption key through a hash function. This mode doesn’t 
store any metadata on the disk, making it more resistant to cryptanalysis but significantly less 
convenient to use.

LUKS is a more modern and functional solution. It has created a special header on the disk 
that contains all necessary information about encryption parameters and keys. LUKS has sup-
ported up to eight different keys for a single partition, allowing access for different users or 
maintaining backup keys. An important feature is the use of a master key, which encrypts the 
data, while user passwords encrypt this master key.

Regarding practical applications, LUKS is the recommended option for most use cases as it 
provides:

• standardized disk header format.
• ability to change passwords without re-encrypting data.
• enhanced protection against brute force attacks using salt values.
• support for managing multiple keys.
Plain mode can be useful in specific scenarios, such as:
• when maximum concealment of the encryption fact itself is required.
• when creating custom key management systems.
• in cases where implementation simplicity is critically important.
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It’s worth noting that LUKS requires additional disk space for header storage (usually sev-
eral megabytes), while plain mode requires no additional space. However, this difference is 
insignificant for modern storage systems.

In the Android operating system, the Adoptable Storage partition encryption key is stored 
at /data/misc/vold. The partition can be decrypted if the encryption key is obtained using 
root privileges or other methods [21]. The key file was successfully transferred to a computer, 
after which the memory card partition /dev/mmcblk0p2 was successfully decrypted. Through 
trial and error, it was determined that the AES-128 encryption algorithm is used in CBC mode 
[22], [23] with ESSIV (Encrypted Salt-Sector Initialization Vector) [24], [25] initialization vector 
computation algorithm (Figure 8).

Figure 8. Successful decryption of the SD card partition and its contents

Since the memory card was just formatted, it contains no files, only the directory structure 
created by the system (Figure 9). The purpose of the directories has corresponded to their 
names.

Figure 9. Directory structure of an empty memory card in Adoptable Storage mode

An analysis of the decrypted data has shown that the system creates a standard directory 
structure on the memory card, which has corresponded to the main categories of data that can 
be stored on the device. All files written to the memory card are automatically encrypted by 
the system using the same encryption key.
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It is important to note that by removing the memory card from the device, access to the data 
becomes impossible without the corresponding encryption key. This provides reliable protec-
tion of information in case of loss or theft of the memory card. However, as the research has 
shown, having root access to the device allows obtaining the encryption key and, consequently, 
access to the data on the memory card.

Comparing both studied data encryption methods, it is noted that Adoptable Storage mode 
provides more comprehensive data protection through full-disk encryption, while Portable 
Storage with file-based encryption offers greater flexibility in use but may be less secure due 
to the possibility of analyzing the file system structure and file metadata.

The research has also revealed that the implementation of encryption mechanisms can vary 
depending on the device manufacturer and Android operating system version, which creates 
additional complexities when analyzing data security on removable media. This emphasizes 
the need for further research in this direction, especially in the context of new Android ver-
sions and various implementations from device manufacturers.

Conclusion
This research has examined the main data encryption methods for removable media used 

in the Android operating system: file-based encryption and full-disk encryption. File-based 
encryption can be used for connecting a memory card as external storage, while full-disk en-
cryption is mandatory by connecting a memory card as an extension of the device’s internal 
memory.

It was determined that full-disk encryption uses the dm-crypt kernel module in plain mode 
with AES-256-CBC-ESSIV:SHA256 cipher, with the partition encryption key stored in the de-
vice’s internal memory at /data/misc/vold/expand_<PARTUUID>.key; file-based encryption in 
the studied device uses the eCryptFS kernel module, though the location of its master key 
could not be determined.
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